首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
A novel design of an SRS microscope exploiting spectral pulse shaping allows measurement of fingerprint to CH‐stretch SRS spectra without any modification of the optical setup. High spectral resolution over a broad vibrational range allows label‐free quantitative imaging of biological samples. An exemplary SRS broadband spectrum of lipid droplets in a liver cancer cell is shown in the picture. Further details can be found in the article by Sergey P. Laptenok, Vijayakumar P. Rajamanickam, Luca Genchi, et al. ( e201900028 ).

  相似文献   


2.
Monitoring living cells in real‐time is important in order to unravel complex dynamic processes in life sciences. In particular the dynamics of initiation and progression of degenerative diseases is intensely studied. In atherosclerosis the thickening of arterial walls is related to high lipid levels in the blood stream, which trigger the lipid uptake and formation of droplets as neutral lipid reservoirs in macrophages in the arterial wall. Unregulated lipid uptake finally results in foam cell formation, which is a hallmark of atherosclerosis. In previous studies, the uptake and storage of different fatty acids was monitored by measuring fixed cells. Commonly employed fluorescence staining protocols are often error prone because of cytotoxicity and unspecific fluorescence backgrounds. By following living cells with Raman spectroscopic imaging, lipid uptake of macrophages was studied with real‐time data acquisition. Isotopic labeling using deuterated palmitic acid has been combined with spontaneous and stimulated Raman imaging to investigate the dynamic process of fatty acid storage in human macrophages for incubation times from 45 min to 37 h. Striking heterogeneity in the uptake rate and the total concentration of deuterated palmitic acid covering two orders of magnitude is detected in single as well as ensembles of cultured human macrophages.

SRS signal of deuterated palmitic acid measured at the CD vibration band after incorporation into living macrophages.  相似文献   


3.
Stimulated Raman scattering (SRS) microscopy is a nonlinear optical imaging method for visualizing chemical content based on molecular vibrational bonds. However, the imaging speed and sensitivity are currently limited by the noise of the light beam probing the Raman process. In this paper, we present a fast non-average denoising and high-precision Raman shift extraction method, based on a self-reinforcing signal-to-noise ratio (SNR) enhancement algorithm, for SRS spectroscopy and microscopy. We compare the results of this method with the filtering methods and the reported experimental methods to demonstrate its high efficiency and high precision in spectral denoising, Raman peak extraction and image quality improvement. We demonstrate a maximum SNR enhancement of 10.3 dB in fixed tissue imaging and 11.9 dB in vivo imaging. This method reduces the cost and complexity of the SRS system and allows for high-quality SRS imaging without use of special laser, complicated system design and Raman tags.  相似文献   

4.
We report a compact, cost‐effective tuned amplifier for frequency‐selective amplification of the modulated signal in heterodyne detected nonlinear optical microscopy. Our method improved the signal to noise ratio by an order of magnitude compared to conventional lock‐in detection, as demonstrated through stimulated Raman scattering imaging of live cells and tissues at the speed of 2 μsec/pixel. Application of the tuned amplifier to transient absorption microscopy is also demonstrated. The increased signal to noise ratio allowed epi‐detected in vivo imaging of myelin and blood in rat spinal cord with high spatial resolution. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Raman spectral imaging is gaining more and more attention in biological studies because of its label‐free characteristic. However, the discrimination of overlapping chemical contrasts has been a major challenge. In this study, we introduce an optical method to simultaneously obtain two orthogonally polarized Raman images from a single scan of the sample. We demonstrate how this technique can improve the quality and quantity of the hyperspectral Raman dataset and how the technique is expected to further extend the horizons of Raman spectral imaging in biological studies by providing more detailed chemical information.

The dual‐polarization Raman images of a HeLa cell.  相似文献   


6.
Liver sinusoidal endothelial cells (LSECs), a type of endothelial cells with unique morphology and function, play an important role in the liver hemostasis, and LSECs dysfunction is involved in the development of nonalcoholic fatty liver disease (NAFLD). Here, we employed Raman imaging and chemometric data analysis in order to characterize the presence of lipid droplets (LDs) and their lipid content in primary murine LSECs, in comparison with hepatocytes, isolated from mice on high‐fat diet. On NAFLD development, LDs content in LSECs changed toward more unsaturated lipids, and this response was associated with an increased expression of stearylo‐CoA desaturase‐1. To the best of our knowledge, this is a first report characterizing LDs in LSECs, where their chemical composition is analyzed along the progression of NAFLD at the level of single LD using Raman imaging.   相似文献   

