首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerium oxide nanoparticles (CeO2 NPs) have been shown to have significant interactions in plants. Previous study reported the specific-species phytotoxicity of CeO2 NPs by lettuce (Lactuca sativa), but their physiological impacts and vivo biotransformation are not yet well understood, especially in relative realistic environment. Butterhead lettuce were germinated and grown in potting soil for 30 days cultivation with treatments of 0, 50, 100, 1000 mg CeO2 NPs per kg soil. Results showed that lettuce in 100 mg·kg-1 treated groups grew significantly faster than others, but significantly increased nitrate content. The lower concentrations treatment had no impact on plant growth, compared with the control. However, the higher concentration treatment significantly deterred plant growth and biomass production. The stress response of lettuce plants, such as Superoxide dismutase (SOD), Peroxidase (POD), Malondialdehyde(MDA) activity was disrupted by 1000 mg·kg-1 CeO2 NPs treatment. In addition, the presence of Ce (III) in the roots of butterhead lettuce explained the reason of CeO2 NPs phytotoxicity. These findings demonstrate CeO2 NPs modification of nutritional quality, antioxidant defense system, the possible transfer into the food chain and biotransformation in vivo.  相似文献   

2.
The CeO2 NPs are increasingly used in industry but the environmental release of these NPs and their subsequent behavior and biological effects are currently unclear. This study evaluates for the first time the effects of CeO2 NPs on the survival and the swimming performance of two cladoceran species, Daphnia similis and Daphnia pulex after 1, 10 and 100 mg.L−1 CeO2 exposures for 48 h. Acute toxicity bioassays were performed to determine EC50 of exposed daphnids. Video-recorded swimming behavior of both daphnids was used to measure swimming speeds after various exposures to aggregated CeO2 NPs. The acute ecotoxicity showed that D. similis is 350 times more sensitive to CeO2 NPs than D. pulex, showing 48-h EC50 of 0.26 mg.L−1 and 91.79 mg.L−1, respectively. Both species interacted with CeO2 NPs (adsorption), but much more strongly in the case of D. similis. Swimming velocities (SV) were differently and significantly affected by CeO2 NPs for both species. A 48-h exposure to 1 mg.L−1 induced a decrease of 30% and 40% of the SV in D. pulex and D. similis, respectively. However at higher concentrations, the SV of D. similis was more impacted (60% off for 10 mg.L−1 and 100 mg.L−1) than the one of D. pulex. These interspecific toxic effects of CeO2 NPs are explained by morphological variations such as the presence of reliefs on the cuticle and a longer distal spine in D. similis acting as traps for the CeO2 aggregates. In addition, D. similis has a mean SV double that of D. pulex and thus initially collides with twice more NPs aggregates. The ecotoxicological consequences on the behavior and physiology of a CeO2 NPs exposure in daphnids are discussed.  相似文献   

3.
In this study, we investigated the phenolic composition of the crude extract (MeOH 80 %) of Alnus cordata (Loisel .) Duby stem bark (ACE) and its antioxidant and skin whitening properties. RP‐LC‐DAD analysis showed a high content of hydroxycinnamic acids (47.64 %), flavanones (26.74 %) and diarylheptanoids (17.69 %). Furthermore, ACE exhibited a dose‐dependent antioxidant and free‐radical scavenging activity, expressed as half‐maximal inhibitory concentration (IC50): Oxygen radical absorbance capacity (ORAC, IC50 1.78 μg mL?1)>Trolox equivalent antioxidant capacity (TEAC, IC50 3.47 μg mL?1)>2,2‐Diphenyl‐1‐picrylhydrazyl (DPPH, IC50 5.83 μg mL?1)>β‐carotene bleaching (IC50 11.58 μg mL?1)>Ferric reducing antioxidant power (FRAP, IC50 17.28 μg mL?1). Moreover, ACE was able to inhibit in vitro tyrosinase activity (IC50 77.44 μg mL?1), l ‐DOPA auto‐oxidation (IC50 39.58 μg mL?1) and in an in vivo model it exhibited bleaching effects on the pigmentation of zebrafish embryos (72 h post fertilization) without affecting their development and survival. In conclusion, results show that A. cordata stem bark may be considered a potential source of agents for the treatment of skin disorders due to its bleaching properties and favorable safety profiles, associated to a good antioxidant power.  相似文献   

