首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The trp RNA-binding attenuation protein (TRAP) negatively regulates expression of the tryptophan biosynthesis genes of Bacillus subtilis. In the presence of tryptophan, TRAP is activated to bind to the 5'-leader region of the trp mRNA resulting in termination prior to the structural genes. In addition, accumulation of uncharged tRNA(Trp) induces synthesis of anti-TRAP (AT), which binds to TRAP and inhibits its function. Both of these proteins consist of oligomers of identical subunits. Here, we characterize the self-association of each of these proteins and the TRAP-AT interaction in free solution using equilibrium and velocity analytical ultracentrifugation. TRAP exists as a stable 11-mer in the absence and in the presence of tryptophan. Tryptophan binding induces a conformational change in TRAP. AT exists in a reversible equilibrium between trimer and dodecamer with an equilibrium constant of approximately 3 x 10(14)M(-3). About 20% of the trimer is incompetent to form dodecamer. The AT equilibrium is slow on the time-scale of the velocity experiment. Formation of TRAP-AT complexes occurs only in the presence of tryptophan. A complex containing one TRAP 11-mer and one AT 12-mer forms with high affinity. At higher ratios of TRAP:AT complexes containing two TRAP 11-mers and one AT 12-mer are detected. A model for the structure of the complex is proposed.  相似文献   

2.
The analytical ultracentrifuge (AUC) is a powerful biophysical tool that allows us to record macromolecular sedimentation profiles during high speed centrifugation. When properly planned and executed, an AUC sedimentation velocity or sedimentation equilibrium experiment can reveal a great deal about a protein in regards to size and shape, sample purity, sedimentation coefficient, oligomerization states and protein-protein interactions.This technique, however, requires a rigorous level of technical attention. Sample cells hold a sectored center piece sandwiched between two window assemblies. They are sealed with a torque pressure of around 120-140 in/lbs. Reference buffer and sample are loaded into the centerpiece sectors and then after sealing, the cells are precisely aligned into a titanium rotor so that the optical detection systems scan both sample and reference buffer in the same radial path midline through each centerpiece sector while rotating at speeds of up to 60, 000 rpm and under very high vacuumNot only is proper sample cell assembly critical, sample cell components are very expensive and must be properly cared for to ensure they are in optimum working condition in order to avoid leaks and breakage during experiments. Handle windows carefully, for even the slightest crack or scratch can lead to breakage in the centrifuge. The contact between centerpiece and windows must be as tight as possible; i.e. no Newton s rings should be visible after torque pressure is applied. Dust, lint, scratches and oils on either the windows or the centerpiece all compromise this contact and can very easily lead to leaking of solutions from one sector to another or leaking out of the centerpiece all together. Not only are precious samples lost, leaking of solutions during an experiment will cause an imbalance of pressure in the cell that often leads to broken windows and centerpieces. In addition, plug gaskets and housing plugs must be securely in place to avoid solutions being pulled out of the centerpiece sector through the loading holes by the high vacuum in the centrifuge chamber. Window liners and gaskets must be free of breaks and cracks that could cause movement resulting in broken windows.This video will demonstrate our procedures of sample cell assembly, torque, loading and rotor alignment to help minimize component damage, solution leaking and breakage during the perfect AUC experiment.  相似文献   

3.
    
ClpB is a member of the bacterial protein-disaggregating chaperone machinery and belongs to the AAA(+) superfamily of ATPases associated with various cellular activities. The mechanism of ClpB-assisted reactivation of strongly aggregated proteins is unknown and the oligomeric state of ClpB has been under discussion. Sedimentation equilibrium and sedimentation velocity show that, under physiological ionic strength in the absence of nucleotides, ClpB from Escherichia coli undergoes reversible self-association that involves protein concentration-dependent populations of monomers, heptamers, and intermediate-size oligomers. Under low ionic strength conditions, a heptamer becomes the predominant form of ClpB. In contrast, ATP gamma S, a nonhydrolyzable ATP analog, as well as ADP stabilize hexameric ClpB. Consistently, electron microscopy reveals that ring-type oligomers of ClpB in the absence of nucleotides are larger than those in the presence of ATP gamma S. Thus, the binding of nucleotides without hydrolysis of ATP produces a significant change in the self-association equilibria of ClpB: from reactions supporting formation of a heptamer to those supporting a hexamer. Our results show how ClpB and possibly other related AAA(+) proteins can translate nucleotide binding into a major structural transformation and help explain why previously published electron micrographs of some AAA(+) ATPases detected both six- and sevenfold particle symmetry.  相似文献   

4.
    
