首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The RANKL/RANK/OPG pathway is essential for bone remodeling regulation. Many hormones and cytokines are involved in regulating gene expression in most of the pathway components. Moreover, any deregulation of this pathway can alter bone metabolism, resulting in loss or gain of bone mass. Whether osteoblasts from osteoporotic and nonosteoporotic patients respond differently to cytokines is unknown. The aim of this study was to compare the effect of interleukin (IL)‐1β, proftaglandin E2 (PGE2), and transforming growth factor‐β1 (TGF‐β1) treatments on OPG and RANKL gene expression in normal (n = 11) and osteoporotic (n = 8) primary osteoblasts. OPG and RANKL mRNA levels of primary human osteoblastic (hOB) cell cultures were assessed by real‐time PCR. In all cultures, OPG mRNA increased significantly in response to IL‐1β treatment and decreased in response to TGF‐β1 whereas PGE2 treatment had no effect. RANKL mRNA levels were significantly increased by all treatments. Differences in OPG and RANKL responses were observed between osteoporotic and nonosteoporotic hOB: in osteoporotic hOB, the OPG response to IL‐1β treatment was up to three times lower (P = 0.009), whereas that of RANKL response to TGF‐β1 was five times higher (P = 0.002) after 8 h of treatment, as compared with those in nonosteoporotic hOBs. In conclusion, osteoporotic hOB cells showed an anomalous response under cytokine stimulation, consistent with an enhanced osteoclastogenesis resulting in high levels of bone resorption. J. Cell. Biochem. 110: 304–310, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.

Objective:

Interleukin‐1β (IL‐1β) has recently been implicated as a major cytokine that is involved in the pancreatic islet inflammation of type 2 diabetes mellitus. This inflammation impairs insulin secretion by inducing beta‐cell apoptosis. Recent evidence has suggested that in obesity‐induced inflammation, IL‐1β plays a key role in causing insulin resistance in peripheral tissues.

Design and Methods:

To further investigate the pathophysiological role of IL‐1β in causing insulin resistance, the inhibitory effects of IL‐1β on several insulin‐dependent metabolic processes in vitro has been neutralized by XOMA 052. The role IL‐1β plays in insulin resistance in adipose tissue was assessed using differentiated 3T3‐L1 adipocytes and several parameters involved in insulin signaling and lipid metabolism were examined.

Results and Conclusion:

IL‐1β inhibited insulin‐induced activation of Akt phosphorylation, glucose transport, and fatty acid uptake. IL‐1β also blocked insulin‐mediated downregulation of suppressor of cytokine signaling‐3 expression. Co‐preincubation of IL‐1β with XOMA 052 neutralized nearly all of these inhibitory effects in 3T3‐L1 adipocytes. These studies provide evidence, therefore, that IL‐1β is a key proinflammatory cytokine that is involved in inducing insulin resistance. These studies also suggest that the monoclonal antibody XOMA 052 may be a possible therapeutic to effectively neutralize cytokine‐mediated insulin resistance in adipose tissue.  相似文献   

3.
The effect of wnt/β‐catenin signalling in the response to acute myocardial infarction (AMI) remains controversial. The membrane receptor adaptor protein Disabled‐2 (Dab2) is a tumour suppressor protein and has a critical role in stem cell specification. We recently demonstrated that down‐regulation of Dab2 regulates cardiac protein expression and wnt/β‐catenin activity in mesenchymal stem cells (MSC) in response to transforming growth factor‐β1 (TGF‐β1). Although Dab2 expression has been shown to have effects in stem cells and tumour suppression, the molecular mechanisms regulating this expression are still undefined. We identified putative binding sites for miR‐145 in the 3′‐UTR of Dab2. In MSC in culture, we observed that TGF‐β1 treatment led to rapid and sustained up‐regulation of pri–miR‐145. Through gain and loss of function studies we demonstrate that miR‐145 up‐regulation was required for the down‐regulation of Dab2 and increased β‐catenin activity in response to TGF‐β1. To begin to define how Dab2 might regulate wnt/β‐catenin in the heart following AMI, we quantified myocardial Dab2 as a function of time after left anterior descending ligation. There was no significant Dab2 expression in sham‐operated myocardium. Following AMI, Dab2 levels were rapidly up‐regulated in cardiac myocytes in the infarct border zone. The increase in cardiac myocyte Dab2 expression correlated with the rapid and sustained down‐regulation of myocardial pri–miR‐145 expression following AMI. Our data demonstrate a novel and critical role for miR‐145 expression as a regulator of Dab2 expression and β‐catenin activity in response to TGF‐β1 and hypoxia.  相似文献   