4.
Evaluation of antioxidant capacities of green microalgae   总被引:2,自引:0,他引:2  
Three strains of green microalgae, Chlorococcum sp.C53, Chlorella sp. E53, and Chlorella sp.ED53 were studied for their antioxidant activities. Crude extracts of these microalgae in hot water and in ethanol were examined for their total phenolic contents and for their antioxidant capacities. In order to determine their phenolic contents, the Folin–Ciocalteu method was used. As for the determination of their antioxidant capacities, four different assays were used: (1) total antioxidant capacity determination; (2) DPPH radical scavenging assay; (3) ferrous ion chelating ability assay; and (4) inhibition of lipid peroxidation (using thiobarbituric acid reactive substance). For all the strains we have studied, their ethanolic extract showed more antioxidant activities than their hot water extract. Categorically, the ethanolic extract of Chlorella sp.E53 exhibited both the highest total phenolic content of 35.5?±?0.14 mg gallic acid equivalent (GAE) g?1 dry weight and the highest DPPH radical scavenging of 68.18?±?0.38 % at 1.4 mg mL?1 (IC50 0.81 mg mL?1), whereas Chlorella sp.ED53 showed both the highest ferrous ion chelation activity of 42.78?±?1.48 % at 1 mg mL?1 (IC50 1.23 mg mL?1) and the highest inhibition of lipid peroxidation of 87.96?±?0.59 % at 4 mg mL?1. This high level of inhibition is comparable to 94.42?±?1.39 % of butylated hydroxytoluene, a commercial synthetic antioxidant, at the same concentration.  相似文献   

5.
This is the first time that composition, antimicrobial potential and antioxidant ability of essential oil from the leaves of Baccharis oreophila are reported. Essential oil was obtained by hydrodistillation and analyzed by GC/MS. Antimicrobial potential was evaluated by diffusion disk and broth microdilution methods. ABTS.+, DPPH. and FRAP methods were employed for antioxidant activity evaluation. Essential oil yield was 0.47 %. Sixty‐five compounds were identified, representing 88.53 % of the total essential oil, which showed to be rich in oxygenated (37.88 %) and hydrocarbons sesquiterpenes (34.84 %). The main constituents were khusimone (16.37 %) and spathulenol (16.12 %). Antimicrobial activity was verified against S. aureus (10.33±0.5 mm, MIC: 1250 μg mL?1) and C. albicans (8.66±0.5 mm, MIC: >2500 μg mL.1). Antioxidant ability was evidenced by FRAP (4.09 μmol FeSO4 E mL?1), ABTS.+ (1.45 μmol TE mL?1) and DPPH. (1.04 μmol TE mL?1) scavenging capacity. Results showed that this essential oil has interesting biological potential, encouraging further investigations especially in relation to action mechanisms of antimicrobial and antioxidant activity.  相似文献   

6.
BackgroundTherapeutic options against Multi Drug Resistant (MDR) pathogens are limited and the overall strategy would be the development of adjuvants able to enhance the activity of therapeutically available antibiotics. Non-specific outer membrane permeabilizer, like metal-oxide nanoparticles, can be used to increase the activity of antibiotics in drug-resistant pathogens. The study aims to investigate the effect of cerium oxide nanoparticles (CeO2 NPs) on bacterial outer membrane permeability and their application in increasing the antibacterial activity of antibiotics against MDR pathogens.MethodsThe ability of CeO2 NPs to permeabilize Gram-negative bacterial outer membrane was investigated by calcein-loaded liposomes. The extent of the damage was evaluated using lipid vesicles loaded with FITC-dextran probes. The effect on bacterial outer membrane was evaluated by measuring the coefficient of permeability at increasing concentrations of CeO2 NPs. The interaction between CeO2 NPs and beta-lactams was evaluated by chequerboard assay against a Klebsiella pneumoniae clinical isolate expressing high levels of resistance against those antibiotics.ResultsCalcein leakage increases as NPs concentrations increase while no leakage was observed in FITC-dextran loaded liposomes. In Escherichia coli the outer membrane permeability coefficient increases in presence of CeO2 NPs. The antibacterial activity of beta-lactam antibiotics against K. pneumoniae was enhanced when combined with NPs.ConclusionsCeO2 NPs increases the effectiveness of antimicrobials which activity is compromised by drug resistance mechanisms. The synergistic effect is the result of the interaction of NPs with the bacterial outer membrane. The low toxicity of CeO2 NPs makes them attractive as antibiotic adjuvants against MDR pathogens.  相似文献   

