首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following menopause, body fat is redistributed from peripheral to central depots. This may be linked to the age related decrease in estrogen levels. We hypothesized that estrogen supplementation could counteract this fat redistribution through tissue‐specific modulation of glucocorticoid exposure. We measured fat depot masses and the expression and activity of the glucocorticoid‐activating enzyme 11β‐hydroxysteroid dehydrogenase type 1 (11βHSD1) in fat and liver of ovariectomized female rats treated with or without 17β‐estradiol. 11βHSD1 converts inert cortisone, or 11‐dehydrocorticosterone in rats into active cortisol and corticosterone. Estradiol‐treated rats gained less weight and had significantly lower visceral adipose tissue weight than nontreated rats (P < 0.01); subcutaneous adipose weight was unaltered. In addition, 11βHSD1 activity/expression was downregulated in liver and visceral, but not subcutaneous, fat of estradiol‐treated rats (P < 0.001 for both). This downregulation altered the balance of 11βHSD1 expression and activity between adipose tissue depots, with higher levels in subcutaneous than visceral adipose tissue of estradiol‐treated animals (P < 0.05 for both), opposite the pattern in ovariectomized rats not treated with estradiol (P < 0.001 for mRNA expression). Thus, estrogen modulates fat distribution, at least in part, through effects on tissue‐specific glucocorticoid metabolism, suggesting that estrogen replacement therapy could influence obesity related morbidity in postmenopausal women.  相似文献   

2.
The aim of this study is to examine the effect of lipopolysaccharide (LPS) on progesterone production during luteinization of granulosa and theca cells isolated from bovine large follicles. Granulosa and theca cells isolated from large follicles of bovine ovaries were exposed to LPS under appropriate hormone conditions in vitro. Progesterone (P4) production in theca cells, but not granulosa cells, was decreased by long‐term exposure of LPS. Long‐term exposure of LPS suppressed the gene expression of luteinizing hormone receptor in theca cells. Although long‐term exposure of LPS did not affect the expression of steroidogenic acute regulatory protein (StAR) and 3β‐hydroxy‐steroid dehydrogenase (3β‐HSD) genes, it did inhibit the protein expression of StAR and 3β‐HSD in theca cells. These findings suggest that theca cells, rather than granulosa cells, are susceptible to LPS during luteinization and that LPS inhibits P4 production by decreasing protein levels of StAR during luteinization of theca cells.  相似文献   

3.
4.
5.
6.
Quercetin (Que) is a natural flavonoid in most plants. Luteinized granulosa cell (LGC) culture is necessary for the study of follicle growth/differentiation. In the present study, we analyzed the role of Que in steroid production and apoptosis in hydrogen peroxide (H2O2)‐treated goat LGCs. The results showed that treatment with H2O2 induced apoptosis in goat LGCs, and treatment with Que decreased LGC apoptosis induced by H2O2 (P < .05), accompanied with the different expressions of BAX, BCL‐2, Caspase 3, and Cleaved caspase 3. Meanwhile, the messenger RNA expressions of nuclear factor erythroid 2 like 2 (Nrf2) and its downstream genes were upregulated with H2O2 +Que treatment, accompanied by the increased cellular viability (P < .05). Furthermore, Que alleviated H2O2‐induced reduction in the secretion of progesterone (P4) (P < .05); however, it had no effect on the secretion of estrogen (E2). Simultaneously, the expressions of StAR and P450scc were increased when treated with Que +H2O2, compared with the group treated with only H2O2 (P < .05). In conclusion, it is observed that Que could alleviate the H2O2‐induced apoptosis and steroidogenic impairment in goat LGCs, which might be mediated by the Nrf2 pathway.  相似文献   

