共查询到20条相似文献,搜索用时 15 毫秒
1.
Living plant neighbours, but also their dead aboveground remains (i.e. litter), may individually exert negative or positive effects on plant recruitment. Although living plants and litter co‐occur in most ecosystems, few studies have addressed their combined effects, and conclusions are ambivalent. Therefore, we examined the response in terms of seedling emergence and growth of herbaceous grassland and forest species to different litter types and amounts and the presence of competitors. We conducted a pot experiment testing the effects of litter type (grass, oak), litter amount (low, medium, high) and interspecific competition (presence or absence of four Festuca arundinacea individuals) on seedling emergence and biomass of four congeneric pairs of hemicryptophytes from two habitat types (woodland, grassland). Interactions between litter and competition were weak. Litter presence increased competitor biomass. It also had positive effects on seedling emergence at low litter amounts and negative effects at high litter amounts, while competition had no effect on seedling emergence. Seedling biomass was negatively affected by the presence of competitors, and this effect was stronger in combination with high amounts of litter. Litter affected seedling emergence while competition determined the biomass of the emerged individuals, both affecting early stages of seedling recruitment. High litter accumulation also reduced seedling biomass, but this effect seemed to be additive to competitor effects. This suggests that live and dead plant mass can affect species recruitment in natural systems, but the mechanisms by which they operate and their timing differ. 相似文献
2.
Evan C. Palmer‐Young Ben M. Sadd Rebecca E. Irwin Lynn S. Adler 《Ecology and evolution》2017,7(6):1836-1849
Floral landscapes comprise diverse phytochemical combinations. Individual phytochemicals in floral nectar and pollen can reduce infection in bees and directly inhibit trypanosome parasites. However, gut parasites of generalist pollinators, which consume nectar and pollen from many plant species, are exposed to phytochemical combinations. Interactions between phytochemicals could augment or decrease effects of single compounds on parasites. Using a matrix of 36 phytochemical treatment combinations, we assessed the combined effects of two floral phytochemicals, eugenol and thymol, against four strains of the bumblebee gut trypanosome Crithidia bombi. Eugenol and thymol had synergistic effects against C. bombi growth across seven independent experiments, showing that the phytochemical combination can disproportionately inhibit parasites. The strength of synergistic effects varied across strains and experiments. Thus, the antiparasitic effects of individual compounds will depend on both the presence of other phytochemicals and parasite strain identity. The presence of synergistic phytochemical combinations could augment the antiparasitic activity of individual compounds for pollinators in diverse floral landscapes. 相似文献
3.
Dandan Hu Shudong Zhang Jerry M. Baskin Carol C. Baskin Zhaoren Wang Rong Liu Juan Du Xuejun Yang Zhenying Huang 《Plant, cell & environment》2019,42(2):591-605
Seedling emergence is a critical stage in the establishment of desert plants. Soil microbes participate in plant growth and development, but information is lacking with regard to the role of microbes on seedling emergence. We applied the biocides (captan and streptomycin) to assess how seed mucilage interacts with soil microbial community and physiochemical processes to affect seedling emergence of Artemisia sphaerocephala on the desert sand dune. Fungal and bacterial community composition and diversity and fungal–bacterial interactions were changed by both captan and streptomycin. Mucilage increased soil enzyme activities and fungal–bacterial interactions. Highest seedling emergence occurred under streptomycin and mucilage treatment. Members of the phyla Firmicutes and Glomeromycota were the keystone species that improved A. sphaerocephala seedling emergence, by increasing resistance of young seedlings to drought and pathogen. Seed mucilage directly improved seedling emergence and indirectly interacted with the soil microbial community through strengthening fungal–bacterial interactions and providing favourable environment for soil enzymes to affect seedling emergence. Our study provides a comprehensive understanding of the regulatory mechanisms by which soil microbial community and seed mucilage interactively promote successful establishment of populations of desert plants on the barren and stressful sand dune. 相似文献
4.