7.
SiO2 nanoparticles (NPs), in addition to their widespread utilization in consumer goods, are also being engineered for clinical use. They are considered to exert low toxicity both in vivo and in vitro, but the mechanisms involved in the cellular responses activated by these nanoobjects, even at non-toxic doses, have not been characterized in detail. This is of particular relevance for their interaction with the nervous system: silica NPs are good candidates for nanoneuromedicine applications. Here, by using two neuronal cell lines (GT1–7 and GN11 cells), derived from gonadotropin hormone releasing hormone (GnRH) neurons, we describe the mechanisms involved in the perturbation of calcium signaling, a key controller of neuronal function. At the non-toxic dose of 20 μg mL−1, 50 nm SiO2 NPs induce long lasting but reversible calcium signals, that in most cases show a complex oscillatory behavior. Using fluorescent NPs, we show that these signals do not depend on NPs internalization, are totally ascribable to calcium influx and are dependent in a complex way from size and surface charge. We provide evidence of the involvement of voltage-dependent and transient receptor potential-vanilloid 4 (TRPV4) channels.  相似文献   

8.
Organic and water extracts of Isochrysis galbana T-ISO (=Tisochrysis lutea), Tetraselmis sp. and Scenedesmus sp. were evaluated for their antioxidant activity, acetylcholinesterase (AChE) inhibition, cytotoxicity against tumour cell lines, and fatty acids and total phenolic content (TPC). I. galbana T-ISO had the highest TPC (3.18 mg GAE g?1) and radical scavenging activity, with an IC50 value of 1.9 mg mL?1 on the acetone extract. The extracts exhibited a higher ability to chelate Fe2+ than Cu2+, and the maximum Fe2+ chelating capacity was observed in the hexane extract of Scenedesmus sp. (IC50=0.73 mg mL?1) and Scenedesmus sp. (IC50?=?0.73 mg mL?1). The highest ability to inhibit AChE was observed in the water and ether extracts of Scenedesmus sp., with IC50 values of 0.11 and 0.15 mg mL?1, respectively, and in the water extract of I. galbana (IC50?=?0.16 mg mL?1). The acetone extract of I. galbana T-ISO significantly reduced the viability of human hepatic carcinoma HepG2 cells (IC50?=?81.3 μg mL?1) as compared to the non-tumour murine stromal S17 cell line, and displayed a selectivity index of 3.1 at the highest concentration tested (125 μg mL?1). All species presented a highly unsaturated fatty acids profile. Results suggest that these microalgae, particularly I. galbana T-ISO, could be a source of biomolecules for the pharmaceutical industry and the production of functional food ingredients and can be considered as an advantageous alternative to several currently produced microalgae.  相似文献   

9.

Nanotechnology is currently gaining immense attention to combat food borne bacteria, and biofilm. Diabetes is a common metabolic disease affecting majority of people. A better therapy relies on phytomediated nanoparticle synthesis. In this study, W. somnifera leaf extract-assisted ZnO NPs (Ws-ZnO NPs) was synthesized and characterized. From HR-TEM analysis, it has been found that the hexagonal wurtzite particle is 15.6 nm in size and − 12.14 mV of zeta potential. A greater antibacterial effect of Ws-ZnO NPs was noticed against E. faecalis and S. aureus at 100 µg mL−1. Also, the biofilm of E. faecalis and S. aureus was greatly inhibited at 100 µg mL−1 compared to E. coli and P. aeruginosa. The activity of α-amylase and α-glucosidase enzyme was inhibited at 100 µg mL−1 demonstrating its antidiabetic potential. The larval and pupal development was delayed at 25 µg mL−1 of Ws-ZnO NPs. A complete mortality (100%) was recorded at 25 µg mL−1. Ws-ZnO NPs showed least LC50 value (9.65 µg mL−1) compared to the uncoated ZnO NPs (38.8 µg mL−1) and leaf extract (13.06 µg mL−1). Therefore, it is concluded that Ws-ZnO NPs are promising to be used as effective antimicrobials, antidiabetic and insecticides to combat storage pests.