7.
8.
Xao tam phan (Paramignya trimera (Oliv .) Guillaum ) has been used as a medicinal plant for cancer prevention and treatment in recent years. The objective of this study was to determine the physicochemical, antioxidant, and cytotoxic properties of crude P. trimera root (PTR) extract and its fractions using MeOH as a solvent and microwave‐assisted extraction as an advanced technique for preparation of the PTR extract. The results showed that the PTR extract had high contents of saponins, phenolics, flavonoids, and proanthocyanidins (7731.05 mg escin equiv. (EE), 238.13 mg gallic acid equiv. (GAE), 81.49 mg rutin equiv., and 58.08 mg catechin equiv. (CE)/g dried extract, resp.). Antioxidant activity of PTR extract was significantly higher (P < 0.05) than those of four its fractions and ostruthin, a key bioactive compound in the P. trimera, while potent cytotoxic capacity of PTR extract on various cancer cell lines in terms of MiaPaCa‐2 (pancreas), HT29 (colon), A2780 (ovarian), H460 (lung), A431 (skin), Du145 (prostate), BE2‐C (neuroblastoma), MCF‐7 (breast), MCF‐10A (normal breast), and U87, SJ‐G2, SMA (glioblastoma) was observed with GI50 values ranging from 15 to 32 μg/ml. Cytotoxic potential on pancreatic cancer cells of PTR extract (100 – 200 μg/ml) was significantly higher (P < 0.05) than those of its four fractions (50 μg/ml), ostruthin (20 μg/ml) and gemcitabine (50 nm ), and being comparable to a saponin‐enriched extract from quillajia bark, a commercial product. Based on the results achieved, we can conclude that the PTR extract is a potential source for application of in the nutraceutical, medical, and pharmaceutical industries.  相似文献   

9.
The purposes of this study were to determine how early in time endotoxin can trigger apoptosis of bovine ovarian follicles in vitro, and to further characterize if these inductors are mediated via adenine nucleotides and the P2 purinergic receptors. Healthy pre-antral and early antral follicles (400 and 700 μm) isolated from bovine ovaries were sandwiched between two layers of collagen gel and incubated (39°C, 5% CO2, 95% air) for various time periods up to 72 hr, floating in complete medium with either 2-MethylThioATP or with 2-ChloroATP, or with or without LPS (10 or 50 μg/ml), or with combinations of LPS with 2-MethylThioATP or 2-ChloroATP. Data from histological examination, and in situ detection of apoptotic DNA cleavage, showed that by 2 hr from start of incubation, both doses of LPS had triggered apoptosis of granulosa cells (P < 0.001), and simultaneously decreased estradiol concentrations to nondetectable levels (P < 0.001), but progesterone values increased (P < 0.001) with time of incubation. Both 2-MethylThioATP and 2-ChloroATP inhibited (P < 0.001) LPS (10 and 50 μg/ml)-induced apoptosis by 30% to 100%. We concluded that adenine nucleotides play a fundamental role in endotoxin-induced apoptosis/atresia of bovine follicles, probably via the P2 purinergic receptors. It is possible that during the first 2 hr of incubation, the apoptotic events associated with LPS-induced follicular atresia might not be detectable with the procedures used in this study. © 1996 Wiley-Liss, Inc.  相似文献   