Abstract: The protein quality control network (pQC) plays critical roles in maintaining protein and cellular homeostasis, especially during stress. Lon is a major pQC AAA+ protease, conserved from bacteria to human mitochondria. It is the principal enzyme that degrades most unfolded or damaged proteins. Degradation by Lon also controls cellular levels of several key regulatory proteins. Recently, our group determined that Escherichia coli Lon, previously thought to be an obligate homo‐hexamer, also forms a dodecamer. This larger assembly has decreased ATPase activity and displays substrate‐specific alterations in degradation compared with the hexamer. Here we experimentally probe the physical hexamer–hexamer interactions and the biological roles of the Lon dodecamer. Using structure prediction methods coupled with mutagenesis, we identified a key interface and specific residues within the Lon N domain that participates in an intermolecular coiled coil unique to the dodecamer. With this knowledge, we made a Lon variant (LonVQ) that forms a dodecamer with increased stability, as determined by analytical ultracentrifugation and electron microscopy. Using this altered Lon, we characterize the Lon dodecamer's activities using a panel of substrates. Lon dodecamers are clearly functional, and complement critical lon‐ phenotypes but also exhibit altered substrate specificity. For example, the small heat shock proteins IbpA and IbpB are only efficiently degraded well by the hexamer. Thus, by elucidating the intermolecular contacts connecting the hexamers, we are starting to illuminate how dodecamer formation versus disassembly can alter Lon function under conditions where controlling specific activities and substrate preferences of this key protease may be advantageous.  相似文献   

5.
The molecular mass and sedimentation coefficient of native C-reactive protein in solution were determined by analytical ultracentrifugation in the presence and absence of calcium ions. Pentameric C-reactive protein was shown to be the major macroscopic form of this protein in solution. The removal of calcium ions from solution caused decompaction of the protein accompanied by changes in its hydrodynamic parameters. The sedimentation coefficient s 0 20,w of pentameric C-reactive protein in solution containing 2 mM Ca2+ (6.6S) exceeded that for C-reactive protein in solution containing 2 mM EDTA (6.4S). Analysis of average molecular masses M w and M z obtained from sedimentation data demonstrated that the solution of highly purified protein was not homogeneous. As shown by intermolecular crosslinking, the solution also contained the 241-kDa decamer of C-reactive protein (9.5S) as a separate macroscopic form, whose share hardly reached 10% in the presence of 2 mM Ca2+ and increased after removal of calcium ions. The decamers were shown to result from intermolecular association of the pentamers.  相似文献   

6.
A sensitive method is proposed for the determination of small differences between the buoyant densities of different species of monodisperse macromolecules by analytical density gradient equilibrium centrifugation. The procedure involves the measurement at sedimentation equilibrium of the bandwidths of the concentration distribution of the separate macromolecules and of a mixture of the different species. The difference in buoyant densities can then be estimated from the difference between the bandwidths.  相似文献   

7.
    
《Cell reports》2023,42(9):113061
  1. Download : Download high-res image (207KB)
  2. Download : Download full-size image
  相似文献   

8.
The kinase PKR is a central component of the interferon antiviral pathway. PKR is activated upon binding double-stranded (ds) RNA to undergo autophosphorylation. Although PKR is known to dimerize, the relationship between dimerization and activation remains unclear. Here, we directly characterize dimerization of PKR in free solution using analytical ultracentrifugation and correlate self-association with autophosphorylation activity. Latent, unphosphorylated PKR exists predominantly as a monomer at protein concentrations below 2 mg/ml. A monomer sedimentation coefficient of s(20,w)(0)=3.58 S and a frictional ratio of f/f(0)=1.62 indicate an asymmetric shape. Sedimentation equilibrium measurements indicate that PKR undergoes a weak, reversible monomer-dimer equilibrium with K(d)=450 microM. This dimerization reaction serves to initiate a previously unrecognized dsRNA-independent autophosphorylation reaction. The resulting activated enzyme is phosphorylated on the two critical threonine residues present in the activation loop and is competent to phosphorylate the physiological substrate, eIF2alpha. Dimer stability is enhanced by approximately 500-fold upon autophosphorylation. We propose a chain reaction model for PKR dsRNA-independent activation where dimerization of latent enzyme followed by intermolecular phosphorylation serves as the initiation step. Subsequent propagation steps likely involve phosphorylation of latent PKR monomers by activated enzyme within high-affinity heterodimers. Our results support a model whereby dsRNA functions by bringing PKR monomers into close proximity in a manner that is analogous to the dimerization of free PKR.  相似文献   

9.
    