  相似文献   

10.
The development of nanotechnologies has increased the amount of manufactured metal oxide nanoparticles in the environment. In the view of nanoparticle dispersion to the environment, assessment of their toxicity becomes very crucial. Aluminum oxide (Al2O3) nanoparticles have wide range of use in industry as well as personal care products. The aim of this study was to evaluate the dose dependent effects of 13-nm-sized Al2O3 nanoparticles on wheat correlating with the appearance of enzymatic and non-enzymatic antioxidant defense response. Wheat roots were exposed to different concentrations of Al2O3 nanoparticles (5, 25 and 50 mg mL?1) for 96 h. The effects of Al2O3 nanoparticles were studied using different parameters such as H2O2 content, superoxide dismutase and catalase activity, lipid peroxidation, total proline, photosynthetic pigment and anthocyanin content. The results indicated that while Al2O3 nanoparticles caused a dose dependent increase in H2O2 content, superoxide dismutase activity, lipid peroxidation and proline contents, the catalase activity was decreased in compare the control. Moreover, total chlorophyll, chlorophyll a, carotenoids and anthocyanin contents reduced in the highest concentration 50 mg mL?1. In conclusion, Al2O3 nanoparticles caused oxidative stress in wheat after 96 h.  相似文献   

11.
Magnetic nanoparticles (NPs) are used to a large extent in the targeted delivery of therapeutic agents. In this study, we aimed to investigate the possible toxicity of Fe2O 3 NPs on human cells, including blood lymphocytes. We isolated blood lymphocytes from healthy humans using Ficoll polysaccharide and subsequently by gradient centrifugation. Then, the toxicity parameters, including cell viability, reactive oxygen species (ROS) formation, lipid peroxidation, cellular glutathione (GSH) level, mitochondrial and lysosomal damage, were measured in blood lymphocytes after exposure to Fe 2O 3 NPs. Our results indicated that Fe 2O 3 NPs significantly (dependent on concentration) reduced the cell viability, and the IC 50 was determined to be 1 mM. With increasing concentrations, we found that Fe 2O 3 NPs–induced cell toxicity was associated with a significant increase in intracellular ROS and loss of mitochondrial membrane potential and lysosomal membrane leakiness. Consequently, these NPs at different concentrations affect GSH level and cause oxidative stress in human lymphocytes.  相似文献   

12.
BackgroundCerium oxide (CeO2) and Ce-doped nanostructured materials (NMs) are being seen as innovative therapeutic tools due to their exceptional antioxidant effects; nevertheless their bio-applications are still in their infancy.MethodsTiO2, Ce–TiO2 and CeO2–TiO2 NMs were synthesized by a bottom-up microemulsion-mediated strategy and calcined during 7 h at 650 °C under air flux. The samples were compared to elucidate the physicochemical characteristics that determine cellular uptake, toxicity and the influence of redox balance between the Ce3 +/Ce4 + on the cytoprotective role against an exogenous ROS source: H2O2. Fibroblasts were selected as a cell model because of their participation in wound healing and fibrotic diseases.ResultsCe–TiO2 NM obtained via sol–gel reaction chemistry of metallic organic precursors exerts a real cytoprotective effect against H2O2 over fibroblast proliferation, while CeO2 pre-formed nanoparticles incorporated to TiO2 crystalline matrix lead to a harmful CeO2–TiO2 material. TiO2 was processed by the same pathways as Ce–TiO2 and CeO2–TiO2 NM but did not elicit any adverse or protective influence compared to controls.ConclusionsIt was found that the Ce atoms source and its concentration have a clear effect on material's physicochemical properties and its subsequent influence in the cellular response. It can induce a range of biological reactions that vary from cytotoxic to cytoprotective.General significanceEven though there are still some unresolved issues and challenges, the unique physical and chemical properties of Ce-based NMs are fascinating and versatile resources for different biomedical applications.  相似文献   