Jun‐Bo Luan Dan‐Mei Yao Tong Zhang Linda L. Walling Mei Yang Yu‐Jun Wang Shu‐Sheng Liu 《Ecology letters》2013,16(3):390-398
5.
Earthworms and plants greatly affect belowground properties; however, their combined effects are more attractive based on the ecosystem scale in the field condition. To address this point, we manipulated earthworms (exotic endogeic species Pontoscolex corethrurus) and plants (living plants [native tree species Evodia lepta] and artificial plants) to investigate their combined effects on soil microorganisms, soil nutrients, and soil respiration in a subtropical forest. The manipulation of artificial plants aimed to simulate the physical effects of plants (e.g., shading and interception of water) such that the biological effects of plants could be evaluated separately. We found that relative to the controls, living plants but not artificial plants significantly increased the ratio of fungal to bacterial phospholipid fatty acids (PLFAs) and fungal PLFAs. Furthermore, earthworms plus living plants significantly increased the soil respiration and decreased the soil NH4+‐N, which indicates that the earthworm effects on the associated carbon, and nitrogen processes were greatly affected by living plants. The permutational multivariate analysis of variance results also indicated that living plants but not earthworms or artificial plants significantly changed the soil microbial community. Our results suggest that the effects of plants on soil microbes and associated soil properties in this study were largely explained by their biological rather than their physical effects. 相似文献
6.
Martin Williams Eldon Eveleigh Glen Forbes Rosanna Lamb Lucas Roscoe Peter Silk 《Entomologia Experimentalis et Applicata》2019,167(8):755-762
This study examines the direct chemical defensive role of maltol, a previously identified secondary metabolite found in balsam fir, Abies balsamea (L.) Mill. (Pinaceae), that was detected during herbivory of spruce budworm, Choristoneura fumiferana (Clemens) (Lepidoptera: Tortricidae). Although used extensively in many industries, in addition to being found in multiple plant species, its functional role in plants remains unknown. The objectives of this study were to quantify the amount of free maltol and its potential conjugated form, maltol glucoside, in various foliage age classes and to evaluate whether constitutive foliage levels of maltol have an impact on spruce budworm fitness in maltol supplementation assays. Gas chromatography–mass spectrometry (GC‐MS) analysis of balsam fir foliage showed that maltol is produced in all foliage age classes tested; however, concentrations were significantly higher in older foliage. Liquid chromatography–mass spectrometry–mass spectrometry (LC‐MS‐MS) analysis showed that maltol also exists in balsam fir in its glucosylated form, a unique discovery in conifers. Similar to maltol, maltol glucoside is also present in current and 1‐year‐old balsam fir foliage and in significantly higher concentration in older foliage. We investigated the impact of maltol‐treated diet on spruce budworm fitness. Maltol additions that reflected constitutive foliage concentrations caused a significant reduction in larval development rate and pupal mass, whereas higher concentrations were required to cause significant mortality. These results suggest that maltol may be an important component of a direct defense strategy in balsam fir against spruce budworm herbivory. 相似文献
7.
8.
Sandra Stålhandske Martin Olofsson Karl Gotthard Johan Ehrlén Christer Wiklund Olof Leimar 《Biological journal of the Linnean Society. Linnean Society of London》2016,119(4):1060-1067
An insect species that shows variation in host species association across its geographical range may do so either because of local adaptation in host plant preference of the insect or through environmentally or genetically induced differences in the plants, causing variation in host plant suitability between regions. In the present study, we experimentally investigate the host plant preference of Anthocharis cardamines (orange tip butterfly) in two populations from the UK and two from Sweden. Previous reports indicate that A. cardamines larvae are found on different host plant species in different regions of the UK, and some variation has been reported in Sweden. Host plant choice trials showed that females prefer to oviposit on plants in an earlier phenological stage, as well as on larger plants. When controlling for plant phenological stage and size, the host species had no statistically significant effect on the choice of the females. Moreover, there were no differences in host plant species preference among the four butterfly populations. Based on our experiment, the oviposition choice by A. cardamines mainly depends on the phenological stage and the size of the host plant. This finding supports the idea that the geographical patterns of host–plant association of A. cardamines in the UK and Sweden are consequences of the phenology and availability of the local hosts, rather than regional genetic differences in the host species preference of the butterfly. 相似文献
9.
