首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Optical‐resolution photoacoustic microscopy (OR‐PAM), which has been widely used and studied as a noninvasive and in vivo imaging technique, can yield high‐resolution and absorption contrast images. Recently, metallic nanoparticles and dyes, such as gold nanoparticles, methylene blue, and indocyanine green, have been used as contrast agents of OR‐PAM. This study demonstrates real‐time functional OR‐PAM images with high‐speed alternating illumination at 2 wavelengths. To generate 2 wavelengths, second harmonic generation at 532 nm with an LBO crystal and a pump wavelength of 1064 nm is applied at a pulse repetition rate of 300 kHz. For alternating illumination, an electro‐optical modulator is used as an optical switch. Therefore, the A‐line rate for the functional image is 150 kHz, which is half of the laser repetition rate. To enable fast signal processing and real‐time displays, parallel signal processing using a graphics processing unit (GPU) is performed. OR‐PAM images of the distribution of blood vessels and gold nanorods in a BALB/c‐nude mouse's ear can be simultaneously obtained with 500 × 500 pixels and real‐time display at 0.49 fps.   相似文献   

2.
Urinary bladder imaging is critical to diagnose urinary tract disorders, and bladder cancer. There is a great need for safe, non‐invasive, and sensitive imaging technique which enables bladder imaging. Photoacoustic imaging is a rapidly growing imaging technique for various biological applications. It can be combined with clinical ultrasound imaging system for hand‐held, dual modal ultrasound‐photoacoustic real‐time imaging. Structural (bladder wall) and functional (accretion of nanoparticles) bladder imaging is shown here with combined ultrasound and photoacoustic imaging in rats. Photoacoustic images of bladder wall is shown using black ink as the contrast agent. Chicken tissues were stacked on the abdomen of the animal to demonstrate the feasibility of photoacoustic imaging till a depth of 2 cm. Also, the feasibility of photoacoustic imaging for a common bladder disorder, vesicoureteral reflux is studied using urinary tract mimicking phantom. It is also shown that a clinical ultrasound system can be used for photoacoustic imaging of non‐invasive clearance study of gold nanorods from circulation by monitoring the gradual accumulation of the gold nanorods in the bladder. The time taken for accumulation of nanorods in the bladder can be used as an indicator of the clearance rate of the nanoparticle circulation from the body.   相似文献   

3.
Two‐photon nonlinear microscopy with the aid of plasmonic contrast agents is an attractive bioimaging technique capable of generating high‐resolution images in 3 dimensions and facilitating targeted imaging with deep tissue penetration. In this work, physically synthesized gold nanoparticles containing multiple nanopores are used as 2‐photon contrast agents and are reported to emit a 20‐fold brighter 2‐photon luminescence as compared to typical contrast agents, that is, gold nanorods. A successful application of our porous gold nanoparticles is experimentally demonstrated by in vitro nonlinear optical imaging of adipocytes at subcellular level.   相似文献   

4.
Photoacoustic imaging is a noninvasive imaging technique having the advantages of high‐optical contrast and good acoustic resolution at improved imaging depths. Light transport in biological tissues is mainly characterized by strong optical scattering and absorption. Photoacoustic microscopy is capable of achieving high‐resolution images at greater depth compared to conventional optical microscopy methods. In this work, we have developed a high‐resolution, acoustic resolution photoacoustic microscopy (AR‐PAM) system in the near infra‐red (NIR) window II (NIR‐II, eg, 1064 nm) for deep tissue imaging. Higher imaging depth is achieved as the tissue scattering at 1064 nm is lesser compared to visible or near infrared window‐I (NIR‐I). Our developed system can provide a lateral resolution of 130 μm, axial resolution of 57 μm, and image up to 11 mm deep in biological tissues. This 1064‐AR‐PAM system was used for imaging sentinel lymph node and the lymph vessel in rat. Urinary bladder of rat filled with black ink was also imaged to validate the feasibility of the developed system to study deeply seated organs.   相似文献   

