共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-animal origin of animal thioredoxin reductases: implications for selenocysteine evolution and evolution of protein function through carboxy-terminal extensions 下载免费PDF全文
Novoselov SV Gladyshev VN 《Protein science : a publication of the Protein Society》2003,12(2):372-378
Thioredoxin reductase (TR) and thioredoxin constitute a major cellular redox system present in all organisms. In contrast to a single form of thioredoxin, there are two TR types: One (bacterial type or small TR) is present in bacteria, archaea, plants, and most unicellular eukaryotes, whereas the second (animal or large TR) is only found in animals and typically contains a carboxy-terminal penultimate selenocysteine encoded by TGA. Surprisingly, we detected sequences of large TRs in various unicellular eukaryotes. Moreover, green algae Chlamydomonas reinhardtii had both small and large TRs, with the latter being a selenoprotein, but no examples of horizontal gene transfer from animals to the green algae could be detected. In addition, phylogenetic analyses revealed that large TRs formed a subgroup of lower eukaryotic glutathione reductases (GRs). The data suggest that the large TR evolved in a lower eukaryote capable of selenocysteine insertion rather than in an animal. The enzyme appeared to evolve by a carboxy-terminal extension of GR such that the resulting carboxy-terminal glutathionelike peptide became an intramolecular substrate for GR and a reductant for thioredoxin. Subsequently, small TRs were lost in an organism that gave rise to animals, large TRs were lost in plants and fungi, and selenocysteine/cysteine replacements took place in some large TRs. Our data implicate carboxy-terminal extension of proteins as a general mechanism of evolution of new protein function. 相似文献
2.
Thioredoxin glutathione reductase (TGR) is a key flavoenzyme expressed by schistosomes that bridges two detoxification pathways crucial for the parasite survival in the host's organism. In this article we report the crystal structure (at 2.2 A resolution) of TGR from Schistosoma mansoni (SmTGR), deleted in the last two residues. The structure reveals the peculiar architecture of this chimeric enzyme: the small Glutaredoxin (Grx) domain at the N-terminus is joined to the large thioredoxin reductase (TR) one via an extended complementary surface, involving residues not conserved in the Grx superfamily; the TR domain interacts with an identical partner via its C-terminal domain, forming a dimer with a twisted "W" shape. Although lacking the penultimate Selenocysteine residue (Sec), the enzyme is still able to reduce oxidized glutathione. These data update the interpretation of the interdomain communication in TGR enzymes. The possible function of this enzyme in pathogenic parasites is discussed. 相似文献
3.
Thioredoxin reductase 1 (TrxR1) is an important antioxidant enzyme that controls cellular redox homeostasis. By using a proteomic‐based approach, here we identify TrxR1 as a caveolar membrane‐resident protein. We show that caveolin 1, the structural protein component of caveolae, is a TrxR1‐binding protein by demonstrating that the scaffolding domain of caveolin 1 (amino acids 82–101) binds directly to the caveolin‐binding motif (CBM) of TrxR1 (amino acids 454–463). We also show that overexpression of caveolin 1 inhibits TrxR activity, whereas a lack of caveolin 1 activates TrxR, both in vitro and in vivo. Expression of a peptide corresponding to the caveolin 1 scaffolding domain is sufficient to inhibit TrxR activity. A TrxR1 mutant lacking the CBM, which fails to localize to caveolae and bind to caveolin 1, is constitutively active and inhibits oxidative‐stress‐mediated activation of the p53/p21Waf1/Cip1 pathway and induction of premature senescence. Finally, we show that caveolin 1 expression inhibits TrxR1‐mediated cell transformation. Thus, caveolin 1 links free radicals to activation of the p53/p21Waf1/Cip1 pathway and induction of cellular senescence by acting as an endogenous inhibitor of TrxR1. 相似文献
4.