Seung Ho Chung Benjamin J. Parker Frances Blow Jennifer A. Brisson Angela E. Douglas 《Molecular ecology》2020,29(4):848-858
A defining feature of the nutritional ecology of plant sap‐feeding insects is that the dietary deficit of essential amino acids (EAAs) in plant sap is supplemented by EAA‐provisioning microbial symbionts in the insect. Here, we demonstrated substantial variation in the nutritional phenotype of 208 genotypes of the pea aphid Acyrthosiphon pisum collected from a natural population. Specifically, the genotypes varied in performance (larval growth rates) on four test diets lacking the EAAs arginine, histidine and methionine or aromatic EAAs (phenylalanine and tryptophan), relative to the diet containing all EAAs. These data indicate that EAA supply from the symbiotic bacteria Buchnera can meet total aphid nutritional demand for only a subset of the EAA/aphid genotype combinations. We then correlated single nucleotide polymorphisms (SNPs) identified in the aphid and Buchnera genomes by reduced genome sequencing against aphid performance for each EAA deletion diet. This yielded significant associations between performance on the histidine‐free diet and Buchnera SNPs, including metabolism genes predicted to influence histidine biosynthesis. Aphid genetic correlates of performance were obtained for all four deletion diets, with associations on the arginine‐free diet and aromatic‐free diets dominated by genes functioning in the regulation of metabolic and cellular processes. The specific aphid genes associated with performance on different EAA deletion diets are largely nonoverlapping, indicating some independence in the regulatory circuits determining aphid phenotype for the different EAAs. This study demonstrates how variation in the phenotype of associations collected from natural populations can be applied to elucidate the genetic basis of ecologically important traits in systems intractable to traditional forward/reverse genetic techniques. 相似文献
10.
Justine R. Garcia Tyler J. Larsen David C. Queller Joan E. Strassmann 《Ecology and evolution》2019,9(17):9878-9890
11.
Viviana Triaca Valentina Sposato Giulia Bolasco Maria Teresa Ciotti Piergiuseppe Pelicci Amalia C. Bruni Chiara Cupidi Raffaele Maletta Marco Feligioni Robert Nisticò Nadia Canu Pietro Calissano 《Aging cell》2016,15(4):661-672
NGF has been implicated in forebrain neuroprotection from amyloidogenesis and Alzheimer's disease (AD). However, the underlying molecular mechanisms are still poorly understood. Here, we investigated the role of NGF signalling in the metabolism of amyloid precursor protein (APP) in forebrain neurons using primary cultures of septal neurons and acute septo‐hippocampal brain slices. In this study, we show that NGF controls the basal level of APP phosphorylation at Thr668 (T668) by downregulating the activity of the Ser/Thr kinase JNK(p54) through the Tyr kinase signalling adaptor SH2‐containing sequence C (ShcC). We also found that the specific NGF receptor, Tyr kinase A (TrkA), which is known to bind to APP, fails to interact with the fraction of APP molecules phosphorylated at T668 (APPpT668). Accordingly, the amount of TrkA bound to APP is significantly reduced in the hippocampus of ShcC KO mice and of patients with AD in which elevated APPpT668 levels are detected. NGF promotes TrkA binding to APP and APP trafficking to the Golgi, where APP–BACE interaction is hindered, finally resulting in reduced generation of sAPPβ, CTFβ and amyloid‐beta (1‐42). These results demonstrate that NGF signalling directly controls basal APP phosphorylation, subcellular localization and BACE cleavage, and pave the way for novel approaches specifically targeting ShcC signalling and/or the APP–TrkA interaction in AD therapy. 相似文献
12.
