首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Doxorubicin (DXR) is a highly effective drug for chemotherapy. However, cardiotoxicity reduces its clinical utility in humans. The present study aimed to assess the ameliorative effect of curcumin against DXR‐induced cardiotoxicity in rats. Rats were subjected to oral treatment of curcumin (100 and 200 mg/kg body weight) for 7 days. Cardiotoxicity was induced by single intraperitoneal injection of DXR (40 mg/kg body weight) on the 5th day and the rats sacrificed on 8th day. Curcumin ameliorated DXR‐induced lipid peroxidation, glutathione depletion, decrease in antioxidant (superoxide dismutase, catalase, and glutathione peroxidase) enzyme activities, and cardiac toxicity markers (CK‐MB, LDH, and cTn‐I). Curcumin also attenuated activities of Caspase‐3, cyclooxygenase‐2, inducible nitric oxide synthase, and levels of nuclear factor kappa‐B, tumor necrosis factor‐α, and interleukin‐1β, and cardiac tissue damages that were induced by DXR. Moreover, curcumin decreased the expression of 8‐OHdG and 3,3′‐dityrosine. This study demonstrated that curcumin has a multi‐cardioprotective effect due to its antioxidant, anti‐inflammatory, and antiapoptotic properties.  相似文献   

2.
To explore the effects of celecoxib on pressure overload‐induced cardiac hypertrophy (CH), cardiac dysfunction and explore the possible protective mechanisms. We surgically created abdominal aortic constrictions (AAC) in rats to induce CH. Rats with CH symptoms at 4 weeks after surgery were treated with celecoxib [2 mg/100 g body‐weight(BW)] daily for either 2 or 4 weeks. Survival rate, blood pressure and cardiac function were evaluated after celecoxib treatment. Animals were killed, and cardiac tissue was examined for morphological changes, cardiomyocyte apoptosis, fibrosis, inflammation and oxidative stress. Four weeks after AAC, rats had significantly higher systolic, diastolic and mean blood pressure, greater heart weight and enlarged cardiomyocytes, which were associated with cardiac dysfunction. Thus, the CH model was successfully established. Two weeks later, animals had impaired cardiac function and histopathological abnormalities including enlarged cardiomyocytes and cardiac fibrosis, which were exacerbated 2 weeks later. However, these pathological changes were remarkably prevented by the treatment of celecoxib, independent of preventing hypertension. Mechanistic studies revealed that celecoxib‐induced cardiac protection against CH and cardiac dysfunction was due to inhibition of apoptosis via the murine double mimute 2/P53 pathway, inhibition of inflammation via the AKT/mTOR/NF‐κB pathway and inhibition of oxidative stress via increases in nuclear factor E2‐related factor‐2‐mediated gene expression of multiple antioxidants. Celecoxib suppresses pressure overload‐induced CH by reducing apoptosis, inflammation and oxidative stress.  相似文献   