Kaelyn A. Jenny Emma J. Ste.Marie Gracyn Mose Erik L. Ruggles Robert J. Hondal 《Journal of peptide science》2019,25(10)
Historically, methods to remove the 4‐methoxybenzyl (Mob)–protecting group from selenocysteine (Sec) in peptides have used harsh and toxic reagents. The use of 2,2′‐dithiobis‐5‐nitropyridine (DTNP) is an improvement over these methods; however, many wash steps are required to remove the by‐product contaminant 5‐nitro‐2‐thiopyridine. Even with many washes, excess DTNP adheres to the peptide. The final product needs excess purification to remove these contaminants. It was recently discovered by our group that hindered hydrosilanes could be used to reduce Cys(Mob). We sought to apply a similar methodology to reduce Sec(Mob), which we expected to be even more labile. Here, we present a gentle and facile method for deprotection of Sec(Mob) using triethylsilane (TES), phenol, and a variety of other scavengers often used in deprotection cocktails. The different cocktails were all incubated at 40 °C for 4 hours. The combination of TFA/TES/thioanisole (96:2:2) appeared to be the most efficient of the cocktails tested, providing complete deprotection and yielded peptide that was mainly in the diselenide form. This cocktail also showed no evidence of side reactions or significant contaminants in the high‐performance liquid chromatography (HPLC) and mass spectral (MS) analyses. We envision that our new method will allow for a simple and gentle “one‐pot” deprotection of Sec(Mob) following solid‐phase peptide synthesis and will minimize the need for extensive purification steps. 相似文献
5.
Removal of the 5‐nitro‐2‐pyridine‐sulfenyl protecting group from selenocysteine and cysteine by ascorbolysis 下载免费PDF全文
We previously reported on a method for the facile removal of 4‐methoxybenzyl and acetamidomethyl protecting groups from cysteine (Cys) and selenocysteine (Sec) using 2,2′‐dithiobis‐5‐nitropyridine dissolved in trifluoroacetic acid, with or without thioanisole. The use of this reaction mixture removes the protecting group and replaces it with a 2‐thio(5‐nitropyridyl) (5‐Npys) group. This results in either a mixed selenosulfide bond or disulfide bond (depending on the use of Sec or Cys), which can subsequently be reduced by thiolysis. A major disadvantage of thiolysis is that excess thiol must be used to drive the reaction to completion and then removed before using the Cys‐containing or Sec‐containing peptide in further applications. Here, we report a further advancement of this method as we have found that ascorbate at pH 4.5 and 25 °C will reduce the selenosulfide to the selenol. Ascorbolysis of the mixed disulfide between Cys and 5‐Npys is much less efficient but can be accomplished at higher concentrations of ascorbate at pH 7 and 37 °C with extended reaction times. We envision that our improved method will allow for in situ reactions with alkylating agents and electrophiles without the need for further purification, as well as a number of other applications. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
6.
The chloroplast NADPH thioredoxin reductase C,NTRC, controls non‐photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis 下载免费PDF全文
Belén Naranjo Clara Mignée Anja Krieger‐Liszkay Dámaso Hornero‐Méndez Lourdes Gallardo‐Guerrero Francisco Javier Cejudo Marika Lindahl 《Plant, cell & environment》2016,39(4):804-822
High irradiances may lead to photooxidative stress in plants, and non‐photochemical quenching (NPQ) contributes to protection against excess excitation. One of the NPQ mechanisms, qE, involves thermal dissipation of the light energy captured. Importantly, plants need to tune down qE under light‐limiting conditions for efficient utilization of the available quanta. Considering the possible redox control of responses to excess light implying enzymes, such as thioredoxins, we have studied the role of the NADPH thioredoxin reductase C (NTRC). Whereas Arabidopsis thaliana plants lacking NTRC tolerate high light intensities, these plants display drastically elevated qE, have larger trans‐thylakoid ΔpH and have 10‐fold higher zeaxanthin levels under low and medium light intensities, leading to extremely low linear electron transport rates. To test the impact of the high qE on plant growth, we generated an ntrc–psbs double‐knockout mutant, which is devoid of qE. This double mutant grows faster than the ntrc mutant and has a higher chlorophyll content. The photosystem II activity is partially restored in the ntrc–psbs mutant, and linear electron transport rates under low and medium light intensities are twice as high as compared with plants lacking ntrc alone. These data uncover a new role for NTRC in the control of photosynthetic yield. 相似文献
7.