13.
Seung Cheon Hong R. Chris Williamson David W. Held 《Entomologia Experimentalis et Applicata》2012,145(3):201-208
Biomechanical properties can be important parameters in resistance of plants to herbivorous insects. As plants age, however, there can be dramatic changes in physical defenses that can then influence their susceptibility to insect herbivores. We measured changes in leaf biomechanical properties during ontogeny of Poa species and the relationship of these changes to the development of a generalist herbivore, the black cutworm, Agrotis ipsilon Hufnagel (Lepidoptera: Noctuidae), was investigated. Larvae were reared on two representative age classes, i.e., young (<60 days after planting) and old (>1 year after planting), of foliage in laboratory assays. Foliage generally reaches a peak fracture force between 80 and 109 days after planting depending on grass type. Foliage from old plants was significantly tougher than that of young plants, and black cutworm larvae reared on foliage from young plants gained significantly (ca. four times) more weight than those fed on foliage from old Poa plants. In addition, fracture force has a negative relationship with black cutworm development. Plant fiber, particularly neutral detergent fiber accounted for 65 and 46% of the variation in fracture force and larval development, respectively. These results provide additional insight into how plant ontogeny influences physical defenses to an insect herbivore in a grass system. Likewise, this is seemingly the first study to suggest a mechanism for host plant resistance to black cutworm. Plant fiber may be a useful trait to explore in plant improvement programs in which black cutworm is a primary pest (e.g., managed turfgrass). 相似文献
14.
Lynn Riley Mitchell E. McGlaughlin Kaius Helenurm 《Botanical journal of the Linnean Society. Linnean Society of London》2016,181(2):246-268
The relative roles of chance colonization and subsequent gene flow in the development of insular endemic biotas have been extensively studied in remote oceanic archipelagos, but are less well characterized on nearshore island systems. The current study investigated patterns of colonization and divergence between and within two wild buckwheat species (Polygonaceae), Eriogonum arborescens and E. giganteum, endemic to the California Channel Islands to determine whether geographical isolation is driving diversification. Using plastid and nuclear sequence data and microsatellite allele frequencies, we determined that gene flow in these Eriogonum spp. is restricted by isolation. The data suggest that successful colonization of and gene flow among the islands are infrequent. Colonization appears to have followed a stepping‐stone model that is consistent with a north‐to‐south pattern across the islands. This colonization pattern coupled with relatively little post‐colonization inter‐island gene flow, particularly among southern islands, has generated a pattern of more divergent lineages on the isolated southern islands. These results run counter to the general expectation that all islands close to a continental source should receive a high level of gene flow. Finally, management recommendations focused on protecting the lineages from loss of private alleles and the erosion of the remaining genetic diversity are offered. 相似文献
15.
Demetrios J. Vakalounakis Spyridon Ntougias Nektarios Kavroulakis Eftichios Protopapadakis 《Journal of Phytopathology》2019,167(9):527-537
In a survey performed in Chania and Aetoloacarnania, Greece in years 2013–2014, fungal isolates causing twig and shoot blight and branch canker of citrus trees were morphologically characterized and identified by multiple gene sequence analysis. By sequencing the ITS‐5.8S rRNA, the elongation factor 1‐α (EF1‐α), the β‐tubulin and the RNA polymerase II subunit (Rpb2) genes, the isolates examined were associated with Diaporthe foeniculina (six isolates) and Neofusicoccum parvum (one isolate). All six D. foeniculina isolates showed slow colony growth rates (7.4 ± 3.2 mm/day), while the N. parvum isolate exhibited fast growth (41.6 mm/day). Koch's criteria were met after re‐isolation of D. foeniculina isolates from all inoculated Citrus spp. and N. parvum from inoculated C. reticulata “Ortanique” and after having developed symptoms similar to those detected on shoots and branches collected from citrus fields. Based on lesion length on detached C. medica “Lia Kritis” shoots, N. parvum caused long necrotic lesions (58 mm in length) in comparison with a length of 12–21 mm lesions caused by D. foeniculina isolates. Pathogenicity trials on nine Citrus spp., which had been inoculated with D. foeniculina and N. parvum, revealed different levels of susceptibility, indicating a host‐dependent infection effect, with Poncirus trifoliate × C. paradisi (“Citrumelo Swingle”) being the most resistant citrus genotype. Lack of host specificity suggests that their pathogen–host association could be attributed to ecological rather to co‐evolutionary factors. This work represents the first report, accompanied with pathogenicity tests, on botryosphaeriaceous and diaporthaceous pathogens associated with twig and shoot blight and branch canker of citrus in Greece. 相似文献
16.