13.
Cerium oxide nanoparticles (CeO2NPs) are likely to have dramatic impacts on plant performances, yet the effects of CeO2NPs on seed germination and seedling growth have not been fully explored. In this study, the seed germination and seedling growth of subshrub species Vitex negundo under different concentrations of CeO2NPs (low-1 mg/L, medium-100 mg/L, high-500 mg/L) have been discussed. Results showed that: (1) The seed germination rate reduces by 11.25% and 2.5% under the low and medium concentrations of CeO2NPs, respectively, but increased by 7.08% under the high concentration; (2) CeO2NPs had significant effects on the growth traits (root length, shoot height and biomass) of seedlings, being the highest under the medium concentration and the lowest under the highest concentration; (3) The superoxide dismutase activity was the maximum (355.91 U/g), but the protein concentration was the minimum (3.85 ug/mL) under the high concentration of CeO2NPs. Our results indicated that the effects of CeO2NPs on seed germination and seedling growth are concentrationdependency, i.e., low and medium concentrations inhibited while high concentration promoted seed germination, however, seedling growth showed opposite responses. Therefore, appropriate CeO2NPs concentrations are beneficial to the seed germination and seedling growth of Vitex negundo and improve the physiological performance of seedlings and enhance their adaptability to environmental adversity.  相似文献   

14.
The effects of prostaglandin PGE2 on apoptosis and antioxidant enzyme activities were studied in two coelomocyte fractions of holothurian Eupentacta fraudatrix in vitro and in vivo. PGE2 (10?8–10?6M) modulated apoptosis in a time-and concentration-dependent manner in both fractions studied in vitro. In vivo, PGE2 induced apoptosis at concentrations of 0.1–1 μg/g in the fraction enriched with morula-like cells. Phagocytes were more sensitive to the regulating effect of PGE2. In this fraction, PGE2 induced apoptosis at concentrations from 0.01 to 1 μg/g, while PGE2 at 10 μg/g demonstrated an antiapoptotic effect. In all experiments, apoptosis development was accompanied by a disbalance of the antioxidant enzyme system, primarily, decreased catalase activity.  相似文献   

15.
The present study aims to investigate the levels of polyphenols and antioxidant activity in one of the most important commercial species of seaweeds in Kamchatka, an edible brown seaweed Saccharina bongardiana. Six extracts of S. bongardiana, acetone, methanol, ethanol, and the respective 70 % aqueous solutions, were assessed for total phenol content in order to determine the most efficient extracting solvent. The total phenol content was measured by the Folin–Ciocalteu method and expressed as phloroglucinol equivalents (PGE). The antioxidant tests used were 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, linoleic acid-β carotene oxidation inhibiting assay, and Fe2+ ion chelating method. Higher phenolic contents were obtained using aqueous organic solvents, as compared to the respective absolute solvents; 70 % acetone was found to be the most efficient solvent (1.039 mg PGE 100 mg?1 dry algal powder). High significant correlations were noted between total phenol content and the tested antioxidant activities; so the aqueous organic extracts exhibited the highest antioxidant activities versus DPPH radicals (EC50 values of 0.6–1.1 mg dry weight (DW) mL?1), linoleic acid-β carotene oxidation (74–78 % at 0.8 mg DW mL?1), as well as ferrous ions (EC50 values of 5.0–7.9 mg DW mL?1). Some methodological recommendations regarding the assays used and the expression of results are proposed.  相似文献   

16.
The effect of rutin and gallic acid on growth, phytochemical and defense gene activation of rice (Oryza sativa L.) was investigated. The seeds of rice were primed with different concentrations of rutin and gallic acid (10–60 µg mL?1) to explicate the effect on germination on water agar plates. Further, to study the effect of most effective concentrations of gallic acid (60 µg mL?1) and rutin (50 µg mL?1), greenhouse pot experiment was set up to determine the changes in growth, antioxidant and defense parameters. The results revealed more pronounced effect of gallic acid on total chlorophyll and carotenoids as well as on total flavonoid content and free radical scavenging activities. Gene expression analysis of OsWRKY71, PAL, CHS and LOX genes involved in strengthening the plant defense further validated the results obtained from the biochemical analysis. Microscopic analysis also confirmed reduction in total reactive oxygen species, free radicals like H2O2 and O2 ? by exogenous application of gallic acid and rutin. The data obtained thus suggest that both gallic acid and rutin can affect the growth and physiology of rice plants and therefore can be used to develop effective plant growth promoters and as substitute of biofertilizers for maximizing their use in field conditions.  相似文献   