5.
Photoacoustic endoscopy (PAE) is an emerging imaging modality, which offers a high imaging penetration and a high optical contrast in soft tissue. Most of the developed endoscopic photoacoustic sensing systems use miniaturized contact ultrasound transducers or complex optical approaches. In this work, a new fiber‐based detection technique using speckle analysis for contact‐free signal detection is presented. Phantom and ex vivo experiments are performed in transmission and reflection mode for proof of concept. In summary, the potential of the technique for endoscopic photoacoustic signal detection is demonstrated. The new technique might help in future to broaden the applications of PAE in imaging or guiding minimally invasive laser procedures.   相似文献   

6.
Needle placement is important for many clinical interventions, such as tissue biopsy, regional anesthesia and drug delivery. It is essential to visualize the spatial position of the needle and the target tissue during the interventions using appropriate imaging techniques. Based on the contrast of optical absorption, photoacoustic imaging is well suited for the guidance of interventional procedures. However, conventional photoacoustic imaging typically provides two‐dimensional (2D) slices of the region of interest and could only visualize the needle and the target when they are within the imaging plane of the probe at the same time. This requires great alignment skill and effort. To ease this problem, we developed a 3D interventional photoacoustic imaging technique by fast scanning a linear array ultrasound probe and stitching acquired image slices. in vivo sentinel lymph node biopsy experiment shows that the technique could precisely locate a needle and a sentinel lymph node in a tissue volume while a perfusion experiment demonstrates that the technique could visualize the 3D distribution of injected methylene blue dye underneath the skin at high temporal and spatial resolution. The proposed technique provides a practical way for photoacoustic image‐guided interventions.   相似文献   

7.
Progress in understanding the cell biology and diseases depends on advanced imaging and labeling techniques. Here, we address this demand by exploring novel multilayered nanocomposites (MNCs) with plasmonic nanoparticles and absorbing dyes in thin nonabsorbing shells as supercontrast multimodal photoacoustic (PA) and fluorescent agents in the near‐infrared range. The proof of concept was performed with gold nanorods (GNRs) and indocyanine green (ICG) dispersed in a matrix of biodegradable polymers. We demonstrated synergetic PA effects in MNCs with the gold‐ICG interface that could not be achieved with ICG and GNRs alone. We also observed ultrasharp PA and emission peaks that could be associated with nonlinear PA and spaser effects, respectively. Low‐toxicity multimodal MNCs with unique plasmonic, thermal and acoustic properties have the potential to make a breakthrough in PA flow cytometry and near‐infrared spasers in vivo by using the synergetic interaction of plasmonic modes with a nearby absorbing medium.   相似文献   

8.
Endoscopic optical coherence tomography (OCT) is a noninvasive technology allowing for imaging of tissue microanatomies of luminal organs in real time. Conventional endoscopic OCT operates at 1300 nm wavelength region with a suboptimal axial resolution limited to 8‐20 μm. In this paper, we present the first ultrahigh‐resolution tethered OCT capsule operating at 800 nm and offering about 3‐ to 4‐fold improvement of axial resolution (plus enhanced imaging contrast). The capsule uses diffractive optics to manage chromatic aberration over a full ~200 nm spectral bandwidth centering around 830 nm, enabling to achieve super‐achromaticity and an axial resolution of ~2.6 μm in air. The performance of the OCT capsule is demonstrated by volumetric imaging of swine esophagus ex vivo and sheep esophagus in vivo, where fine anatomic structures including the sub‐epithelial layers are clearly identified. The ultrahigh resolution and excellent imaging contrast at 800 nm of the tethered capsule suggest the potential of the technology as an enabling tool for surveillance of early esophageal diseases on awake patients without the need for sedation.   相似文献   

