首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytocystatins belong to the family of cysteine proteinases inhibitors. They are ubiquitously found in plants and carry out various significant physiological functions. These plant derived inhibitors are gaining wide consideration as potential candidate in engineering transgenic crops and in drug designing. Hence it is crucial to identify these inhibitors from various plant sources. In the present study a phytocystatin has been isolated and purified by a simple two‐step procedure using ammonium sulfate saturation and gel filtration chromatography on Sephacryl S‐100HR from Brassica alba seeds (yellow mustard seeds).The protein was purified to homogeneity with 60.3% yield and 180‐fold of purification. The molecular mass of the mustard seed cystatin was estimated to be nearly 26 000 Da by sodium dodecyl sulfate polyacrylamide gel electrophoresis as well as by gel filtration chromatography. The stokes radius and diffusion coefficient of the mustard cystatin were found to be 23A° and 9.4 × 10?7 cm2s?1 respectively. The isolated phytocystatin was found to be stable in the pH range of 6–8 and is thermostable up to 60 °C. Kinetic analysis revealed that the phytocystatin exhibited non‐competitive type of inhibition and inhibited papain more efficiently (Ki = 3 × 10?7 M) than ficin (Ki = 6.6 × 10?7 M) and bromelain (Ki = 7.7 × 10?7 M respectively). CD spectral analysis shows that it possesses 17.11% alpha helical content. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Studies on the role of endogenous metabolites such as bilirubin and their interactions with biomolecules have attracted considerable attention over the past several years. In this work, the interaction of bilirubin (BR) with purified goat liver cystatin (LC) was studied using fluorescence and ultraviolet (UV) spectroscopy. The fluorescence data proved that the fluorescence quenching of liver cystatin by BR was the result of BR–cystatin complex formation. Stern–Volmer analysis of fluorescence quenching data showed the binding constant to be 9.27 × 104 M−1 and the number of binding sites to be close to unity. The conformation of the BR–cystatin complex was found to change upon varying the pH of the complex. The BR–cystatin complex was found to have reduced papain inhibitory activity. Photo-illumination of BR–cystatin complex causes perturbation in the micro-environment of goat liver cystatin as indicated by red-shift. This report summarizes our research efforts to reveal the mechanism of interaction of bilirubin with liver cystatin.  相似文献   

3.
A proteinaceous inhibitor of papain was purified to apparent homogeneity from mature seeds of common bean ( Phaseolus vulgaris L.). After four chromatographic steps, the papain inhibitor was purified 219‐fold with 12% recovery. On the basis of papain inhibitory activity, cystatins have been estimated to account for about 0.1% of the total protein content of mature common bean seeds. The purified protein, as other plant cystatins, is an acidic protein, heat stable and insensitive to reducing agents. Its molecular mass is about 37 kDa as judged by size exclusion chromatography and SDS‐PAGE. Moreover it is immunologically related to oryzacystatins, since it is recognised by a specific oryzacystatin I antiserum. Based on its biochemical properties the papain inhibitor described here belongs to the phytocystatin family. Papain inhibitory assays carried out during seed development showed that bean cystatin is active since early maturation stages. Our results suggest that, in common bean seed, cysteine proteinase inhibitors are important during seed development with a putative role in the control and regulation of endogenous thiol protease activity.  相似文献   