This work explores the heterogeneity of aggregation of polyglutamine fusion constructs in crude extracts of transgenic Caenorhabditis elegans animals. The work takes advantage of the recent technical advances in fluorescence detection for the analytical ultracentrifuge. Further, new sedimentation velocity methods, such as the multi‐speed method for data capture and wide distribution analysis for data analysis, are applied to improve the resolution of the measures of heterogeneity over a wide range of sizes. The focus here is to test the ability to measure sedimentation of polyglutamine aggregates in complex mixtures as a prelude to future studies that will explore the effects of genetic manipulation and environment on aggregation and toxicity. Using sedimentation velocity methods, we can detect a wide range of aggregates, ranging from robust analysis of the monomer species through an intermediate and quite heterogeneous population of oligomeric species, and all the way up to detecting species that likely represent intact inclusion bodies based on comparison to an analysis of fluorescent puncta in living worms by confocal microscopy. Our results support the hypothesis that misfolding of expanded polyglutamine tracts into insoluble aggregates involves transitions through a number of stable intermediate structures, a model that accounts for how an aggregation pathway can lead to intermediates that can have varying toxic or protective attributes. An understanding of the details of intermediate and large‐scale aggregation for polyglutamine sequences, as found in neurodegenerative diseases such as Huntington's Disease, will help to more precisely identify which aggregated species may be involved in toxicity and disease.  相似文献   

10.
An equation relating DNA buoyant density of CsCl to G + C content is given which uses the correct density value of Escherichia coli DNA as the reference. This is done to eliminate the current confusion brought about by two references states.  相似文献   

11.
    
Rana MS  Riggs AF 《Proteins》2011,79(5):1499-1512
The minor tetrameric hemoglobin (Hb), Hb D, of chicken red blood cells self-associates upon deoxygenation. This self-association enhances the cooperativity of oxygen binding. The maximal Hill coefficient is greater than 4 at high Hb concentrations. Previous measurements at low Hb concentrations were consistent with a monomer-to-dimer equilibrium and an association constant of ~1.3-1.6 × 10(4) M(-1). Here, the Hb tetramer is considered as the monomer. However, new results indicate that the association extends beyond the dimer. We show by combination of Hb oligomer modeling and sedimentation velocity analyses that the data can be well described by an indefinite noncooperative or isodesmic association model. In this model, the deoxy Hb D associates noncooperatively to give a linear oligomeric chain with an equilibrium association constant of 1.42 × 10(4) M(-1) at 20°C for each step. The data are also well described by a monomer-dimer-tetramer equilibrium model with monomer-to-dimer and dimer-to-tetramer association constants of 1.87 and 1.03 × 10(4) M(-1) at 20°C, respectively. A hybrid recombinant Hb D was prepared with recombinant α(D)-globin and native β-globin to give a Hb D tetramer (α(2)(D)β(2)). This rHb D undergoes decreased deoxygenation-dependent self-association compared with the native Hb D. Residue glutamate 138 has previously been proposed to influence intertetramer interactions. Our results with recombinant Hb D show that Glu138 plays no role in deoxy Hb D intertetramer interactions.  相似文献   

12.
    
Because cytoplasmic dynein plays numerous critical roles in eukaryotic cells, determining the subunit composition and the organization and functions of the subunits within dynein are important goals. This has been difficult partly because of accessory polypeptide heterogeneity of dynein populations. The motor domain containing heavy chains of cytoplasmic dynein are associated with multiple intermediate, light intermediate, and light chain accessory polypeptides. We examined the organization of these subunits within cytoplasmic dynein by separating the molecule into two distinct subcomplexes. These subcomplexes were competent to reassemble into a molecule with dynein-like properties. One subcomplex was composed of the dynein heavy and light intermediate chains whereas the other subcomplex was composed of the intermediate and light chains. The intermediate and light chain subcomplex could be further separated into two pools, only one of which contained dynein light chains. The two pools had distinct intermediate chain compositions, suggesting that intermediate chain isoforms have different light chain-binding properties. When the two intermediate chain pools were characterized by analytical velocity sedimentation, at least four molecular components were seen: intermediate chain monomers, intermediate chain dimers, intermediate chain monomers with bound light chains, and a mixture of intermediate chain dimers with assorted bound light chains. These data provide new insights into the compositional heterogeneity and assembly of the cytoplasmic dynein complex and suggest that individual dynein molecules have distinct molecular compositions in vivo.  相似文献   

13.
    