10.
11.
This study investigates the regulation of prostaglandin (PG) synthesis in the ovaries of sexually‐mature zebrafish (Danio rerio). We examined the ovarian expression of genes within the arachidonic acid (AA) pathway, and the ovarian levels of 17α,20β‐dihydroxy‐4‐pregnen‐3‐one (17α,20β‐P), 17β‐estradiol (E2), and PGF in spawning and nonspawning fish during the ovulatory cycle. Real‐time RT‐PCR analysis revealed that the expression levels of cytosolic phospholipase A2 (cpla2) and cyclooxygenases (COX)‐2 (ptgs2) in ovarian fragments and in isolated full‐grown follicles of spawning fish were highest at 6:00 when ovulation was expected to occur. In nonspawning fish, cpla2 expression levels declined over time while ptgs2 expression displayed the same temporal pattern as in spawning fish. Elevated levels of 17α,20β‐P in the spawning fish occurred at 3:30, but there were no changes in the nonspawning fish. In other studies conducted to investigate the hormonal regulation of AA pathway genes, fish exposed via the water for 24 or 96 hr to 17α,20β‐P or E2 exhibited reduced ovarian expression levels of COX‐1 (ptgs1) and PG E synthase‐2 (ptgsl), and E2 reduced the expression of cpla2. Injection of human chorionic gonadotropin (hCG) (100 IU) led to increased expression levels of cpla2 and ptgs2 at 2 and 18 hr post‐treatment, but consistently reduced ptgs1 and ptgsl expression. In these fish, ovarian levels of 17α,20β‐P were elevated at all time points and PGF levels in the hCG‐treated group were significantly higher than the control fish at 18 hr. Collectively, these in vivo results suggest that gonadotropins and steroids are involved in the regulation of the AA pathway in ovarian follicles of zebrafish. Mol. Reprod. Dev. 76: 1064–1075, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Numerous investigations have reported the efficacy of exogenous hyaluronan (HA) in modulating acute and chronic inflammation. The current study was performed to determine the in vitro effects of lower and higher molecular weight HA on lipopolysaccharide (LPS)-challenged fibroblast-like synovial cells. Normal synovial fibroblasts were cultured in triplicate to one of four groups: group 1, unchallenged; group 2, LPS-challenged (20 ng/ml); group 3, LPS-challenged following preteatment and sustained treatment with lower molecular weight HA; and group 4, LPS-challenged following pretreatment and sustained treatment with higher molecular weight HA. The response to LPS challenge and the influence of HA were compared among the four groups using cellular morphology scoring, cell number, cell viability, prostaglandin E2 (PGE2) production, IL-6 production, matrix metalloproteinase 3 (MMP3) production, and gene expression microarray analysis. As expected, our results demonstrated that LPS challenge induced a loss of characteristic fibroblast-like synovial cell culture morphology (P < 0.05), decreased the cell number (P < 0.05), increased PGE2 production 1,000-fold (P < 0.05), increased IL-6 production 15-fold (P < 0.05), increased MMP3 production threefold (P < 0.05), and generated a profile of gene expression changes typical of LPS (P < 0.005). Importantly, LPS exposure at this concentration did not alter the cell viability. Higher molecular weight HA decreased the morphologic change (P < 0.05) associated with LPS exposure. Both lower and higher molecular weight HA significantly altered a similar set of 21 probe sets (P < 0.005), which represented decreased expression of inflammatory genes (PGE2, IL-6) and catabolic genes (MMP3) and represented increased expression of anti-inflammatory and anabolic genes. The molecular weight of the HA product did not affect the cell number, the cell viability or the PGE2, IL-6, or MMP3 production. Taken together, the anti-inflammatory and anticatabolic gene expression profiles of fibroblast-like synovial cells treated with HA and subsequently challenged with LPS support the pharmacologic benefits of treatment with HA regardless of molecular weight. The higher molecular weight HA product provided a cellular protective effect not seen with the lower molecular weight HA product.  相似文献   

13.
Testicular and ovarian fragments of the protogynous Pacific wrasse Haliochoeres trimaculatus were incubated in vitro with [3H]pregnenolone ([3H]P5), [3H]17‐hydroxyprogesterone ([3H]17OHP4), non‐radioactive (nr) 17β‐oestradiol (nrE2) or nrP5 to identify the major gonadal steroidogenic pathways and steroid products in females and in the two male variants of this species, the terminal phase (TP) and initial phase (IP) males. Both testis and ovarian tissues exhibited 7 hydroxylase activity resulting in the formation of 7α‐hydroxypregnenolone (7OHP5) from [3H]P5, and many HPLC peaks were identified as products of testicular (c. 29) and ovarian (c. 23) steroidogenesis, and only c. 50% of these metabolites co‐eluted with authentic reference standards; only very small amounts of conjugated steroid were synthesized from any of the precursors. [3H]P5 was converted by testis mainly to 7αOHP5, and two unknown steroids, whereas [3H]17OHP4 metabolism gave rise to [3H]17,20β‐dihydroxy‐4‐pregnen‐3‐one (DHP), 11‐ketotestosterone (11KT), and two unknown steroids. For ovarian tissues, [3H]17OHP4 and [3H]P5 were metabolized to form E2, oestrone (E1), androstenedione (A4), 20α‐ and 20β‐dihydroprogesterone (20αDHP and 20βDHP), 7αOHP5 (from [3H]P5) and a major unknown. The HPLC steroid profiles for testis incubations for IP and TP males were similar, however, the steroidogenic response of the testis of TP males to human chorionic gonadotrophin, in vitro (determined by hormone assay), was significantly higher than that of IP males.  相似文献   