9.
A sensitive, noninvasive method to detect localized prostate cancer, particularly for early detection and repetitive study in patients undergoing active surveillance, remains an unmet need. Here, we propose a molecular photoacoustic (PA) imaging approach by targeting the prostate‐specific membrane antigen (PSMA), which is over‐expressed in the vast majority of prostate cancers. We performed spectroscopic PA imaging in an experimental model of prostate cancer, namely, in immunocompromised mice bearing PSMA+ (PC3 PIP) and PSMA? (PC3 flu) tumors through administration of the known PSMA‐targeted fluorescence agent, YC‐27. Differences in contrast between PSMA+ and isogenic control tumors were observed upon PA imaging, with PSMA+ tumors showing higher contrast in average of 66.07‐fold with 5 mice at the 24‐hour postinjection time points. These results were corroborated using standard near‐infrared fluorescence imaging with YC‐27, and the squared correlation between PA and fluorescence intensities was 0.89. Spectroscopic PA imaging is a new molecular imaging modality with sufficient sensitivity for targeting PSMA in vivo, demonstrating the potential applications for other saturable targets relevant to cancer and other disorders.   相似文献   

10.
Gold nanoparticles serve as imaging contrast agents useful for two‐photon nonlinear microscopy of biological cells and tissues. In this study, 100‐nm‐sized gold particles with a multitude of nanopores embedded inside have been physically synthesized and investigated for the plasmonic enhancement in two‐photon luminescence. Exhibiting remarkable potential for two‐photon imaging, the porous gold nanoparticles boost near‐infrared light absorption substantially and allow emission signals 20 times brighter than gold nanorods being currently used as typical imaging agents. Further details can be found in the article by Joo H. Park et al. ( e201700174 )

  相似文献   


11.
In this study, CuS nanoparticles with optical absorption covering both near‐infrared I (NIR‐I) and NIR‐II biological windows were prepared and served as the contrast agents for multispectral photoacoustic imaging. The physiological parameters including concentrations of deoxyhemoglobin and oxyhemoglobin as well as the water content in the tumor location were quantified based on the multispectral photoacoustic reconstruction method. More importantly, the concentration of CuS nanoparticles/drugs accumulated in the tumor was also recovered after intravenously injection, which are essential for image‐guided cancer theranostics. In addition, phantom and in vivo experimental tests were performed to inspect and compare the imaging depth and signal‐to‐noise ratio (SNR) between the two NIR biological windows. Interestingly, we discovered that a higher SNR was obtained in the NIR‐II window than that in the NIR‐I window. Meanwhile, the multispectral imaging results also demonstrated that the imaging contrast and penetration depth in the NIR‐II window were also significantly improved as compared to those from the NIR‐I window.   相似文献   

12.
金纳米棒具有独特的光学性质、表面易修饰性、较低的生物毒性和良好的生物相容性,因而在成像、光热治疗和药物载带等方面具有极高的潜在应用价值.本文综述了典型的金纳米棒表面修饰方法及其在生物成像、光热治疗和药物治疗中的应用,重点阐述了通过金纳米棒同时实现肿瘤诊断和治疗相结合的研究进展.  相似文献   

13.
Brain imaging is an important technique in cognitive neuroscience. In this article, we designed a stereotaxic‐apparatus‐compatible photoacoustic microscope for the studies of rat cortical hemodynamics. Compared with existing optical resolution photoacoustic microscopy (ORPAM) systems, the probe owns feature of fast, light and miniature. In this microscope, we integrated a miniaturized ultrasound transducer with a center frequency of 10 MHz to detect photoacoustic signals and a 2‐dimensional (2D) microelectromechanical system (MEMS) scanner to achieve raster scanning of the optical focus. Based on phantom evaluation, this imaging probe has a high lateral resolution of 3.8 μm and an effective imaging domain of 2 × 2 mm2. Different from conventional ORPAMs, combining with standard stereotaxic apparatus enables broad studies of rodent brains without any motion artifact. To show its capability, we successfully captured red blood cell flow in the capillary, monitored the vascular changes during bleeding and blood infusion and visualized cortical hemodynamics induced by middle cerebral artery occlusion.   相似文献   