4.
Interleukin 1 (IL‐1) is a proinflammatory cytokine upregulated in conditions such as rheumatoid arthritis and periodontal disease. Both isoforms, IL‐1α and IL‐1β, have been shown to activate osteoclasts (OCs), the cells responsible for resorbing bone. Inflammatory conditions are also characterized by increased bone loss and by the presence of large OCs (10+ nuclei). We and others have previously shown that large OCs are more likely to be resorbing compared to small OCs (2–5 nuclei). Moreover, large OCs express higher levels of the IL‐1 activating receptor IL‐1RI, integrins αv and β3, RANK, and TNFR1, while small OCs have higher levels of the decoy receptor IL‐1RII. We hypothesized that IL‐1 would have different effects on large and small OCs due to these distinct receptor expression patterns. To test this hypothesis, RAW 264.7 cells were differentiated into populations of small and large OCs and treated with IL‐1α or IL‐1β (1 and 10 ng/ml). In the presence of sRANKL, both IL‐1α and IL‐1β increased total OC number and resorptive activity of large OCs. IL‐1α stimulated formation of large OCs and increased the number of resorption pits, while IL‐1β changed the morphology of large OCs and integrin‐β3 phosphorylation. No effects were seen in small OCs in response to either IL‐1 isoform. These results demonstrate that IL‐1 predominantly affects large OCs. The dissimilarity of responses to IL‐1α and IL‐1β suggests that these isoforms activate different signaling pathways within the two OC populations. J. Cell. Biochem. 109: 975–982, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Alzheimer's disease (AD) is the most common form of dementia and displays the characteristics of chronic neurodegenerative disorders; amyloid plaques (AP) that contain amyloid β‐protein (Aβ) accumulate in AD, which is also characterized by tau phosphorylation. Epidemiological evidence has demonstrated that long‐term treatment with nonsteroidal anti‐inflammatory drugs (NSAIDs) markedly reduces the risk of AD by inhibiting the expression of cyclooxygenase 2 (COX‐2). Although the levels of COX‐2 and its metabolic product prostaglandin (PG)E2 are elevated in the brain of AD patients, the mechanisms for the development of AD remain unknown. Using human‐ or mouse‐derived glioblastoma and neuroblastoma cell lines as model systems, we delineated the signaling pathways by which COX‐2 mediates the reciprocal regulation of interleukin‐1β (IL‐1β) and Aβ between glial and neuron cells. In glioblastoma cells, COX‐2 regulates the synthesis of IL‐1β in a PGE2‐dependent manner. Moreover, COX‐2‐derived PGE2 signals the activation of the PI3‐K/AKT and PKA/CREB pathways via cyclic AMP; these pathways transactivate the NF‐κB p65 subunit via phosphorylation at Ser 536 and Ser 276, leading to IL‐1β synthesis. The secretion of IL‐1β from glioblastoma cells in turn stimulates the expression of COX‐2 in human or mouse neuroblastoma cells. Similar regulatory mechanisms were found for the COX‐2 regulation of BACE‐1 expression in neuroblastoma cells. More importantly, Aβ deposition mediated the inflammatory response of glial cells via inducing the expression of COX‐2 in glioblastoma cells. These findings not only provide new insights into the mechanisms of COX‐2‐induced AD but also initially define the therapeutic targets of AD.  相似文献   