3.
In our previous study, lancemaside A isolated from Codonopsis lanceolata (family Campanulaceae) ameliorated colitis in mice. In this study, the anti‐inflammatory effects of lancemaside A was investigated in lipopolysaccharide (LPS)‐stimulated mice and their peritoneal macrophage cells. Lancemaside A suppressed the production of pro‐inflammatory cytokines, TNF‐α and IL‐1β, in vitro and in vivo. Lancemaside A also down‐regulated inducible nitric oxide synthase (iNOS) and cyclooxygenase‐2 (COX‐2), as well as the inflammatory mediators, nitric oxide (NO), and PGE2. Lancemaside A also inhibited the expression of IL‐1 receptor‐associated kinase‐4 (IRAK‐4), the phosphorylation of IKK‐β and IκB‐α, the nuclear translocation of NF‐κB and the activation of mitogen‐activated protein kinases in LPS‐stimulated peritoneal macrophages. Furthermore, lancemaisde A inhibited the interaction between LPS and TLR4, as well as IRAK‐4 expression in peritoneal macrophages. Based on these findings, lancemaside A expressed anti‐inflammatory effects by regulating both the binding of LPS to TLR4 on macrophages. J. Cell. Biochem. 111: 865–871, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
5.
This study aimed to evaluate the protective effects of alpha lipoic acid (ALA) against doxorubicin (DOX)‐induced nephrotoxicity in rats. A single dose of DOX (7.5 mg/kg i.v.) induced nephrotoxicity evidenced by significant elevations in kidney weight, kidney/body weight ratio, serum urea, creatinine, tumor necrosis factor alpha, and renal contents of malondialdehyde, nitric oxide, cyclooxygenase‐2, and caspase‐3. Also, it causes significant reduction in final body weight, serum albumin, renal contents of reduced glutathione and superoxide dismutase activity. Histopathological changes in the kidney tissue confirmed the nephrotoxic effect. In contrast, pretreatment with ALA (50 mg/kg, orally) for 14 days before DOX and for 7 days after DOX administration mitigated renal toxicity evidenced by greater improvement in the examined oxidative stress, inflammation, and apoptosis parameters. In conclusion, ALA had promising protective effects against DOX‐induced nephrotoxicity that might be attributed to its antioxidant, anti‐inflammatory, and antiapoptoic activities.  相似文献   

6.
7.
8.
In this study, the hepatoprotective and anti‐fibrotic actions of nootkatone (NTK) were investigated using carbon tetrachloride (CCl4)‐induced liver fibrosis in mice. CCl4 administration elevated serum aspartate and alanine transaminases levels, respectively. In addition, CCl4 produced hepatic oxidative and nitrative stress, characterized by diminished hemeoxygenase‐1 expression, antioxidant defenses, and accumulation of 4‐hydroxynonenal and 3‐nitrotyrosine. Furthermore, CCl4 administration evoked profound expression of pro‐inflammatory cytokine expressions such as tumor necrosis factor‐α, monocyte chemoattractant protein‐1, and interleukin‐1β in hepatic tissues, which corroborated with nuclear factor κB activation. Additionally, CCl4‐treated animals exhibited higher apoptosis, characterized by increased caspase 3 activity, DNA fragmentation, and poly (ADP‐ribose) polymerase activation. Moreover, histological and biochemical investigations revealed marked fibrosis in the livers of CCl4‐administered animals. However, NTK treatment mitigated CCl4‐induced phenotypic changes. In conclusion, our findings suggest that NTK exerts hepatoprotective and anti‐fibrotic actions by suppressing oxidative stress, inflammation, and apoptosis.  相似文献   

9.
Multiple sclerosis (MS) is an autoimmune disease in which the immune system attacks the nerve cells, resulting in neurological disorders. Oxidative stress, free radicals, and neuritis have important roles in MS pathogenesis. Here, we aim to evaluate the effect of crocin on inflammatory markers, oxidative damage, and deoxyribonucleic acid (DNA) damage in the blood of patients with MS. A total of 40 patients were divided into two groups, drug and placebo‐treated groups, using random assignment. Participants of the intervention and control groups received two crocin capsules or placebo per day for 28 days, respectively. Findings revealed a significant decrease in the level of important pathogenic factors in MS, including lipid peroxidation, DNA damage, tumor necrosis factor‐alpha, and interleukin 17 as well as a significant increase in the total antioxidant capacity in the serum of patients treated with crocin compared with the placebo group. Our results suggest the beneficial and therapeutic effects of crocin in MS.  相似文献   