14.
Fluorescence imaging in the second near‐infrared optical window (NIR‐II, 900‐1700 nm) has become a technique of choice for noninvasive in vivo imaging in recent years. Greater penetration depths with high spatial resolution and low background can be achieved with this NIR‐II window, owing to low autofluorescence within this optical range and reduced scattering of long wavelength photons. Here, we present a novel design of confocal laser scanning microscope tailored for imaging in the NIR‐II window. We showcase the outstanding penetration depth of our confocal setup with a series of imaging experiments. HeLa cells labeled with PbS quantum dots with a peak emission wavelength of 1276 nm can be visualized through a 3.5‐mm‐thick layer of scattering medium, which is a 0.8% Lipofundin solution. A commercially available organic dye IR‐1061 (emission peak at 1132 nm), in its native form, is used for the first time, as a NIR‐II fluorescence label in cellular imaging. Our confocal setup is capable of capturing optically sectioned images of IR‐1061 labeled chondrocytes in fixed animal cartilage at a depth up to 800 μm, with a superb spatial resolution of around 2 μm.   相似文献   

15.
目的:通过制备RGD/FA双靶纳米金考察其与高表达整合素与叶酸受体B16细胞的协同靶向成像与热疗作用;方法:采用功能化PEG分子将靶向小分子RGD与叶酸通过强健Au-S键连接至纳米金棒表面,利用激光共聚焦与808 nm近红外激光器评价修饰纳米金的协同靶向作用;结果:RGD与叶酸分子被成功连接于纳米金表面,且双靶纳米金对小鼠黑色素瘤细胞具有较好的协同靶向作用;结论:同时靶向同一肿瘤细胞的不同表位,可克服单一靶向功能化纳米粒子难以在肿瘤位点有效积累的问题,本研究为多功能纳米金棒在临床肿瘤早期诊断与光热治疗中的应用提供研究基础。  相似文献   

16.
This study characterizes the scatter‐specific tissue contrast that can be obtained by high spatial frequency (HSF) domain imaging and cross‐polarization (CP) imaging, using a standard color imaging system, and how combining them may be beneficial. Both HSF and CP approaches are known to modulate the sensitivity of epi‐illumination reflectance images between diffuse multiply scattered and superficially backscattered photons, providing enhanced contrast from microstructure and composition than what is achieved by standard wide‐field imaging. Measurements in tissue‐simulating optical phantoms show that CP imaging returns localized assessments of both scattering and absorption effects, while HSF has uniquely specific sensitivity to scatter‐only contrast, with a strong suppression of visible contrast from blood. The combination of CP and HSF imaging provided an expanded sensitivity to scatter compared with CP imaging, while rejecting specular reflections detected by HSF imaging. ex vivo imaging of an atlas of dissected rodent organs/tissues demonstrated the scatter‐based contrast achieved with HSF, CP and HSF‐CP imaging, with the white light spectral signal returned by each approach translated to a color image for intuitive encoding of scatter‐based contrast within images of tissue. The results suggest that visible CP‐HSF imaging could have the potential to aid diagnostic imaging of lesions in skin or mucosal tissues and organs, where just CP is currently the standard practice imaging modality.   相似文献   

17.
Metal nanoparticles especially of noble metals are used as an exogenous contrast agent for biomedical photoacoustic (PA) imaging in the tissue transmission window extending from visible to near infrared 700–1100 nm band. Different geometrical configurations of gold and silver nanoparticles like spherical core-shell, nanorod, and nanocages are promising candidates for thermoplasmonics, photothermal therapy, photothermal imaging, and photoacoustic imaging. In the current study, we simulated the photoacoustic response of gold and silica core-shell nanoparticle in water medium. Finite element simulations were carried out to study the spectral absorption response and effect of nanosecond laser pulse excitation on the spatial/temporal temperature as well as photoacoustic pressure variations of different core-shell geometry of nanoparticle. We have optimized the dimensions of gold nanosphere, gold-silica, and silica-gold core-shell geometries for optimum photoacoustic conversion efficiency. Further, the effect of shell thickness on the pulse photoacoustic signals for core-shell gold-silica and silica-gold nanoparticle has been studied. We concluded that silica-gold core-shell nanoparticles possess better photoacoustic conversion efficiency in comparison to gold nanosphere and gold-silica core-shell geometries. The prime aim of this study is to design efficient nano-probes for photoacoustic imaging, photoacoustic tomography, photothermal therapy, and drug delivery.  相似文献   