The mammalian thioredoxin reductases (TrxR) are selenoproteins with a catalytic selenocysteine residue which in the oxidized enzyme forms a selenenylsulfide and in the reduced enzyme is present as a selenolthiol. Selenium compounds such as selenite, selenodiglutathione and selenocystine are substrates for the enzyme with low Km-values and the enzyme is implicated in reductive assimilation of selenium by generating selenide for selenoprotein synthesis. Redox cycling of reduced metabolites of these selenium compounds including selenide with oxygen via TrxR and reduced thioredoxin (Trx) will oxidize NADPH and produce reactive oxygen species inducing cell death at high concentrations explaining selenite toxicity. There is no free pool of selenocysteine since this would be toxic in an oxygen environment by redox cycling via thioredoxin systems. The importance of selenium compounds and TrxR in cancer and cardiovascular diseases both for prevention and treatment is discussed. A selenazol drug like ebselen is a direct substrate for mammalian TrxR and dithiol Trx and ebselen selenol is readily reoxidized by hydrogen peroxide and lipid hydroperoxides, acting as an anti-oxidant and anti-inflammatory drug. 相似文献
8.
Exploring the conformational equilibrium of E. coli thioredoxin reductase: characterization of two catalytically important states by ultrafast flavin fluorescence spectroscopy 下载免费PDF全文
van den Berg PA Mulrooney SB Gobets B van Stokkum IH van Hoek A Williams CH Visser AJ 《Protein science : a publication of the Protein Society》2001,10(10):2037-2049
The conformational dynamics of wild-type Escherichia coli thioredoxin reductase (TrxR) and the mutant enzyme C138S were studied by ultrafast time-resolved fluorescence of the flavin cofactor in combination with circular dichroism (both in the flavin fingerprint and far-UV regions) and steady-state fluorescence and absorption spectroscopy. The spectroscopic data show two conformational states of the enzyme (named FO and FR), of which the physical characteristics differ considerably. Ultrafast fluorescence lifetime measurements make it possible to distinguish between the two different populations: Dominant picosecond lifetimes of approximately 1 ps (contribution 75%) and 7 ps (8%) are associated with the FO species in TrxR C138S. Long-lived fluorescence with two time constants in the range of 0.2-1 ns (total contribution 17%) originates from enzyme molecules in the FR conformation. The near absence of fast lifetime components in oxidized wild-type TrxR supports the idea of this enzyme being predominantly in the FR conformation. The emission spectrum of the FO conformation is blue-shifted with respect to that of the FR conformation. Because of the large difference in fluorescence characteristics, fluorescence measurements on time scales longer than 100 ps are fully determined by the fraction of enzyme molecules in the FR conformation. Binding of the thiol reagent phenyl mercuric acetate to wild-type enzyme and TrxR C138S stabilizes the enzymes in the FR conformation. Specific binding of the NADPH-analog, AADP(+), to the FR conformation resulted in dynamic fluorescence quenching in support of the multiple quenching sites model. Raising the temperature from 277K-323K resulted in a moderate shift to the FR conformation for TrxR C138S. High concentrations of the cosolvent glycerol triggered the domain rotation from the FO to the FR conformation. 相似文献
9.
Thioredoxin reductase (TrxR) is an important enzyme in the control of the intracellular reduced redox environment. It transfers electrons from NADPH to several molecules, including its natural partner, thioredoxin. Although there is a generally accepted model describing how the electrons are transferred along TrxR, which involves a flexible arm working as a “shuttle,” the molecular details of such mechanism are not completely understood. In this work, we use molecular dynamics simulations with Poisson–Boltzmann/Monte Carlo pKa calculations to investigate the role of electrostatics in the electron transfer mechanism. We observed that the combination of redox/protonation states of the N‐terminal (FAD and Cys59/64) and C‐terminal (Cys497/Selenocysteine498) redox centers defines the preferred relative positions and allows for the flexible arm to work as the desired “shuttle.” Changing the redox/ionization states of those key players, leads to electrostatic triggers pushing the arm into the pocket when oxidized, and pulling it out, once it has been reduced. The calculated pKa values for Cys497 and Selenocysteine498 are 9.7 and 5.8, respectively, confirming that the selenocysteine is indeed deprotonated at physiological pH. This can be an important advantage in terms of reactivity (thiolate/selenolate are more nucleophilic than thiol/selenol) and ability to work as an electrostatic trigger (the “shuttle” mechanism) and may be the reason why TrxR uses selenium instead of sulfur. Proteins 2016; 84:1836–1843. © 2016 Wiley Periodicals, Inc. 相似文献
10.