10.
11.
Picroside II (P‐II), one of the main active components of scrophularia extract, which have anti‐oxidative, anti‐inflammatory effects, but its effect on hyperhomocysteinemia (HHcy) induced endothelial injury remains to be determined. Here, we test whether P‐II protects HHcy‐induced endothelial dysfunction against oxidative stress, inflammation and cell apoptosis. In vitro study using HUVECs, and in hyperhomocysteinemia mouse models, we found that HHcy decreased endothelial SIRT1 expression and increased LOX‐1 expression, subsequently causing reactive oxygen species generation, up‐regulation of NADPH oxidase activity and NF‐κB activation, thereby promoting pro‐inflammatory response and cell apoptosis. Blockade of Sirt1 with Ex527 or siRNASIRT1 increased LOX‐1 expression, whereas overexpression of SIRT1 decreased LOX‐1 expression markedly. P‐II treatment significantly increased SIRT1 expression and reduced LOX‐1 expression, and protected against endothelial cells from Hcy‐induced oxidative injury, inflammation and apoptosis. However, blockade of SIRT1 or overexpression of LOX‐1 attenuated the therapeutic effects of P‐II. In conclusion, our results suggest that P‐II prevents the Hcy induced endothelial damage probably through regulating the SIRT1/LOX‐1 signaling pathway.  相似文献   

12.
Cisplatin, a proven effective chemotherapeutic agent, has been used clinically to treat malignant solid tumors, whereas its clinical use is limited by serious side effect including nephrotoxicity. Platycodin D (PD), the major and marked saponin isolated from Platycodon grandiflorum, possesses many pharmacological effects. In this study, we evaluated its protective effect against cisplatin‐induced human embryonic kidney 293 (HEK‐293) cells injury and elucidated the related mechanisms. Our results showed that PD (0.25, 0.5, and 1 μM) can dose‐dependently alleviate oxidative stress by decreasing malondialdehyde and reactive oxygen species, while increasing the levels of glutathione, superoxide dismutase, and catalase. Moreover, the elevation of apoptosis including Bax, Bad, cleaved caspase‐3,‐9, and decreased protein levels of Bcl‐2, Bcl‐XL induced by cisplatin were reversed after PD treatment. Importantly, PD pretreatment can also regulate PI3K/Akt and ERK/JNK/p38 signaling pathways. Furthermore, PD was found to reduce NF‐κB‐mediated inflammatory relative proteins. Our finding indicated that PD exerted significant effects on cisplatin induced oxidative stress, apoptosis and inflammatory, which will provide evidence for the development of PD to attenuate cisplatin‐induced nephrotoxicity.  相似文献   

13.
Cisplatin‐induced nephrotoxicity persists as a clinical problem despite several supportive measures to alleviate renal damage. Daidzein (DZ), a dietary isoflavone having antioxidant and anti‐inflammatory activity, is investigated in this study for protective effects against cisplatin‐induced renal injury in rats. DZ (25, 50, or 100 mg/kg; intraperitoneally; 10 days) was administered along with Cisplatin, single dose, on the 7th day of the experiment. On the 11th day, the rats were euthanized, and different samples were collected for analysis. Biochemical, histopathological, and molecular parameters were assessed to evaluate the effect of daidzein. Cisplatin injection resulted in renal dysfunction, lipid peroxidation that led to consumption of antioxidants, exaggerated apoptosis, and inflammation. These changes were associated with increase in the signaling proteins. DZ attenuated the toxic effects of cisplatin on the kidney at 100 mg/kg dose. The study concludes with the finding that daidzein imparts protection against the nephrotoxic effect of Cisplatin and can be considered as a novel, potential therapy.  相似文献   