4.
Electrogenerated chemiluminescence (ECL) of a ruthenium complex polymer modified carbon paste electrode and its analytical applications were investigated. The ruthenium complex polymer was prepared using bis(2,2‐bipyridine) (4,4‐dicarboxy‐2,2‐bipyridine) ruthenium(II). The ECL behaviours of ruthenium complex polymer modified carbon paste electrode were investigated in the absence and presence of tripropylamine (TPA). The modified carbon paste electrode exhibited long‐term stability and fine reproducibility. The ECL intensity of the modified carbon paste electrode was linear with the concentration of TPA in the range 2.0 × 10–6–3.8 × 10–3 mol/L, with a detection limit (S:N = 3) of 6 × 10–7 mol/L. It was also found that raceanisodamine could enhance the ECL intensity of the modified electrode. The ECL intensity of the modified carbon paste electrode was linear with the concentration of raceanisodamine in the range 1.1 × 10–5–6.0 × 10–4 mol/L, with a detection limit (S:N = 3) of 6 × 10–6 mol/L. This work demonstrates that the entrapment of ruthenium complex in a highly cross‐linked polymer is a promising approach to construct an ECL modified electrode with long‐term stability and fine reproducibility. The modified electrode designed has a potential application in the ECL detector. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
An alginate lyase with high specific enzyme activity was purified from Vibrio sp. YKW-34, which was newly isolated from turban shell gut. The alginate lyase was purified by in order of ion exchange, hydrophobic and gel filtration chromatographies to homogeneity with a recovery of 7% and a fold of 25. This alginate lyase was composed of a single polypeptide chain with molecular mass of 60 kDa and isoelectric point of 5.5–5.7. The optimal pH and temperature for alginate lyase activity were pH 7.0 and 40 °C, respectively. The alginate lyase was stable over pH 7.0–10.0 and at temperature below 50 °C. The alginate lyase had substrate specificity for both poly-guluronate and poly-mannuronate units. The kcat/Km value for alginate (heterotype) was 1.7 × 106 s−1 M−1. The enzyme activity was completely lost by dialysis and restored by addition of Na+ or K+. The optimal activity exhibited in 0.1 M of Na+ or K+. This enzyme was resistant to denaturing reagents (SDS and urea), reducing reagents (β-mercaptoethanol and DTT) and chelating reagents (EGTA and EDTA).  相似文献   

6.
A water‐soluble, high‐output fluorescent sensor, based on a lumazine ligand with a thiophene substituent for Cd2+, Hg2+ and Ag+ metal ions, is reported. The sensor displays fluorescence enhancement upon Cd2+ binding (log  β = 2.79 ± 0.08) and fluorescence quenching by chelating with Ag+ and Hg2+ (log β = 4.31 ± 0.15 and 5.42 ± 0.1, respectively). The mechanism of quenching is static and occurs by formation of a ground‐state non‐fluorescent complex followed by rapid intersystem crossing. The value of the Stern–Volmer quenching rate constant (kq) by Ag+ ions is close to 6.71 × 1012 mol/L/s at 298 K. The thermodynamic parameters (ΔG, ΔH and ΔS) were also evaluated and indicated that the complexation process is spontaneous, exothermic and entropically favourable. The quantitative linear relationship between the softness values of Klopman (σK) or Ahrland (σA) and the experimental binding constants (β) being in the order of Hg2+ > Ag+ > Cd2+ suggests that soft–soft interactions are the key for the observed sensitivity and selectivity in the presence of other metal ions, such as: Pb2+, Ni2+, Mn2+, Cu2+, Co2+, Zn2+ and Mg2+ ions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Drug‐protein interaction analysis is pregnant in designing new leads during drug discovery. We prepared the stationary phase containing immobilized β2‐adrenoceptor (β 2AR) by linkage of the receptor on macroporous silica gel surface through N ,N ′‐carbonyldiimidazole method. The stationary phase was applied in identifying antiasthmatic target of protopine guided by the prediction of site‐directed molecular docking. Subsequent application of immobilized β 2AR in exploring the binding of protopine to the receptor was realized by frontal analysis and injection amount–dependent method. The association constants of protopine to β 2AR by the 2 methods were (1.00 ± 0.06) × 105M−1 and (1.52 ± 0.14) × 104M−1. The numbers of binding sites were (1.23 ± 0.07) × 10−7M and (9.09 ± 0.06) × 10−7M, respectively. These results indicated that β 2AR is the specific target for therapeutic action of protopine in vivo. The target‐drug binding occurred on Ser169 in crystal structure of the receptor. Compared with frontal analysis, injection amount–dependent method is advantageous to drug saving, improvement of sampling efficiency, and performing speed. It has grave potential in high‐throughput drug‐receptor interaction analysis.  相似文献   