7.
Non‐Alcoholic Fatty Liver Disease (NAFLD) is a common liver disorder, characterized by an excessive lipids deposition within the hepatic tissue. Due to the lack of clear‐cut symptoms and optimal diagnostic method, the actual prevalence of NAFLD and its pathogenesis remains unclear, especially in the early stages of progression. In the presented work confocal Raman microspectroscopy was used to investigate alterations in the chemical composition of the NAFLD‐affected liver. We have investigated two NAFLD models, representative for macrovesicular and microvesicular steatosis, induced by High Fat Diet (60 kcal %) and Low Carbohydrate High Protein Diet (LCHP), respectively. In both models we confirmed the development of NAFLD, manifested by the presence of lipid droplets (LDs), but of different sizes. Model of macrovesicular steatosis was characterized by large LDs, whereas in the microvesicular steatosis model small droplets were found. In both models, however, we observed a significant decrease in the degree of unsaturation of lipids, in comparison to the control. In addition, for both models, the impact of medical treatment with selected drugs (perindopril and nicotinic acid, respectively) was tested, indicating a significant influence of medicine not only on the occurrence and size of the droplets, but also on their composition. Inboth cases the drug treatment resulted in an increase of the degree of unsaturation of lipids forming droplets. Confocal Raman microspectroscopy was proven to be a powerful tool providing detailed insight into selected areas of hepatic tissue, following the NAFLD pathogenesis and diagnostic potential of the applied drugs.

  相似文献   


8.
9.
An understanding of deformation of cardiovascular tissue under hemodynamic load is crucial for understanding the health and disease of blood vessels. In the present work, an epi‐detected stimulated Raman scattering (epi‐SRS) imaging platform was designed for in situ functional imaging of vascular smooth muscle cells (VMSCs) in fresh coronary arteries. For the first time, the pressure‐induced morphological deformation of fresh VSMCs was imaged with no fixation and in a label‐free manner. The relation between the loading pressure and the morphological parameters, including angle and length of the VSMCs, were apparent. The morphological responses of VMSCs to drug treatment were also explored, to demonstrate the capability of functional imaging for VSMCs by this method. The time‐course imaging revealed the drug induced change in angle and length of VSMCs. The present study provides a better understanding of the biomechanical framework of blood vessels, as well as their responses to external stimulations, which are fundamental for developing new strategies for cardiovascular disease treatment.   相似文献   

10.
Coherent anti‐Stokes Raman scattering (CARS) microscopy is an emerging technique for identification of brain tumors. However, tumor identification by CARS microscopy on bulk samples and in vivo has been so far verified retrospectively on histological sections, which only provide a gross reference for the interpretation of CARS images without matching at cellular level. Therefore, fluorescent labels were exploited for direct assessment of the interpretation of CARS images of solid and infiltrative tumors. Glioblastoma cells expressing green fluorescent protein (GFP) were used for induction of tumors in mice (n = 7). The neoplastic nature of cells imaged by CARS microscopy was unequivocally verified by addressing two‐photon fluorescence of GFP on fresh brain slices and in vivo. In fresh unfixed biopsies of human glioblastoma (n = 10), the fluorescence of 5‐aminolevulinic acid‐induced protoporphyrin IX was used for identification of tumorous tissue. Distinctive morphological features of glioblastoma cells, i.e. larger nuclei, evident nuclear membrane and nucleolus, were identified in the CARS images of both mouse and human brain tumors. This approach demonstrates that the chemical contrast provided by CARS allows the localization of infiltrating tumor cells in fresh tissue and that the cell morphology in CARS images is useful for tumor recognition.

Experimental glioblastoma expressing green fluorescent protein.  相似文献   


11.
Stem cells have received much attention recently for their potential utility in regenerative medicine. The identification of their differentiated progeny often requires complex staining procedures, and is challenging for intermediary stages which are a priori unknown. In this work, the ability of label‐free quantitative coherent anti‐Stokes Raman scattering (CARS) micro‐spectroscopy to identify populations of intermediate cell states during the differentiation of murine embryonic stem cells into adipocytes is assessed. Cells were imaged at different days of differentiation by hyperspectral CARS, and images were analysed with an unsupervised factorization algorithm providing Raman‐like spectra and spatially resolved maps of chemical components. Chemical decomposition combined with a statistical analysis of their spatial distributions provided a set of parameters that were used for classification analysis. The first 2 principal components of these parameters indicated 3 main groups, attributed to undifferentiated cells, cells differentiated into committed white pre‐adipocytes, and differentiating cells exhibiting a distinct protein globular structure with adjacent lipid droplets. An unsupervised classification methodology was developed, separating undifferentiated cell from cells in other stages, using a novel method to estimate the optimal number of clusters. The proposed unsupervised classification pipeline of hyperspectral CARS data offers a promising new tool for automated cell sorting in lineage analysis.   相似文献   

12.
In this work the formation of lipid droplets (LDs) in human endothelial cells culture in response to the uptake of polyunsaturated fatty acids (PUFAs) was studied. Additionally, an effect of 1‐methylnicotinamide (MNA) on the process of LDs formation was investigated. LDs have been previously described structurally and to some degree biochemically, however neither the precise function of LDs nor the factors responsible for LD induction have been clarified. Lipid droplets, sometimes referred in the literature as lipid bodies are organelles known to regulate neutrophil, eosinophil, or tumor cell functions but their presence and function in the endothelium is largely unexplored. 3D linear Raman spectroscopy was used to study LDs formation in vitro in a single endothelial cell. The method provides information about distribution and size of LDs as well as their composition. The incubation of endothelial cells with various PUFAs resulted in formation of LDs. As a complementary method for LDs identification a fluorescence microscopy was applied. Fluorescence measurements confirmed the Raman results suggesting endothelial cells uptake of PUFAs and subsequent LDs formation in the cytoplasm of the endothelium. Furthermore, MNA seem to potentiate intracellular uptake of PUFAs to the endothelium that may bear physiological and pharmacological significance.