14.
Aging is associated with increased vulnerability to inflammatory challenge. However, the effects of altered inflammatory response on the metabolic status of tissues or organs are not well documented. In this study, we present evidence demonstrating that lipopolysaccharide (LPS)-induced upregulation of the inflammasome/IL-1β pathway is accompanied with an increased inflammatory response and abnormal lipid accumulation in livers of aged rats. To monitor the effects of aging on LPS-induced inflammation, we administered LPS (2 mg kg−1) to young (6-month old) and aged (24-month old) rats and found abnormal lipid metabolism in only aged rats with increased lipid accumulation in the liver. This lipid accumulation in the liver was due to the dysregulation of PPARα and SREBP1c. We also observed severe liver inflammation in aged rats as indicated by increased ALT levels in serum and increased Kupffer cells in the liver. Importantly, among many inflammation-associated factors, the aged rat liver showed chronically increased IL-1β production. Increased levels of IL-1β were caused by the upregulation of caspase-1 activity and inflammasome activation. In vitro studies with HepG2 cells demonstrated that treatment with IL-1β significantly induced lipid accumulation in hepatocytes through the regulation of PPARα and SREBP1c. In summary, we demonstrated that LPS-induced liver inflammation and lipid accumulation were associated with a chronically overactive inflammasome/IL-1β pathway in aged rat livers. Based on the present findings, we propose a mechanism of aging-associated progression of steatohepatitis induced by endotoxin, delineating a pathogenic role of the inflammasome/IL-1β pathway involved in lipid accumulation in the liver.  相似文献   

15.
This study investigated whether multiple bioactivity of terrein such as anti‐inflammatory and anti‐oxidant inhibits age‐related inflammation by promoting an antioxidant response in aged human diploid fibroblast (HDF) cells. HDF cells were cultured serially for in vitro replicative senescence. To create the ageing cell phenotype, intermediate stage (PD31) HDF cells were brought to stress‐induced premature senescence (SIPS) using hydrogen peroxide (H2O2). Terrein increased cell viability even with H2O2 stress and reduced inflammatory molecules such as intracellular adhesion molecule‐1 (ICAM‐1), cyclooxygenase‐2 (COX‐2), interleukin‐1beta (IL‐1β) and tumour necrosis factor‐alpha (TNF‐α). Terrein reduced also phospho‐extracellular kinase receptor1/2 (p‐EKR1/2) signalling in aged HDF cells. SIPS cells were attenuated for age‐related biological markers including reactive oxygen species (ROS), senescence associated beta‐galactosidase (SA β‐gal.) and the aforementioned inflammatory molecules. Terrein induced the induction of anti‐oxidant molecules, copper/zinc‐superoxide defence (Cu/ZnSOD), manganese superoxide dismutase (MnSOD) and heme oxygenase‐1 (HO‐1) in SIPS cells. Terrein also alleviated reactive oxygen species formation through the Nrf2/HO‐1/p‐ERK1/2 pathway in aged cells. The results indicate that terrein has an alleviative function of age‐related inflammation characterized as an anti‐oxidant. Terrein might be a useful nutraceutical compound for anti‐ageing. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
We examined the effects of irradiation (50 cGy of γ-ray) reducing the oxidative damage in carbon tetrachloride (CCl4)-hepatopathy mice. We made pathological examinations and analyzed transaminase activity (glutamic oxaloacetic transaminase and glutamic pyruvic transaminase), lipid peroxide level and the activities of endogenous antioxidants in the mouse. The irradiation was found to accelerate the recovery. Based on pathological examination as well as changes in each transaminase activity and lipid peroxide levels, it was shown that hepatopathy improved 3 d after the irradiation. The activities of glutathione reductase and glutathione peroxidase rapidly elevated after irradiation, and the total glutathione content gradually increased in the irradiation group. Both activities of γ-glutamylcysteine synthetase and catalase were higher than normal at all times after the irradiation and gradually increased. In addition, the γ-glutamylcysteine synthetase activity changed in a similar fashion to the total glutathione content. However, superoxide dismutase activity in both groups decreased and that of the irradiation group was significantly lower than that of the sham-irradiation group. These findings suggest that low-dose radiation relieved functional disorder at least in the liver of mice with active oxygen diseases.  相似文献   