8.
The phytocystatins are inhibitors of papain-like cysteine proteinases that are implicated in defense mechanisms and the regulation of protein turnover. BCPI-1, a Brassica rapa (Chinese cabbage) phytocystatin isolated from flower buds, contains an extended C-terminal region that contains a single Cys residue at position 102. In an effort to investigate the role of the C-terminus and this Cys residue in BCPI-1 activity, purified recombinant proteins of BCPI-1, including wild-type BCPI-1 (wtBCPI-1), N-terminus BCPI-1 (BCPI-1??C), C-terminus BCPI-1 (BCPI-1??N), and BCPI-1 with a single Cys residue exchange to Ser (BCPI-1C102S), were generated and their inhibitory activities against papain were investigated. Kinetic analysis revealed that the monomeric forms of wtBCPI-1 (K i = 6.84 ± 0.3 × 10?8 M) inhibited papain more efficiently than the dimeric forms of wtBCPI-1 (K i = 1.01 ± 0.5 × 10?7 M). Experiments with recombinant BCPI-1C102S demonstrated that the dimerization of wtBCPI-1 caused by the formation of an intermolecular disulfide bond at the cysteine residue. The inhibitory activity of the recombinant proteins, except BCPI-1??N, was reduced in the pH range of 7.0?C11.5 and was highly stable over a wide range of temperatures. Thus, dimerization mediated by the cysteine residue in the extended C-terminal region and alkaline conditions reduced the inhibitory activity of BCPI-1.  相似文献   

9.
Chitinase from the thermophilic mould Myceliopthora thermophila BJA (MtChit) is an acid tolerant, thermostable and organic solvent stable biocatalyst which does not require any metal ions for its activity. To produce high enzyme titres, reduce fermentation time and overcome the need for induction, this enzyme has been heterologously expressed under GAP promoter in the GRAS yeast, Pichia pastoris. The production medium supplemented with the permeabilizing agent Tween‐20 supported two‐fold higher rMtChit production (5.5 × 103 U L?1). The consensus sequences S(132)xG(133)G(134) and D(168)xxD(171)xD(173)xE(175) in the enzyme have been found to represent the substrate binding and catalytic sites, respectively. The rMtChit, purified to homogeneity by a two‐step purification strategy, is a monomeric glycoprotein of ~48 kDa, which is optimally active at 55°C and pH 5.0. The enzyme is thermostable with t1/2 values of 113 and 48 min at 65 and 75°C, respectively. Kinetic parameters Km, Vmax, kcat, and kcat/Km of the enzyme are 4.655 mg mL?1, 34.246 nmol mg?1 s?1, 3.425 × 106 min?1, and 1.36 × 10?6 mg mL?1 min?1, respectively. rMtChit is an unique exochitinase, since its action on chitin liberates N‐acetylglucosamine NAG. The enzyme inhibits the growth of phytopathogenic fungi like Fusarium oxysporum and Curvularia lunata, therefore, this finds application as biofungicide at high temperatures during summer in tropics. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:70–80, 2017  相似文献   

10.
Two new twinborn benzimidazole derivates ( L and A ), which bonded pyridine via the ester space on the opposite and adjacent positions of the benzene ring of benzimidazole respectively, were designed and synthesized. Compound L displayed fluorescence quenching response only towards copper(II) ions (Cu2+) in acetonitrile solution with high selectivity and sensitivity. However, compound A presented ‘on–off’ fluorescence response towards a wide range of metal ions to different degrees and did not have selectivity. Furthermore, compound L formed a 1:1 complex with Cu2+ and the binding constant between sensor L and Cu2+ was high at 6.02 × 104 M?1. Job's plot, mass spectra, IR spectra, 1H‐NMR titration and density functional theory (DFT) calculations demonstrated the formation of a 1:1 complex between L and Cu2+. Chemosensor L displayed a low limit of detection (3.05 × 10?6 M) and fast response time (15 s) to Cu2+. The Stern–Volmer analysis illustrated that the fluorescence quenching agreed with the static quenching mode. In addition, the obvious difference of L within HepG2 cells in the presence and absence of Cu2+ indicated L had the recognition capability for Cu2+ in living cells.  相似文献   