6.
Inflammation is a complex process involving cytokine production to regulate host defense cascades. In contrast to the therapeutic significance of acute inflammation, a pathogenic impact of chronic inflammation on cancer development has been proposed. Upregulation of inflammatory cytokines, such as IL‐1β and IL‐8, has been noted in prostate cancer patients and IL‐8 has been shown to promote prostate cancer cell proliferation and migration; however, it is not clear whether IL‐1β regulates IL‐8 expression in prostate cancer cells. Glucosamine is widely regarded as an anti‐inflammatory agent and thus we hypothesized that if IL‐1β activated IL‐8 production in prostate cancer cells, then glucosamine ought to blunt such an effect. Three prostate cancer cell lines, DU‐145, PC‐3, and LNCaP, were used to evaluate the effects of IL‐1β and glucosamine on IL‐8 expression using ELISA and RT‐PCR analyses. IL‐1β elevated IL‐8 mRNA expression and subsequent IL‐8 secretion. Glucosamine significantly inhibited IL‐1β‐induced IL‐8 secretion. IL‐8 appeared to induce LNCaP cell proliferation by MTT assay; involvement of IL‐8 in IL‐1β‐dependent PC‐3 cell migration was demonstrated by wound‐healing and transwell migration assays. Inhibitors of MAPKs and NFκB were used to pinpoint MAPKs but not NFκB being involved in IL‐1β‐mediated IL‐8 production. IL‐1β‐provoked phosphorylation of all MAPKs was notably suppressed by glucosamine. We suggest that IL‐1β can activate the MAPK pathways resulting in an induction of IL‐8 production, which promotes prostate cancer cell proliferation and migration. In this context, glucosamine appears to inhibit IL‐1β‐mediated activation of MAPKs and therefore reduces IL‐8 production; this, in turn, attenuates cell proliferation/migration. J. Cell. Biochem. 108: 489–498, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Chondrosarcoma is a type of highly malignant tumour with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Tumour necrosis factor (TNF)‐α is a key cytokine involved in inflammation, immunity, cellular homeostasis and tumour progression. Integrins are the major adhesive molecules in mammalian cells and have been associated with metastasis of cancer cells. However, the effects of TNF‐α in migration and integrin expression in chondrosarcoma cells are largely unknown. In this study, we found that TNF‐α increased the migration and the expression of αvβ3 integrin in human chondrosarcoma cells. Activations of MAPK kinase (MEK), extracellular signal‐regulating kinase (ERK) and nuclear factor‐κB (NF‐κB) pathways after TNF‐α treatment were demonstrated, and TNF‐α‐induced expression of integrin and migration activity was inhibited by the specific inhibitor and mutant of MEK, ERK and NF‐κB cascades. Taken together, our results indicated that TNF‐α enhances the migration of chondrosarcoma cells by increasing αvβ3 integrin expression through the MEK/ERK/NF‐κB signal transduction pathway. J. Cell. Physiol. 226: 792–799, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
9.
Colon carcinoma invasiveness is a process involving cell–cell and cell–matrix alterations, local proteolysis of the ECM (extracellular matrix) or changes in cytokine and growth factor levels. In order to evaluate the role of TGF‐β1 (transforming growth factor‐β1) and small G protein RhoA in tumour progression, the influence of TGF‐β1 treatment or RhoA‐associated kinase inhibitor on the production of NO (nitric oxide) and MMP‐2 and MMP‐9 (metalloproteinases‐2 and ‐9) was analysed in three human colon adenocarcinoma cell lines (HT29, LS180, SW948) representing different stages of tumour development. All the tested cell lines produced low amounts of MMP‐2 and MMP‐9. rhTGF‐β1 and the synthetic Rho kinase inhibitor (Y‐27632) decreased MMP‐2 secretion by colon cancer cells, especially in the most advanced stage of colon cancer. rhTGF‐β1 decreased NO secretion by cells, while Y‐27632 had no effect on it. Immunoblotting with anti‐RhoA antibodies followed by densitometry revealed that RhoA levels were slightly increased after incubation of colon carcinoma cells (SW948) with rhTGF‐β1. rhTGF‐β1 induced α‐smooth muscle actin (α‐SMA) expression, especially in high Duke's grade of colon cancer, while Y‐27632 blocked it. Summing up, in colon carcinoma cells, TGF‐β1 and RhoA protein may regulate tumour invasiveness measured as MMP, NO and α‐SMA expression or assayed using motility data and may be a good target for cancer therapy.  相似文献   

10.
Laminins, a family of heterotrimeric proteins with cell adhesive/signaling properties, are characteristic components of basement membranes of vasculature and tissues. In the present study, permeabilized platelets were found to react with a monoclonal antibody to laminin γ1 chain by immunofluorescence. In Western blot analysis of platelet lysates, several monoclonal antibodies to γ1 and β1 laminin chains recognized 220- to 230-kDa polypeptides, under reducing conditions, and a structure with much slower electrophoretic mobility under nonreducing conditions. Immunoaffinity purification on a laminin β1 antibody–Sepharose column yielded polypeptides of 230, 220, 200, and 180 kDa from platelet lysates. In the purified material, mAbs to β1 and γ1 reacted with the two larger polypeptides, while affinity-purified rabbit antibodies to laminin α4 chain recognized the smallest polypeptide. Identity of the polypeptides was confirmed by microsequencing. One million platelets contained on average 1 ng of laminin (approximately 700 molecules per cell), of which 20–35% was secreted within minutes after stimulation with either thrombin or phorbol ester. Platelets adhered to plastic surfaces coated with the purified platelet laminin, and this process was largely inhibited by antibodies to β1 and α6 integrin chains. We conclude that platelets contain and, following activation, secrete laminin-8 (α4β1γ1) and that the cells adhere to the protein by using α6β1 integrin.  相似文献   