Photoinhibition of the electron transport activity from tyrosine Z (YZ) in PS II to NADP+in Tris-treated thylakoids was suppressed by electron donation with either diphenylcarbazide or ascorbate (AsA) during the photoinhibition treatment. This suggests that AsA prevents donor side-induced photoinhibition in vivo as an endogenous donor. AsA in the lumen is photooxidized to monodehydroascorbate (MDA) in Tris-treated thylakoids, as detected by electron spin resonance spectrometry, but not in oxygenic thylakoids. Redox analysis of pyridine nucleotide in the presence of either MDA reductase or dehydroascorbate (DHA) reductase showed that the MDA photoproduced in the lumen is disproportionated to AsA and DHA, and the DHA leaking into the stroma is reduced to AsA by DHA reductase. No leakage of MDA through the thylakoid membrane was observed. Thus, the DHA-reducing enzyme system is indispensable in maintaining AsA concentrations in chloroplasts. 相似文献
11.
6‐Methyl 3‐chromonyl 2,4‐thiazolidinedione/2,4‐imidazolidinedione/2‐thioxo‐imidazolidine‐4‐one compounds: novel scavengers of reactive oxygen species 下载免费PDF全文
Paweł Berczyński Ewa Duchnik Irena Kruk Teresa Piechowska Hassan Y. Aboul‐Enein Oya Bozdağ‐Dündar Meltem Ceylan‐Unlusoy 《Luminescence》2014,29(4):367-373
The benefits of antioxidants on human health are usually ascribed to their potential ability to remove reactive oxygen species providing protection against oxidative stress. In this paper the free radicals scavenging activities of nine 6‐methyl 3‐chromonyl derivatives (CMs) were evaluated for the first time by the chemiluminescence, electron paramagnetic resonance, spin trapping and 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH?) methods. The total antioxidant capacity was also measured using a ferric‐ferrozine reagent. Compounds having a hydrogen atom at the N3‐position of the β‐ring were effective in quenching CL resulted from the KO2/18‐crown‐6‐ether system (a source of superoxide anion radical, ) in a dose‐dependent manner over the range of 0.05–1 mmol/L [IC50 ranged from 0.353 (0.04) to 0.668 (0.05) mmol/L]. The examined compounds exhibited a significant scavenging effect towards hydroxyl radicals (HO? HO?), produced by the Fenton reaction, and this ranged from 24.0% to 61.0%, at the concentration of 2.5 mmol/L. Furthermore, the compounds examined were also found to inhibit DPPH? and this ranged from 51.9% to 97.4% at the same concentration. In addition, the use of the total antioxidant capacity assay confirmed that CM compounds are able to act as reductants. According to the present study, CM compounds showed effective in vitro free radical scavenging activity and may be considered as potential therapeutics to control diseases of oxidative stress‐related etiology. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
12.
Vadim N Gladyshev 《Proteins》2002,46(2):149-152
Thioredoxin (Trx) and peptide methionine sulfoxide reductase (PMSR) are small thiol oxidoreductases implicated in antioxidant defense and redox regulation of cellular processes. Here we show that the structures of Trx and PMSR exhibit resemblance in their alphabeta core regions and that the active site cysteines in two proteins occupy equivalent positions downstream of a central beta-strand and at the N-terminus of an alpha-helix. Moreover, we identified a PMSR subfamily that contains an active site CxxC motif (two cysteines separated by two other amino acids) positioned similarly to the catalytic redox active CxxC motif in Trx. However, Trx and PMSR are characterized by distinct ancient folds that differ in both orientation of secondary structures and their patterns. Trx is a member of the Trx-fold superfamily, whereas PMSR has a unique fold not found in other proteins. The data suggest that similar structures and functions of Trx and PMSR were acquired independently during evolution and point to a general strategy of identifying new redox regulatory proteins. 相似文献
13.