11.
This paper reports a flow‐injection chemiluminescence method for the determination of ofloxacin (OFLX) using the Ru(bpy)2(CIP)2+–Ce(IV) system. Under the optimum conditions, the relative CL intensity was proportional to the concentration of OFLX in the range 3.0 × 10–8–1.0 × 10–5 mol/L and the detection limit was 4.2 × 10–9 mol/L. The proposed method has been successfully applied to the determination of ofloxacin in pharmaceuticals and human urine. The chemiluminescence mechanism of the system is also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Mg2+ in various concentrations was added to purified Rubisco in vitro to gain insight into the mechanism of molecular interactions between Mg2+ and Rubisco. The enzyme activity assays showed that the reaction between Rubisco and Mg2+ was two order, which means that the enhancement of Rubisco activity was accelerated by low concentration of Mg2+ and slowed by high concentration of Mg2+. The kinetics constant (K m) and V max was 1.91 μM and 1.13 μmol CO2 mg−1 protein∙min−1, respectively, at a low concentration of Mg2+, and 3.45 μM and 0.32 μmol CO2∙mg−1 protein∙min−1, respectively, at a high concentration of Mg2+. By UV absorption and fluorescence spectroscopy assays, the Mg2+ was determined to be directly bound to Rubisco; the binding site of Mg2+ to Rubisco was 0.275, the binding constants (K A) of the binding site were 6.33 × 104 and 5.5 × 104 l·mol−1. Based on the analysis of the circular dichroism (CD) spectra, it was concluded that the binding of Mg2+ did not alter the secondary structure of Rubisco, suggesting that the observed enhancement of Rubisco carboxylase activity was caused by a subtle structural change in the active site through the formation of the complex with Mg2+.  相似文献   

13.
The molecular recognition and binding interaction of beta‐lactamase II from Bacillus cereus (Bc II) with penicillin V (PV) and sulbactam (Sul) at 277 K were studied by spectroscopic analysis and molecular docking. The results showed that a non‐fluorescence static complex was separately formed between Bc II and two ligands, the molecular ratio of Bc II to PV or Sul was both 1:1 in the binding and the binding constants were 2.00 × 106 and 3.98 × 105 (L/mol), respectively. The negative free energy changes and apparent activation energies indicated that both the binding processes were spontaneous. Molecular docking showed that in the binding process, the whole Sul molecule entered into the binding pocket of Bc II while only part of the whole PV molecule entered into the pocket due to a long side chain, and electrostatic interactions were the major contribution to the binding processes. In addition, a weak conformational change of Bc II was also observed in the molecular recognition and binding process of Bc II with PV or Sul. This study may provide some valuable information for exploring the recognition and binding of proteins with ligands in the binding process and for the design of novel super‐antibiotics.  相似文献   

14.
Cloning of genes encoding the luciferase from Photobacterium leiognathi YL in Escherichia coli Rosetta (DE3) was performed successfully and the expressed forms of lux AB were purified to homogeneity. Experimental measurements revealed that luciferase from Photobacterium leiognathi YL has good thermal stability and a high residual activity at extreme pH values, which are extremely important for its various ecological, industrial and medical applications. Furthermore, we made a first attempt for quantitative detection of NADH by recombinant E. coli Rosetta (DE3) coupled enzyme system. A good linear relationship between luminescence intensity and NADH with low (1–12 nmol/L) and high (10–500 nmol/L) concentration was observed, whose standard curve was y = 772.97× + 4041.1, R2 = 0.9884 and y = 1710× + 4.99 × 105, R2 = 0.9727, respectively. Our results demonstrate a high sensitivity of recombinant E. coli coupled enzyme system to NADH on the basis of high soluble expression of recombinant luciferase and continuous and stable expression of some NAD(P)H‐dependent flavin mononucleotide (FMN) reductases.  相似文献   

15.
The ice-nucleating bacterium, Pantoea agglomerans IFO12686, induces the cryoptotective protein (CRP) by cold acclimation at 12°C. The CRP was purified to apparent homogeneity by various chromatographies. We found that the purified CRP was a monomer of approximately 29,000 according to gel filtration chromatography and SDS-PAGE, and was a heat-stable protein. The CRP could protect freeze-labile enzymes, lactate dehydrogenase (LDH), alcohol dehydrogenase (ADH) and isocitrate dehydrogenase (iCDH), against freezing-thawing denaturation. The activity of the CRP was about 3.5×104 times more effective than bovine serum albumin (BSA) and 2×106 times than COR26 from the ice-nucleating bacterium Pseudomonas fluorescens KUIN-1. We confirmed that the CRP was a novel protein, as judged by the a different molecule mass from the already-known cryoprotectants, and has an extremely high cryoprotective activity.  相似文献   