11.
The aim of this study was to investigate the protective effect of ferulic acid at different doses (50 mg kg?1 alternative day and 50 mg kg?1 daily) on the streptozotocin (STZ)‐induced post‐diabetes rat testicular damage. Diabetes was induced by a single intraperitoneal injection of STZ (50 mg/kg). Rats treated with ferulic acid were given once a day orally for 10 weeks, starting 3 days after STZ injection. Testis tissue and blood samples were collected for investigating biochemical analysis, antioxidant status, sperm parameters, and histopathological, immunohistochemical and apoptotic studies. Treatment with ferulic acid to diabetic rats significantly improved the body weight, testis weight, serum insulin level, serum testosterone level and sperm parameters (viability, motility and count). Histopathological study also revealed that ferulic acid‐treated diabetic rats showed an improved histological appearance. Our data indicated that significant reduction in the activity of apoptosis by using terminal deoxyuridine triphosphate nick end‐labelling and reduced expression of transforming growth factor‐β1 and interleukin‐1β in the testis tissue of ferulic acid‐treated diabetic rats. Conversely, it was also revealed that ferulic acid‐treated diabetic rats markedly enhanced the serine/threonine protein kinase protein expression in the testis tissue. Our result suggests that ferulic acid inhibits testicular damage in diabetic rats by declining oxidative stress. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Human bronchial epithelial (HBE) cells contribute to asthmatic airway inflammation by secreting cytokines, chemokines, and growth factors, including interleukin (IL)‐6, IL‐8 and transforming growth factor (TGF) β1, all of which are elevated in asthmatic airways. This study examines the signaling pathways leading to TGFβ1 induced IL‐6 and IL‐8 in primary HBE cells from asthmatic and non‐asthmatic volunteers. HBE cells were stimulated with TGFβ1 in the presence or absence of signaling inhibitors. IL‐6 and IL‐8 protein and mRNA were measured by ELISA and real‐time PCR respectively, and cell signaling kinases by Western blot. TGFβ1 increased IL‐6, but inhibited IL‐8 production in both asthmatic and non‐asthmatic cells; however, TGF induced significantly more IL‐6 in asthmatic cells. Inhibition of JNK MAP kinase partially reduced TGFβ1 induced IL‐6 in both cell groups. TGFβ1 induced Smad2 phosphorylation, and blockade of Smad2/3 prevented both the TGFβ1 modulated IL‐6 increase and the decrease in IL‐8 production in asthmatic and non‐asthmatic cells. Inhibition of Smad2/3 also increased basal IL‐8 release in asthmatic cells but not in non‐asthmatic cells. Using CHIP assays we demonstrated that activated Smad2 bound to the IL‐6, but not the IL‐8 promoter region. We conclude that the Smad2/3 pathway is the predominant TGFβ1 signaling pathway in HBE cells, and this is altered in asthmatic bronchial epithelial cells. Understanding the mechanism of aberrant pro‐inflammatory cytokine production in asthmatic airways will allow the development of alternative ways to control airway inflammation. J. Cell. Physiol. 225: 846–854, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
14.
15.
16.
In the present study, the effects of the two classical anti‐epileptic drugs, carbamazepine and valproic acid, and the non‐classical anti‐seizure drug vinpocetine were investigated on the expression of the pro‐inflammatory cytokines IL‐1β and TNF‐α in the hippocampus of rats by PCR or western blot after the administration of one or seven doses. Next, the effects of the anti‐seizure drugs were investigated on the rise in cytokine expression induced by lipopolysaccharides (LPS) inoculation in vivo. To validate our methods, the changes induced by the pro‐convulsive agents 4‐aminopyridine, pentylenetetrazole and pilocarpine were also tested. Finally, the effect of the anti‐seizure drugs on seizures and on the concomitant rise in pro‐inflammatory cytokine expression induced by 4‐aminopyridine was explored. Results show that vinpocetine and carbamazepine reduced the expression of IL‐1β and TNF‐α from basal conditions, and the increase in both pro‐inflammatory cytokines induced by LPS. In contrast, valproic acid failed to reduce both the expression of the cytokines from basal conditions and the rise in IL‐1β and TNF‐α expression induced by LPS. Tonic‐clonic seizures induced either by 4‐aminopyridine, pentylenetetrazole or pilocarpine increased the expression of IL‐1β and TNF‐α markedly. 4‐aminopyridine‐induced changes were reduced by all the tested anti‐seizure drugs, although valproic acid was less effective. We conclude that the anti‐seizure drugs, vinpocetine and carbamazepine, whose mechanisms of action involve a decrease in ion channels permeability, also reduce cerebral inflammation.