Confocal Raman imaging of HAoEC cell with LDs.  相似文献   


13.
Combining serum albumin via adsorption‐exfoliation on hydroxyapatite particles (HAp) with surface‐enhanced Raman scattering (SERS), we developed a novel quantitative analysis of albumin method from blood serum for cancers screening applications. The quantitatively analysis obtained by our HAp method had a good linear relationship from 1 to 10 g/dL, and the lower limit of detection was less than the albumin prognostic factor for disease (3.5 g/dL). Serum albumin was adsorbed and exfoliated by HAp from serum samples of liver cancer patients, breast cancer patients and healthy volunteers and mixed with silver colloids to perform SERS spectral analysis. Based on the PLS‐SVM algorithm, the diagnostic accuracies of liver cancer patients and breast cancer patients were 100% and 96.68%, respectively. Moreover, this algorithm successfully predicted the unidentified subjects with a diagnostic accuracy of 93.75%. This exploratory work demonstrated that HAp‐adsorbed‐exfoliated serum proteins combined with SERS spectroscopy has great potential for cancer screening.  相似文献   

14.
The family of vibrational spectroscopic imaging techniques grows every few years and there is a need to compare and contrast new modalities with the better understood ones, especially in the case of demanding biological samples. Three vibrational spectroscopy techniques (high definition Fourier‐transform infrared [FT‐IR], Raman and atomic force microscopy infrared [AFM‐IR]) were applied for subcellular chemical imaging of cholesteryl esters in PC‐3 prostate cancer cells. The techniques were compared and contrasted in terms of image quality, spectral pattern and chemical information. All tested techniques were found to be useful in chemical imaging of cholesterol derivatives in cancer cells. The results obtained from FT‐IR and Raman imaging showed to be comparable, whereas those achieved from AFM‐IR study exhibited higher spectral heterogeneity. It confirms AFM‐IR method as a powerful tool in local chemical imaging of cells at the nanoscale level. Furthermore, due to polarization effect, p‐polarized AFM‐IR spectra showed strong enhancement of lipid bands when compared to FT‐IR.  相似文献   

15.
Intestinal acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) is important in the cellular and physiological responses to dietary fat. To determine the effect of increased intestinal DGAT2 on cellular and physiological responses to acute and chronic dietary fat challenges, we generated mice with intestine-specific overexpression of DGAT2 and compared them with intestine-specific overexpression of DGAT1 and wild-type (WT) mice. We found that when intestinal DGAT2 is present in excess, triacylglycerol (TG) secretion from enterocytes is enhanced compared to WT mice; however, TG storage within enterocytes is similar compared to WT mice. We found that when intestinal DGAT2 is present in excess, mRNA levels of genes involved in fatty acid oxidation were reduced. This result suggests that reduced fatty acid oxidation may contribute to increased TG secretion by overexpression of DGAT2 in intestine. Furthermore, this enhanced supply of TG for secretion in Dgat2Int mice may be a significant contributing factor to the elevated fasting plasma TG and exacerbated hepatic TG storage in response to a chronic HFD. These results highlight that altering fatty acid and TG metabolism within enterocytes has the capacity to alter systemic delivery of dietary fat and may serve as an effective target for preventing and treating metabolic diseases such as hepatic steatosis.  相似文献   

16.
17.
Organisms store fatty acids in triacylglycerols in the form of lipid droplets, or hydrolyze triacylglycerols in response to energetic demands via activation of lipolytic or storage pathways. These pathways are complex sets of sequential reactions that are finely regulated in different cell types. Here we present a high spatial and temporal resolution-based method for the quantification of the turnover of fatty acids into triglycerides in live cells without introducing sample preparation artifacts.We performed confocal spectral imaging of intracellular micropolarity in cultured insulin secreting beta cells to detect micropolarity variations as they occur in time and at different pixels of microscope images. Acquired data are then analyzed in the framework of the spectral phasors technique.The method furnishes a metabolic parameter, which quantitatively assesses fatty acids - triacylglycerols turnover and the activation of lipolysis and storage pathways. Moreover, it provides a polarity profile, which represents the contribution of hyperpolar, polar and non-polar classes of lipids. These three different classes can be visualized on the image at a submicrometer resolution, revealing the spatial localization of lipids in cells under physiological and pathological settings.This new method allows for a fine-tuned, real-time visualization of the turnover of fatty acids into triglycerides in live cells with submicrometric resolution. It also detects imbalances between lipid storage and usage, which may lead to metabolic disorders within living cells and organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号