17.
The aim of this study was to investigate the protective effect of montelukast (MTK) against prednisolone‐induced hepatic injury in rats. Twenty‐eight male albino rats were categorized into four equal groups. Group I served as the control group; group II: rats orally received prednisolone (5 mg·kg?1·d?1) for 30 days; groups III and IV: rats orally received MTK at 10 and 20 mg·kg?1·d?1, respectively, simultaneously with prednisolone for 30 days. Serum liver enzymes, hepatic mitochondrial function, oxidative/nitrosative stress, and inflammatory and apoptotic markers were evaluated, and the results were confirmed by histopathological examination. MTK showed significant hepatic protection evidenced by alleviated histological lesion and improvement of mitochondrial function, oxidative/nitrosative stress, and inflammatory and apoptotic changes induced by prednisolone, with more profound protection in higher MTK dose (20 mg·kg?1). In view of these findings, we can conclude that MTK may have hepatoprotective potential, beyond its therapeutic value for asthmatic patients during their course of corticosteroid therapy.  相似文献   

18.
19.
Acute kidney injury (AKI) is mainly caused by renal ischaemia reperfusion injury (IRI). Lots of evidence suggests that ferroptosis and oxidative stress play the vital role in renal IRI. However, the specific mechanism of renal IRI has not been fully elucidated. lysine‐specific demethylase 1 (LSD1) has been shown to regulate the pathogenesis of kidney disease. In this study, we firstly found that LSD1 was positively related to renal IRI. TCP, a classical LSD1 inhibitor, could alleviate tissue damage induced by renal IRI. Inhibition of LSD1 with either TCP or LSD1 knockdown could alleviate ferroptosis and oxidative stress caused by IRI both in vivo and in vitro. Furthermore, the results showed that suppression of LSD1 decreased the expression of TLR4/NOX4 pathway in HK‐2 cells subjected to H/R. With the si‐RNA against TLR4 or NOX4, it showed that the silence of TLR4/NOX4 reduced oxidative stress and ferroptosis in vitro. Moreover, to demonstrate the crucial role of TLR4/NOX4, TLR4 reduction, mediated by inhibition of LSD1, was compensated through delivering the adenovirus carrying TLR4 in vitro. The results showed that the compensation of TLR4 blunted the alleviation of oxidative stress and ferroptosis, induced by LSD1 inhibition. Further study showed that LSD1 activates TLR4/NOX4 pathway by reducing the enrichment of H3K9me2 in the TLR4 promoter region. In conclusion, our results demonstrated that LSD1 inhibition blocked ferroptosis and oxidative stress caused by renal IRI through the TLR4/NOX4 pathway, indicating that LSD1 could be a potential therapeutic target for renal IRI.  相似文献   

20.
Fuziline, an aminoalcohol‐diterpenoid alkaloid derived from Aconiti lateralis radix preparata, has been reported to have a cardioprotective activity in vitro. However, the potential mechanism of fuziline on myocardial protection remains unknown. In this study, we aimed to explore the efficacy and mechanism of fuziline on isoproterenol (ISO)‐induced myocardial injury in vitro and in vivo. As a result, fuziline effectively increased cell viability and alleviated ISO‐induced apoptosis. Meanwhile, fuziline significantly decreased the production of ROS, maintained mitochondrial membrane potential (MMP) and blocked the release of cytochrome C, suggesting that fuziline could play the cardioprotective role through restoring the mitochondrial function. Fuziline also could suppress ISO‐induced endoplasmic reticulum (ER) stress via the PERK/eIF2α/ATF4/Chop pathway. In addition, using ROS scavenger NAC could decrease ISO‐induced apoptosis and block ISO‐induced ER stress, while PERK inhibitor GSK2606414 did not reduce the production of ROS, indicating that excess production of ROS induced by ISO triggered ER stress. And fuziline protected against ISO‐induced myocardial injury by inhibiting ROS‐triggered ER stress. Furthermore, fuziline effectively improved cardiac function on ISO‐induced myocardial injury in rats. Western blot analysis also showed that fuziline reduced ER stress‐induced apoptosis in vivo. Above these results demonstrated that fuziline could reduce ISO‐induced myocardial injury in vitro and in vivo by inhibiting ROS‐triggered ER stress via the PERK/eIF2α/ATF4/Chop pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号