14.
The glucocorticoid activating enzyme 11β‐hydroxysteroid dehydrogenase type 1 (11βHSD1) is of major interest in obesity‐related morbidity. Alterations in tissue‐specific cortisol levels may influence lipogenetic and gluco/glyceroneogenetic pathways in fat and liver. We analyzed the expression and activity of 11βHSD1 as well as the expression of phosphoenolpyruvate carboxykinase (PEPCK), sterol regulatory element binding protein (SREBP), and fatty acid synthase (FAS) in adipose and liver and investigated putative associations between 11βHSD1 and energy metabolism genes. A total of 33 obese women (mean BMI 44.6) undergoing gastric bypass surgery were enrolled. Subcutaneous adipose tissue (SAT), omental fat (omental adipose tissue (OmAT)), and liver biopsies were collected during the surgery. 11βHSD1 gene expression was higher in SAT vs. OmAT (P = 0.013), whereas the activity was higher in OmAT (P = 0.009). The SAT 11βHSD1 correlated with waist circumference (P = 0.045) and was an independent predictor for the OmAT area in a linear regression model. Energy metabolism genes had AT depot–specific expression; higher leptin and SREBP in SAT than OmAT, but higher PEPCK in OmAT than SAT. The expression of 11βHSD1 correlated with PEPCK in both AT depots (P = 0.05 for SAT and P = 0.0001 for OmAT). Hepatic 11βHSD1 activity correlated negatively with abdominal adipose area (P = 0.002) and expression positively with PEPCK (P = 0.003). In human obesity, glucocorticoid regeneration in the SAT is associated with central fat accumulation indicating that the importance of this specific fat depot is underestimated. Central fat accumulation is negatively associated with hepatic 11βHSD1 activity. A disturbance in peripheral glucocorticoid metabolism is associated with changes in genes involved in fatty acid (FA) recycling in adipose tissue (AT).  相似文献   

15.
We investigate the effects of myocardial transplantation of human induced pluripotent stem cell (iPSC)‐derived progenitors and cardiomyocytes into acutely infarcted myocardium in severe combined immune deficiency mice. A total of 2 × 105 progenitors, cardiomyocytes or cell‐free saline were injected into peri‐infarcted anterior free wall. Sham‐operated animals received no injection. Myocardial function was assessed at 2‐week and 4‐week post‐infarction by using echocardiography and pressure‐volume catheterization. Early myocardial remodelling was observed at 2‐week with echocardiography derived stroke volume (SV) in saline (20.45 ± 7.36 μl, P < 0.05) and cardiomyocyte (19.52 ± 3.97 μl, P < 0.05) groups, but not in progenitor group (25.65 ± 3.61 μl), significantly deteriorated as compared to sham control group (28.41 ± 4.41 μl). Consistently, pressure – volume haemodynamic measurements showed worsening chamber dilation in saline (EDV: 23.24 ± 5.01 μl, P < 0.05; ESV: 17.08 ± 5.82 μl, P < 0.05) and cardiomyocyte (EDV: 26.45 ± 5.69 μl, P < 0.05; ESV: 18.03 ± 6.58 μl, P < 0.05) groups by 4‐week post‐infarction as compared to control (EDV: 15.26 ± 2.96 μl; ESV: 8.41 ± 2.94 μl). In contrast, cardiac progenitors (EDV: 20.09 ± 7.76 μl; ESV: 13.98 ± 6.74 μl) persistently protected chamber geometry against negative cardiac remodelling. Similarly, as compared to sham control (54.64 ± 11.37%), LV ejection fraction was preserved in progenitor group from 2‐(38.68 ± 7.34%) to 4‐week (39.56 ± 13.26%) while cardiomyocyte (36.52 ± 11.39%, P < 0.05) and saline (35.34 ± 11.86%, P < 0.05) groups deteriorated early at 2‐week. Improvements of myocardial function in the progenitor group corresponded to increased vascularization (16.12 ± 1.49/mm2 to 25.48 ± 2.08/mm2 myocardial tissue, P < 0.05) and coincided with augmented networking of cardiac telocytes in the interstitial space of infarcted zone.  相似文献   