JiaBei Lin  Aaron L. Lucius 《Proteins》2015,83(11):2008-2024
Escherichia coli ClpB is a heat shock protein that belongs to the AAA+ protein superfamily. Studies have shown that ClpB and its homologue in yeast, Hsp104, can disrupt protein aggregates in vivo. It is thought that ClpB requires binding of nucleoside triphosphate to assemble into hexameric rings with protein binding activity. In addition, it is widely assumed that ClpB is uniformly hexameric in the presence of nucleotides. Here we report, in the absence of nucleotide, that increasing ClpB concentration leads to ClpB hexamer formation, decreasing NaCl concentration stabilizes ClpB hexamers, and the ClpB assembly reaction is best described by a monomer, dimer, tetramer, hexamer equilibrium under the three salt concentrations examined. Further, we found that ClpB oligomers exhibit relatively fast dissociation on the time scale of sedimentation. We anticipate our studies on ClpB assembly to be a starting point to understand how ClpB assembly is linked to the binding and disaggregation of denatured proteins. Proteins 2015; 83:2008–2024. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
    
Dynein is the large molecular motor that translocates to the (-) ends of microtubules. Dynein was first isolated from Tetrahymena cilia four decades ago. The analysis of the primary structure of the dynein heavy chain and the discovery that many organisms express multiple dynein heavy chains have led to two insights. One, dynein, whose motor domain comprises six AAA modules and two potential mechanical levers, generates movement by a mechanism that is fundamentally different than that which underlies the motion of myosin and kinesin. And two, organisms with cilia or flagella express approximately 14 different dynein heavy chain genes, each gene encodes a distinct dynein protein isoform, and each isoform appears to be functionally specialized. Sequence comparisons demonstrate that functionally equivalent isoforms of dynein heavy chains are well conserved across species. Alignments of portions of the motor domain result in seven clusters: (i) cytoplasmic dynein Dyhl; (ii) cytoplasmic dynein Dyh2; (iii) axonemal outer arm dynein alpha; (iv) outer arm dyneins beta and gamma; (v) inner arm dynein 1alpha; (vi) inner arm dynein 1beta; and (vii) a group of apparently single-headed inner arm dyneins. Some of the dynein groups contained more than one representative from a single organism, suggesting that these may be tissue-specific variants.  相似文献   

15.
    
The innate immune system is the first line of defense against invading pathogens. The retinoic acid‐inducible gene I (RIG‐I) like receptors (RLRs), RIG‐I and melanoma differentiation‐associated protein 5 (MDA5), are critical for host recognition of viral RNAs. These receptors contain a pair of N‐terminal tandem caspase activation and recruitment domains (2CARD), an SF2 helicase core domain, and a C‐terminal regulatory domain. Upon RLR activation, 2CARD associates with the CARD domain of MAVS, leading to the oligomerization of MAVS, downstream signaling and interferon induction. Unanchored K63‐linked polyubiquitin chains (polyUb) interacts with the 2CARD domain, and in the case of RIG‐I, induce tetramer formation. However, the nature of the MDA5 2CARD signaling complex is not known. We have used sedimentation velocity analytical ultracentrifugation to compare MDA5 2CARD and RIG‐I 2CARD binding to polyUb and to characterize the assembly of MDA5 2CARD oligomers in the absence of polyUb. Multi‐signal sedimentation velocity analysis indicates that Ub4 binds to RIG‐I 2CARD with a 3:4 stoichiometry and cooperatively induces formation of an RIG‐I 2CARD tetramer. In contrast, Ub4 and Ub7 interact with MDA5 2CARD weakly and form complexes with 1:1 and 2:1 stoichiometries but do not induce 2CARD oligomerization. In the absence of polyUb, MDA5 2CARD self‐associates to forms large oligomers in a concentration‐dependent manner. Thus, RIG‐I and MDA5 2CARD assembly processes are distinct. MDA5 2CARD concentration‐dependent self‐association, rather than polyUb binding, drives oligomerization and MDA5 2CARD forms oligomers larger than tetramer. We propose a mechanism where MDA5 2CARD oligomers, rather than a stable tetramer, function to nucleate MAVS polymerization.  相似文献   

16.
    