18.
High‐resolution tracking of stem cells remains a challenging task. An ultra‐bright contrast agent with extended intracellular retention is suitable for in vivo high‐resolution tracking of stem cells following the implantation. Here, a plasmonic‐active nanoplatform was developed for tracking mesenchymal stromal cells (MSCs) in mice. The nanoplatform consisted of TAT peptide‐functionalized gold nanostars (TAT‐GNS) that emit ultra‐bright two‐photon photoluminescence capable of tracking MSCs under high‐resolution optical imaging. In vitro experiment showed TAT‐GNS‐labeled MSCs retained a similar differentiability to that of non‐labeled MSCs controls. Due to their star shape, TAT‐GNS exhibited greater intracellular retention than that of commercial Q‐Tracker. In vivo imaging of TAT‐GNS‐labeled MSCs five days following intra‐arterial injections in mice kidneys showed possible MSCs implantation in juxta‐glomerular (JG) regions, but non‐specifically in glomeruli and afferent arterioles as well. With future design to optimize GNS labeling specificity and clearance, plasmonic‐active nanoplatforms may be a useful intracellular tracking tool for stem cell research.

An ultra‐bright intracellular contrast agent is developed using TAT peptide‐functionalized gold nanostars (TAT‐GNS). It poses minimal influence on the stem cell differentiability. It exhibits stronger two‐photon photoluminescence and superior labeling efficiency than commercial Q‐Tracker. Following renal implantation, some TAT‐GNS‐labeled MSCs permeate blood vessels and migrate to the juxta‐glomerular region.  相似文献   


19.
Light can manipulate molecular biological processes with high spatial and temporal precision and optical manipulation has become increasingly popular during the last years. In combination with absorbing dyes or gold nanoparticles light is a valuable tool for cell and protein inactivation with high precision. Here we show distinct differences in the underlying mechanisms whether gold nanoparticles or fluorescent dyes are used for the inactivation of the Ki‐67 protein. The proliferation‐associated protein Ki‐67 was addressed by the antibody MIB‐1. In vitro studies showed a fragmentation of the Ki‐67 protein after laser irradiation of 15 nm gold nanoparticle antibody conjugates with nanosecond pulsed laser, while continuous wave (cw) irradiation of fluorescein isothiocyanate (FITC)‐ and Alexa 488‐labeled antibodies led to specific crosslinking of Ki‐67. The irradiation energy for the gold nanoparticles was above cavitation bubble formation threshold. We observed a fragmentation of the target protein and also of the gold particles. The understanding of the underlying inactivation mechanisms is important for the application and further development of these two techniques, which can harness nanotechnology to introduce molecular selectivity to biological systems.  相似文献   

20.
The delivery of macromolecules into living cells is challenging since in most cases molecules are endocytosed and remain in the endo‐lysosomal pathway where they are degraded before reaching their target. Here, a method is presented to selectively improve cell membrane permeability by nanosecond laser irradiation of gold nanorods (GNRs) with visible or near‐infrared irradiation in order to deliver proteins across the plasma membrane, avoiding the endo lysosomal pathway. GNRs were labeled with the anti‐EGFR (epidermal growth factor receptor) antibody Erbitux to target human ovarian carcinoma cells OVCAR‐3. Irradiation with nanosecond laser pulses at wavelengths of 532 nm or 730 nm is used for transient permeabilization of the cell membranes. As a result of the irradiation, the uptake of an anti‐Ki‐67 antibody was observed in about 50 % of the cells. The results of fluorescence lifetime imaging show that the GNR detached from the membrane after irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号