16.
From July to March, the testis of the spring‐spawning freshwater goby Padogobius martensi is characterized by spermatogonial proliferation. A close correlation exists among type of proliferating spermatogonia, gonado‐somatic (IG) profiles and morphological and functional variations of the Leydig cells. The IG reach their minimal levels by the end of summer and increase progressively but modestly during autumn and winter. Declining IG levels are associated with proliferation of primary spermatogonia only, whereas increasing IG levels are associated with predominant proliferation of secondary spermatogonia. Minimal IG levels are reached when the germinal epithelium is formed by a continuum of primary spermatogonia and associated Sertoli cells. The proliferation of secondary spermatogonia begins only at this time. Spermatogenesis in autumn occurs when spermatogonial cysts contain at the most 16 cells and it rarely results in the maturation of several cysts so that the amount of sperm cells produced is either negligible or scarce. A number of degenerating cells are usually present within the spermatogonial and meiotic cysts. Leydig cells are the unique cells that display features of steroidogenic cells: mitochondria with tubular cristae, extensive smooth endoplasmic reticulum (SER), 3β‐hydroxysteroid dehydrogenase (3β‐HSD) and glucose‐6‐phosphate dehydrogenase (G6PD) activity and sudanophilia. Light and dark Leydig cell varieties are always present. During regression, Leydig cells undergo a marked decrease in SER amount, mitochondrial sizes and number of mitochondrial cristae. In parallel, the 3β‐HSD and G6PD activities and sudanophilia decrease progressively until they become undetectable by the end of regression. In autumn, mitochondria increase in size, reaching sizes similar to those observed at the end of the spawning season in the light cells, but not in the dark cells. The SER, on the contrary, undergoes a modest and irregular increase only in a part of the Leydig cells, mostly of the light type. In parallel, the 3β‐HSD and G6PD activities increase until they become moderately intense by the end of autumn. At the end of winter, the SER is extensive and regularly dilated in both Leydig cell types, whereas mitochondria still have sizes similar to those observed in December. The 3β‐HSD and G6PD activities are strong and sudanophilia is again detectable. Sertoli cells undergo changes in shape and position in relation to the proliferation of primary spermatogonia and the development of cysts. A junction modulation occurs in association with these changes. Sertoli cells also undergo changes indicative of a decrease in activity immediately after spawning (loss of mitochondrial cristae and clarification of the mitochondrial matrix) and of an increase in activity by the end of the regressing phase (darkening of the mitochondrial matrix and increase in mitochondrial cristae, rough endoplasmic reticulum (RER) and free ribosomes). In addition, they are involved in the phagocytosis of degenerating germ cells at all stages of their development. Macrophages are found in the testis interstitium only, where they are usually adjacent to Leydig cells, myoid cells and blood capillaries and do not participate in the phagocytosis of degenerating germ cells. Myoid cells do not undergo ultrastructural changes except for an increase in the amount of heterochromatin by the end of spawning. The meaning of the autumnal spermatogenic wave and the relationships between the development of the germinal epithelium and the changes of the Leydig and Sertoli cells are discussed.  相似文献   

17.
Osteoarthritis (OA) is a most common form of arthritis worldwide leading to significant disability. MicroRNAs (miRNAs) are non‐coding RNAs involved in various aspects of cartilage development, homoeostasis and pathology. Several miRNAs have been identified which have shown to regulate expression of target genes relevant to OA pathogenesis such as matrix metalloproteinase (MMP)‐13, cyclooxygenase (COX)‐2, etc. Epigallocatechin‐3‐O‐gallate (EGCG), the most abundant and active polyphenol in green tea, has been reported to have anti‐arthritic effects, however, the role of EGCG in the regulation of miRNAs has not been investigated in OA. Here, we showed that EGCG inhibits COX‐2 mRNA/protein expression or prostaglandin E2 (PGE2) production via up‐regulating microRNA hsa‐miR‐199a‐3p expression in interleukin (IL)‐1β‐stimulated human OA chondrocytes. This negative co‐regulation of hsa‐miR‐199a‐3p and COX‐2 by EGCG was confirmed by transfection of OA chondrocytes with anti‐miR‐199a‐3p. Transfection of OA chondrocytes with anti‐miR‐199a‐3p significantly enhanced COX‐2 expression and PGE2 production (P < 0.001), while EGCG treatment significantly inhibited anti‐miR‐199a‐3p transfection‐induced COX‐2 expression or PGE2 production in a dose‐dependent manner. These results were further re‐validated by co‐treatment of these transfection OA chondrocytes with IL‐1β and EGCG. EGCG treatment consistently up‐regulated the IL‐1β‐decreased hsa‐miR‐199a‐3p expression (P < 0.05) and significantly inhibited the IL‐1β‐induced COX‐2 expression/PGE2 production (P < 0.05) in OA chondrocytes transfected with anti‐hsa‐miR‐199a‐3p. Taken together, these results clearly indicate that EGCG inhibits COX‐2 expression/PGE2 production via up‐regulation of hsa‐miR‐199a‐3p expression. These novel pharmacological actions of EGCG on IL‐1β‐stimulated human OA chondrocytes provide new suggestions that EGCG or EGCG‐derived compounds inhibit cartilage breakdown or pain by up‐regulating the expression of microRNAs in human chondrocytes.  相似文献   