16.
17.
Study on anticancer agents that act via stabilization of telomeric G‐quadruplex DNA has emerged as novel and exciting field for anticancer drug discovery. The interaction of carbohydrate containing anticancer alkaloid aristololactam‐β‐D‐glucoside (ADG) with human telomeric G‐quadruplex DNA sequence was characterized by different biophysical techniques. The binding parameters were compared with daunomycin (DAN), a well‐known chemotherapeutic drug. The Scatchard binding isotherms revealed noncooperative binding for both with the binding affinity values of (1.01 ± 0.05) × 106 and (1.78 ± 0.18) × 106 M−1 for ADG and DAN, respectively. Circular dichroism, ferrocyanide quenching study, anisotropy study, thiazole orange displacement, optical melting, differential scanning calorimetry study, and molecular docking study suggest significant stacking and stabilizing efficiency of ADG with comparison to DAN. The energetics of the interaction for ADG and DAN revealed that both reactions were predominantly entropy driven. Negative heat capacity values were obtained from the temperature dependence of the enthalpy change. The standard molar Gibbs energy change exhibited only marginal alterations with temperature suggesting the occurrence of enthalpy‐entropy compensation. These findings indicate that ADG can act as a stabilizer of telomeric G‐quadruplex DNA and thereby can be considered as a potential telomerase inhibitor.  相似文献   

18.
A highly selective sucrose isomerase (SIase) was purified to homogeneity from the cell-free extract of Erwinia rhapontici NX-5 with a recovery of 27.7% and a fold purification of 213.6. The purified SIase showed a high specific activity of 427.1 U mg−1 with molecular weight of 65.6 kDa. The K m for sucrose was 222 mM while V max was 546 U mg−1. The optimum pH and temperature for SIase activity were 6.0 and 30 °C, respectively. The purified SIase was stable in the temperature range of 10–40 °C and retained 65% of the enzyme activity after 2 weeks’ storage at 30 °C. The SIase activity was enhanced by Mg2+ and Mn2+, inhibited by Ca2+, Cu2+, Zn2+, and Co2+, completely inhibited by Hg2+ and Ag2+. The purified SIase was strongly inhibited by SDS, while partially inhibited by dimethylformamide, tetrahydrofuran, and PMSF. Additionally, glucose and fructose acted as competitive inhibitors for purified SIase.  相似文献   

19.
Spiropyran (SP) and its derivatives operate between their ring opening and closing forms as a versatile molecular platform for the fluorescence detection of cations and anions, using a colour change for signalling. A functionalized SP fluorescence probe, L , was prepared and characterized. Probe L can detect Ca2+ with a fluorescence ‘turn‐on’ response in ethanol solution. It selectively binds Ca2+ to form a 1:1 ligand/metal complex, which produced a new emission band centred at 604 nm. The sensing result was clearly observed by the solution colour change from colourless to pink under visible light, and from blue to red under ultraviolet light. The detection limit was calculated to be 4.53 × 10?8 M for Ca2+. The probe provides another possibility that SP‐based derivatives could be used for the development and detection of metal ions in environmental and physiological systems.  相似文献   

20.
The interactions between 2‐mercaptoethanol, dimercaprol and CdSe quantum dots (QDs) in organic media have been investigated by spectral methods. The results showed that the fluorescence (FL) emission of CdSe QDs gradually decreased, with a slight red‐shift, after adding thiols to CdSe QDs solutions. With the increase of the concentrations of thiols, the resonance light scattering (RLS) signal of CdSe QDs had been strongly enhanced in the wavelength range 300–500 nm, which was confirmed by the formation of larger CdSe QDs particles. The effect of thiols on the FL emission of CdSe QDs could be described by a Stern–Volmer‐type equation with the concentration ranges 1.0 × 10–6–7.5 × 10–4 mol/L for 2‐mercaptoethanol and 1.0 × 10–7–2.5 × 10–5 mol/L for dimercaprol. The possible mechanism of the interaction was proposed according to the results of UV‐vis absorption and micro‐Raman spectroscopy. The results indicated that FL quenching was mainly attributable to the exchange of the QDs surface molecules. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号