  相似文献   


17.
Canonical BMP and Wnt signaling pathways play critical roles in regulation of osteoblast function and bone formation. Recent studies demonstrate that BMP‐2 acts synergistically with β‐catenin to promote osteoblast differentiation. To determine the molecular mechanisms of the signaling cross‐talk between canonical BMP and Wnt signaling pathways, we have used primary osteoblasts and osteoblast precursor cell lines 2T3 and MC3T3‐E1 cells to investigate the effect of BMP‐2 on β‐catenin signaling. We found that BMP‐2 stimulates Lrp5 expression and inhibits the expression of β‐TrCP, the F‐box E3 ligase responsible for β‐catenin degradation and subsequently increases β‐catenin protein levels in osteoblasts. In vitro deletion of the β‐catenin gene inhibits osteoblast proliferation and alters osteoblast differentiation and reduces the responsiveness of osteoblasts to the BMP‐2 treatment. These findings suggest that BMP‐2 may regulate osteoblast function in part through modulation of the β‐catenin signaling. J. Cell. Biochem. 108: 896–905, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
19.
The ability to discriminate cell adhesion molecule expression between healthy and inflamed endothelium is critical for therapeutic intervention in many diseases. This study explores the effect of laminar flow on TNFα‐induced E‐selectin surface expression levels in human umbilical vein endothelial cells (HUVECs) relative to IL‐1β‐induced expression via flow chamber assays. HUVECs grown in static culture were either directly (naïve) activated with cytokine in the presence of laminar shear or pre‐exposed to 12 h of laminar shear (shear‐conditioned) prior to simultaneous shear and cytokine activation. Naïve cells activated with cytokine in static served as control. Depending on the cell shear history, fluid shear is found to differently affect TNFα‐induced relative to IL‐1β‐induced HUVEC expression of E‐selectin. Specifically, E‐selectin surface expression by naïve HUVECs is enhanced in the 8–12 h activation time range with simultaneous exposure to shear and TNFα (shear‐TNFα) relative to TNFα static control whereas enhanced E‐selectin expression is observed in the 4–24 h range for shear‐IL‐1β treatment relative to IL‐1β static control. While exposure of HUVECs to shear preconditioning mutes shear‐TNFα‐induced E‐selectin expression, it enhances or down‐regulates shear‐IL‐1β‐induced expression dependent on the activation period. Under dual‐cytokine‐shear conditions, IL‐1β signaling dominates. Overall, a better understanding of E‐selectin expression pattern by human ECs relative to the combined interaction of cytokines, shear profile and history can help elucidate many disease pathologies. Biotechnol. Bioeng. 2013; 110: 999–1003. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Intestinal epithelial cells form a single layer separating the intestinal lumen containing nutriments and microbiota from the underlying sterile tissue and therefore play a key role in maintaining homeostasis. We investigated the factors contributing to the alteration of the epithelial barrier function during Cryptosporidium parvum infection. Infected polarized epithelial cell monolayers exhibit a drop in transepithelial resistance associated with a delocalization of E‐cadherin and β‐catenin from their intercellular area of contact, the adherens junction complex. In neonatal mice infected by C. parvum, the increased permeability is correlated with parasite development and with an important recruitment of Ly6c+ inflammatory monocytes to the subepithelial space. TNFα and IL‐1β produced by inflammatory monocytes play a key role in the loss of barrier function. Our findings demonstrate for the first time that both the parasite and inflammatory monocytes contribute to the loss of intestinal barrier function during cryptosporidiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号