  1. Download : Download high-res image (346KB)
  2. Download : Download full-size image
  相似文献   

17.
It is well established that calcium binding leads to conformational changes in S100 proteins. These conformational changes are thought to activate the protein and render a protein conformation that is capable of binding other proteins. The basic quaternary structural motif of S100 proteins is a homodimer, however there is little information if higher order non-covalent oligomers are also formed and whether these oligomers are of functional relevance. To this end we performed equilibrium analytical ultracentrifugation experiments for 16 S100 proteins (S100A1, S100A2, S100A3, S100A4, S100A5, S100A6, S100A7, S100A8, S100A9, S100A10, S100A11, S100A12, S100A13, S100B, S100P, and S100Z) under reducing conditions in the absence and presence of calcium ions. We show that the addition of calcium promotes the formation of tetrameric structures which could be further enhanced under in vivo conditions where there is an additional effect of molecular crowding.  相似文献   

18.
19.
Complement receptor type 2 (CR2, CD21) forms a tight complex with C3d, a fragment of C3, the major complement component. Previous crystal structures of the C3d-CR2 SCR 1-2 complex and free CR2 SCR 1-2 showed that the two SCR domains of CR2 form contact with each other in a closed V-shaped structure. SCR 1 and SCR 2 are connected by an unusually long eight-residue linker peptide. Medium-resolution solution structures for CR2 SCR 1-2, C3d, and their complex were determined by X-ray scattering and analytical ultracentrifugation. CR2 SCR 1-2 is monomeric. For CR2 SCR 1-2, its radius of gyration R(G) of 2.12(+/-0.05) nm, its maximum length of 10nm and its sedimentation coefficient s20,w(o) of 1.40(+/-0.03) S do not agree with those calculated from the crystal structures, and instead suggest an open structure. Computer modelling of the CR2 SCR1-2 solution structure was based on the structural randomisation of the eight-residue linker peptide joining SCR 1 and SCR 2 to give 9950 trial models. Comparisons with the X-ray scattering curve indicated that the most favoured arrangements for the two SCR domains corresponded to an open V-shaped structure with no contacts between the SCR domains. For C3d, X-ray scattering and sedimentation velocity experiments showed that it exists as a monomer-dimer equilibrium with a dissociation constant of 40 microM. The X-ray scattering curve for monomeric C3d gave an R(G) value of 1.95 nm, and this together with its s20,w(o) value of 3.17 S gave good agreement with the monomeric C3d crystal structure. Modelling of the C3d dimer gave good agreements with its scattering and ultracentrifugation parameters. For the complex, scattering and ultracentrifugation experiments showed that there was no dimerisation, indicating that the C3d dimerisation site was located close to the CR2 SCR 1-2 binding site. The R(G) value of 2.44(+/-0.1) nm, its length of 9 nm and its s20,w(o) value of 3.45(+/-0.01) S showed that its structure was not much more elongated than that of C3d. Calculations with 9950 models of CR2 SCR 1-2 bound to C3d through SCR 2 showed that SCR 1 formed an open V-shaped structure with SCR 2 and was capable of interacting with the surface of C3d. We conclude that the open V-shaped structures formed by CR2 SCR 1-2, both when free and when bound to C3d, are optimal for the formation of a tight two-domain interaction with its ligand C3d.  相似文献   

20.
    
Purine nucleoside phosphorylase (PNP) is a key enzyme of the nucleoside salvage pathway and is characterized by complex kinetics. It was suggested that this is due to coexistence of various oligomeric forms that differ in specific activity. In this work, the molecular architecture of Escherichia coli PNP in solution was studied by analytical ultracentrifugation and CD spectroscopy. Sedimentation equilibrium analysis revealed a homohexameric molecule with molecular mass 150+/-10 kDa, regardless of the conditions investigated-protein concentration, 0.18-1.7 mg/mL; presence of up to 10 mM phosphate and up to 100 mM KCl; temperature, 4-20 degrees C. The parameters obtained from the self-associating model also describe the hexameric form. Sedimentation velocity experiments conducted for broad protein concentration range (1 microg/mL-1.3 mg/mL) with boundary (classical) and band (active enzyme) approaches gave s(0)20,w=7.7+/-0.3 and 8.3+/-0.4 S, respectively. The molecular mass of the sedimenting particle (146+/-30 kDa), calculated using the Svedberg equation, corresponds to the mass of the hexamer. Relative values of the CD signal at 220 nm and the catalytic activity of PNP as a function of GdnHCl concentration were found to be correlated. The transition from the native state to the random coil is a single-step process. The sedimentation coefficient determined at 1 M GdnHCl (at which the enzyme is still fully active) is 7.7 S, showing that also under these conditions the hexamer is the only catalytically active form. Hence, in solution similar to the crystal, E. coli PNP is a hexameric molecule and previous suggestions for coexistence of two oligomeric forms are incorrect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号