Oya Bozdağ‐Dündar Selen Gürkan Hassan Y. Aboul‐Enein Irena Kruk Aleksandra Kładna 《Luminescence》2009,24(3):194-201
The antioxidant behavior of a series of new synthesized substituted thiazolyl‐thiazolidine‐2,4‐dione compounds (TZDs) was examined using chemiluminescence and electron paramagnetic resonance spin trapping techniques. 5,5‐Dimethyl‐1‐pyrroline‐N‐oxide (DMPO) was used as the spin trap. The reactivity of TZDs with superoxide anion radical (O) and hydroxyl radical (HO?) was evaluated using potassium superoxide/18‐crown‐6 ether dissolved in dimethylsulfoxide, and the Fenton‐like reaction (Fe2+ + H2O2), respectively. The results showed that TZDs efficiently inhibited light emission from the O generating system at a concentration of 0.05–1 mmol L?1 (5–94% reductions were found at 1 mmol L?1 concentration). The TZD compounds showed inhibition of HO?‐dependent DMPO–OH spin adduct formation from DMPO (the amplitude decrease ranged from 8 to 82% at 1 mmol L?1 concentration). The findings showed that examined TZDs had effective activities as radical scavengers. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
14.
15.
16.
L. Ruby Carrillo John E. Froehlich Jeffrey A. Cruz Linda J. Savage David M. Kramer 《The Plant journal : for cell and molecular biology》2016,87(6):654-663
The chloroplast ATP synthase is known to be regulated by redox modulation of a disulfide bridge on the γ‐subunit through the ferredoxin–thioredoxin regulatory system. We show that a second enzyme, the recently identified chloroplast NADPH thioredoxin reductase C (NTRC), plays a role specifically at low irradiance. Arabidopsis mutants lacking NTRC (ntrc) displayed a striking photosynthetic phenotype in which feedback regulation of the light reactions was strongly activated at low light, but returned to wild‐type levels as irradiance was increased. This effect was caused by an altered redox state of the γ‐subunit under low, but not high, light. The low light‐specific decrease in ATP synthase activity in ntrc resulted in a buildup of the thylakoid proton motive force with subsequent activation of non‐photochemical quenching and downregulation of linear electron flow. We conclude that NTRC provides redox modulation at low light using the relatively oxidizing substrate NADPH, whereas the canonical ferredoxin–thioredoxin system can take over at higher light, when reduced ferredoxin can accumulate. Based on these results, we reassess previous models for ATP synthase regulation and propose that NTRC is most likely regulated by light. We also find that ntrc is highly sensitive to rapidly changing light intensities that probably do not involve the chloroplast ATP synthase, implicating this system in multiple photosynthetic processes, particularly under fluctuating environmental conditions. 相似文献
17.
Electron transfer rates were measured in RCs from three herbicide-resistant mutants with known amino acid changes to elucidate the structural requirements for last electron transfer. The three herbicide resistant mutants were IM(L229) (Ile-L229 Met), SP(L223) (Ser-L223 Pro) and YG(L222) (Tyr-L222 Gly). The electron transfer rate D+QA
-QBD+QAQB (k
AB) is slowed 3 fold in the IM(L229) and YG(L222) RCs (pH 8). The stabilization of D+QAQB
- with respect to D+QAQB
- (pH 8) was found to be eliminated in the IM(L229) mutant RCs (G0 0 meV), was partially reduced in the SP(L223) mutant RCs (G0=–30 meV), and was unaltered in the YG(L222) mutant RCs (G0=–60 meV), compared to that observed in the native RCs (G0=–60 meV). The pH dependences of the charge recombination rate D+QAQB
-DQAQB (k
BD) and the electron transfer from QA
- (k
QA
-QA) suggest that the mutations do not affect the protonation state of Glu-L212 nor the electrostatic interactions of QB and QB
- with Glu-L212. The binding affinities of UQ10 for the QB site were found in order of decreasing values to be native IM(L229) > YG(L222) SP(L223). The altered properties of the mutant RCs are used to deduce possible structural changes caused by the mutations and are dicscussed in terms of photosynthetic efficiency of the herbicide resistant strains.Abbreviations Bchl
bacteriochlorophyll
- Bphe
bacteriopheophytin
- cholate
3,7,12-trihydroxycholanic acid
- D
donor (bacteriochlorophyll dimer)
- EDTA
ethylenediamine tetraacetic acid
- Fe2+
non-heme iron atom
- LDAO
lauryl dimethylamine oxide
- PS II
photosystem II
- QA and QB
primary and secondary quinone acceptors
- RC
bacterial reaction center
- Tris
tris(hydroxymethyl)aminomethane
- UQ0
2,3-dimethoxy-5-methyl benzoquinone
- UQ10
ubiquinone 50 相似文献
18.