18.
In order to assess the effect of p73 gene polymorphism G4C14‐A4T14 on cisplatin‐based chemosensitivity of human lung adenocarcinoma cell lines, we examined the differences in biological character and drug sensitivity affected by cisplatin between human lung adenocarcinoma cell lines A549 and P15. The allelic expression ofp73 in A549 and P15 was studied by Sty I polymorphism analysis. MTT [3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide] assay was used to analyse the response of these two cell lines to cisplatin. The changes in the biological behaviour of the cells were observed by colony formation assay. The drug‐induced apoptosis of cells was measured by Hoechst and TUNEL techniques. Homozygous allelic expression was demonstrated in the two cell lines. AT/AT genotype appeared in A549, GC/GC genotype was detected in P15. Although the colony formation number decreased with an increasing cisplatin dose (P<0.05), there was no significant difference in colony‐formation rate in these two cell lines (P>0.05). MTT assay also determined that the 50% inhibitory concentration (IC50) for A549 and P15 was 8.9 and 11.6 μmol/l, respectively; the IC50 value did not differ significantly between A549 and P15 (P>0.05). The cell apoptosis induced by cisplatin was demonstrated in both A549 and P15. P73 G4C14‐A4T14 polymorphisms at exon 2 existed in human NSCLC (non‐small‐cell lung cancer) cell lines. Our data in vitro suggest that p73 G4C14‐A4T14 polymorphism has no significant relationship to the cisplatin‐based chemosensitivity in human lung adenocarcinoma.  相似文献   

19.
The present study investigates the effect of anthocyanin (ACN), phenolic acid (PA) fractions, and their combination (ACNs:PAs) from wild blueberry powder (Vaccinum angustifolium) on the speed of endothelial cell migration, gene expression, and protein levels of RAC1 and RHOA associated with acute exposure to different concentrations of ACNs and PAs. Time-lapse videos were analyzed and endothelial cell speed was calculated. Treatment with ACNs at 60 μg/mL inhibited endothelial cell migration rate ( P ≤ 0.05) while treatment with PAs at 0.002 μg/mL ( P ≤ 0.0001), 60 μg/mL ( P ≤ 0.0001), and 120 μg/mL ( P ≤ 0.01) significantly increased endothelial cell migration rate compared with control. Moreover, exposure of HUVECs to ACNs:PAs at 8:8 μg/mL ( P ≤ 0.05) and 60:60 μg/mL increased ( P ≤ 0.001) endothelial cell migration. Gene expression of RAC1 and RHOA significantly increased 2 hours after exposure with all treatments. No effect of the above fractions was observed on the protein levels of RAC1 and RHOA. Findings suggest that endothelial cell migration is differentially modulated based on the type of blueberry extract (ACN or PA fraction) and is concentration-dependent. Future studies should determine the mechanism of the differential action of the above fractions on endothelial cell migration.  相似文献   

20.
Objective: Adipose tissue secretes several molecules that may participate in metabolic cross‐talk to other insulin‐sensitive tissues. Thus, adipose tissue is a key endocrine organ that regulates insulin sensitivity in other peripheral insulin target tissues. We have studied the expression and acute insulin regulation of novel genes expressed in adipose tissue that are implicated in the control of whole body insulin sensitivity. Research Methods and Procedures: Expression of adiponectin, c‐Cbl—associated protein (CAP), 11‐β hydroxysteroid dehydrogenase type 1 (11β‐HSD‐1), and sterol regulatory element binding protein (SREBP)‐1c was determined in subcutaneous adipose tissue from type 2 diabetic and age‐ and BMI‐matched healthy men by real‐time polymerase chain reaction analysis. Results: Expression of adiponectin, CAP, 11β‐HSD‐1, and SREBP‐1c was similar between healthy and type 2 diabetic subjects. Insulin infusion for 3 hours did not affect expression of CAP, 11β‐HSD‐1, or adiponectin mRNA in either group. However, insulin infusion increased SREBP‐1c expression by 80% in healthy, but not in type 2 diabetic, subjects. Discussion: Our results provide evidence that insulin action on SREBP‐1c is dysregulated in adipose tissue from type 2 diabetic subjects. Impaired insulin regulation on gene expression of select targets in adipose tissue may contribute to the pathogenesis of type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号