Thomas C. Wagner Johanna Richter David F. Joubert Christina Fischer 《Ecology and evolution》2018,8(13):6779-6787
The characteristic vegetation structure of arid savannas with a dominant layer of perennial grass is maintained by the putative competitive superiority of the C4 grasses. When this competitive balance is disturbed by weakening the grasses or favoring the recruitment of other species, trees, shrubs, single grass, or forb species can increase and initiate sudden dominance shifts. Such shifts involving woody species, often termed “shrub encroachment”, or the mass spreading of so‐called increaser species have been extensively researched, but studies on similar processes without obvious preceding disturbance are rare. In Namibia, the native herbaceous legume Crotalaria podocarpa has recently encroached parts of the escarpment region, seriously affecting the productivity of local fodder grasses. Here, we studied the interaction between seedlings of the legume and the dominant local fodder grass (Stipagrostis ciliata). We used a pot experiment to test seedling survival and to investigate the growth of Crotalaria in competition with Stipagrostis. Additional field observations were conducted to quantify the interactive effect. We found germination and growth of the legume seedlings to be facilitated by inactive (dead or dormant) grass tussocks and unhindered by active ones. Seedling survival was three times higher in inactive tussocks and Crotalaria grew taller. In the field, high densities of the legume had a clear negative effect on productivity of the grass. The C4 grass was unable to limit the recruitment and spread of the legume, and Crotalaria did outcompete the putative more competitive grass. Hence, the legume is able to spread and establish itself in large numbers and initiate a dominance shift in savannas, similar to shrub encroachment. 相似文献
17.
18.
Robert E. Ricklefs Leticia Soares Vincenzo A. Ellis Steven C. Latta 《Journal of Biogeography》2016,43(7):1277-1286
19.
20.
E. Victoriano‐Romero J. G. García‐Franco K. Mehltreter S. Valencia‐Díaz V. H. Toledo‐Hernndez A. Flores‐Palacios 《Plant biology (Stuttgart, Germany)》2020,22(3):541-552
- Canopy soil (CS) volume reflect epiphyte community maturity, but little is known about the factors that retain CS or species succession within it. Humus fern species (e.g. Phlebodium areolatum) appear capable of retaining CS.
- In ten Quercus spp. we sampled 987 epiphyte mats to examine the role of the common epiphyte species and crown traits determining CS volume, in order to infer successional stages and identify pioneer and late successional species. Branch traits (height, diameter and slope), CS volume and cover of the epiphyte species were determined for each mat. Nutrient content was determined in CS random samples of 12 epiphyte associations and sizes (one sample from each size quintile).
- A total of 60% of the mats lack CS. Cover of P. areolatum was the main variable explaining CS volume, and this species was present in 46.8% of those with CS. Epiphyte composition was highly variable, but pioneer (species appearing in monospecific mats, without CS) and late successional species could be identified. Canopy soil nutrient content was similar among the associations of epiphytes. Magnesium, Ca and pH decreased with CS volume, while P and N increased.
- Phlebodium areolatum is associated with high CS volumes and could act as a key species in its retention. Monospecific mats of pioneer species lack CS or have low volumes, while CS is much higher in mats with late successional species, but the mechanisms of CS formation and nutrient retention in response to interactions between epiphyte species remain to be tested.