miR‐370 and miR‐373 regulate the pathogenesis of osteoarthritis by modulating one‐carbon metabolism via SHMT‐2 and MECP‐2, respectively 下载免费PDF全文
The aim of this study was to determine the mechanism underlying the association between one‐carbon metabolism and DNA methylation during chronic degenerative joint disorder, osteoarthritis (OA). Articular chondrocytes were isolated from human OA cartilage and normal cartilage biopsied, and the degree of cartilage degradation was determined by safranin O staining. We found that the expression levels of SHMT‐2 and MECP‐2 were increased in OA chondrocytes, and 3′UTR reporter assays showed that SHMT‐2 and MECP‐2 are the direct targets of miR‐370 and miR‐373, respectively, in human articular chondrocytes. Our experiments showed that miR‐370 and miR‐373 levels were significantly lower in OA chondrocytes compared to normal chondrocytes. Overexpression of miR‐370 or miR‐373, or knockdown of SHMT‐2 or MECP‐2 reduced both MMP‐13 expression and apoptotic cell death in cultured OA chondrocytes. In vivo, we found that introduction of miR‐370 or miR‐373 into the cartilage of mice that had undergone destabilization of the medial meniscus (DMM) surgery significantly reduced the cartilage destruction in this model, whereas introduction of SHMT‐2 or MECP‐2 increased the severity of cartilage destruction. Together, these results show that miR‐370 and miR‐373 contribute to the pathogenesis of OA and act as negative regulators of SHMT‐2 and MECP‐2, respectively. 相似文献
19.
Diego G. Arias Erika L. RegnerAlberto A. Iglesias Sergio A. Guerrero 《Biochimica et Biophysica Acta (BBA)/General Subjects》2012
Background
Entamoeba histolytica, an intestinal protozoan that is the causative agent of amoebiasis, is exposed to elevated amounts of highly toxic reactive oxygen and nitrogen species during tissue invasion. Thioredoxin reductase catalyzes the reversible transfer of reducing equivalents between NADPH and thioredoxin, a small protein that plays key metabolic functions in maintaining the intracellular redox balance.Methods
The present work deals with in vitro steady state kinetic studies aimed to reach a better understanding of the kinetic and structural properties of thioredoxin reductase from E. histolytica (EhTRXR).Results
Our results support that native EhTRXR is a homodimeric covalent protein that is able to catalyze the NAD(P)H-dependent reduction of amoebic thioredoxins and S‐nitrosothiols. In addition, the enzyme exhibited NAD(P)H dependent oxidase activity, which generates hydrogen peroxide from molecular oxygen. The enzyme can reduce compounds like methylene blue, quinones, ferricyanide or nitro-derivatives; all alternative substrates displaying a relative high capacity to inhibit disulfide reductase activity of EhTRXR.Conclusions and general significance
Interestingly, EhTRXR exhibited kinetic and structural properties that differ from other low molecular weight TRXR. The TRX system could play an important role in the parasite defense against reactive species. The latter should be critical during the extra intestinal phase of the amoebic infection. So far we know, this is the first in depth characterization of EhTRXR activity and functionality. 相似文献20.
Human thioredoxin reductase (hTrxR) is a homodimeric flavoprotein crucially involved in the regulation of cellular redox reactions, growth and differentiation. The enzyme contains a selenocysteine residue at its C-terminal active site that is essential for catalysis. This redox center is located on a flexible arm, solvent-exposed and reactive towards electrophilic inhibitors, thus representing a target for antitumor drug development. During catalysis reducing equivalents are transferred from the cofactor NADPH to FAD, then to the N-terminal active site cysteine residues and from there to the flexible C-terminal part of the other subunit to be finally delivered to a variety of second substrates at the molecule's surface. Here we report the first crystal structure of hTrxR1 (Sec-->Cys) in complex with FAD and NADP(+) at a resolution of 2.8 A. From the crystals three different conformations of the carboxy-terminal arm could be deduced. The predicted movement of the arm is facilitated by the concerted action of the three side-chain residues of N418, N419 and W407, which act as a guiding bar for the C-terminal sliding process. As supported by previous kinetic data, the three visualized conformations might reflect different stages in enzymatic catalysis. Comparison with other disulfide reductases including human glutathione reductase revealed specific inhibitor binding sites in the intersubunit cavity of hTrxR that can be exploited for structure-based inhibitor development. 相似文献