17.
Titanium dioxide nanoparticles are massively produced and widely used in daily life, which has posed potential risk to human health. However, the molecular mechanism of TiO2 nanoparticles (NPs) with different crystal phases is not clear. In this study, the characterization of two crystalline phases of TiO2 NPs is evaluated by transmission electron microscopy and X-ray absorption fine structure spectrum; an interaction of these TiO2 NPs with HaCaT cells is studied in vitro using transmission electron microscopy, chemical precipitation method, and X-ray absorption fine structure spectrometry. The coordination and surface properties indicate that only the anatase–TiO2 NPs allow spontaneous reactive oxygen species (ROS) generation, but rutile–TiO2 NPs do not after dispersion. The interaction between TiO2 NPs and cellular components might also generate ROS for both anatase–TiO2 NPs and rutile–TiO2 NPs. The ROS generation could lead to cellular toxicity if the level of ROS production overwhelms the antioxidant defense of the cell or induces the mitochondrial apoptotic mechanisms. Furthermore, Ti had a direct combination with some protein or DNA after NPs enter the cell, which could also lead to cellular toxicity.  相似文献   

18.
To ensure the safe use of nanoparticles (NPs) in modern society, it is necessary and urgent to assess the potential toxicity of NPs. Cardiovascular system is required for the systemic distribution of NPs entering circulation. Therefore, the adverse cardiovascular effects of NPs have gained extensive research interests. Metal based NPs, such as TiO2, ZnO and Ag NPs, are among the most popular NPs found in commercially available products. They may also have potential applications in biomedicine, which could increase their contact with cardiovascular systems. This review aimed at providing an overview about the adverse cardiovascular effects of TiO2, ZnO and Ag NPs. We discussed about the bio-distribution of NPs following different exposure routes. We also discussed about the cardiovascular toxicity of TiO2, ZnO and Ag NPs as assessed by in vivo and in vitro models. The possible mechanisms and contribution of physicochemical properties of metal based NPs were also discussed.  相似文献   

19.
The chemical components and antioxidant activity of 16 Rehmannia glutinosa samples were investigated to reveal the high‐quality raw resource for pharmaceutical products. 22 main chemical components were detected with significant content differences (P<0.05). The contents of 14 substances reached the maximum in S1 sample such as catalpol (6.74 mg g?1), rehmaionoside A (1.93 mg g?1) and rehmannioside D (5.13 mg g?1). However, the content distribution of the other eight substances had no obvious change regulation. Three antioxidant evaluation methods commonly showed that S1 sample had strong antioxidant activity with a low IC50 value of 0.022 mg mL?1, a high ABTS value of 524.196 μmol equiv. Trolox g?1, and a high FRAP value of 200.517 μmol equiv. Trolox g?1. Considered the medicinal value, S1 had high quality based on the present phytochemical profiles and antioxidant activity. These results also indicated that the root extracts of R. glutinosa could become useful supplement for pharmaceutical products as new antioxidant agents.  相似文献   

20.
In this paper, silver enhancement of nanogold labels coupled with chemiluminescence detection was developed for ultrasensitive immunoassay of Salmonella based upon antigen–antibody immunoreaction. Polyclonal rabbit anti‐Salmonella sp. antibodies (pAb) were employed to establish the analytical protocol. The pAb coated onto ELISA microwell plates and Au nanoparticles (Au NPs) conjugated pAb capture target Salmonella to form a sandwich‐type complex. Silver then was in situ deposited around the Au NPs core and resulted in the signal amplification. In consequence, silver was dissolved to form Ag+ and a sensitive chemiluminescence based on the Ag+–K2S2O8–Mn2+–luminol system was coupled for further signal amplification. Under the optimized conditions, the chemiluminescent intensity is proportional to target Salmonella over the range of 5–1038 cfu mL?1 with a detection limit of 5 cfu mL?1. The relative standard deviation for 11 measurements of about 50–100 cfu/mL target Salmonella is 4.7%. The proposed method was successfully applied to measure Salmonella in food samples and the results are identical to those of the offical standard method of China. These offer us a more powerful tool for ultrasensitive assay of foodborne pathogens. Copyright © 2010 John Wiley & Son, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号