首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
This study, for the first time, demonstrated an unprecedented approach for the green synthesis of gold (Au) nanoparticles (NPs) using the polysaccharide of Spirulina maxima as a reducing agent. Time-kill kinetic analysis was used to evaluate the antifungal activity of the green synthesized Au NPs against the pathogenic Candida albicans (C. albicans). The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) were found to be 32 μg/mL and 64 μg/mL, respectively. Ultra-structural analysis indicated prominent damage on cell wall of the C. albicans after Au NPs treatment, and suggested that the treatment could increase the membrane permeability and disintegration of cells leading to cellular death. The results of propidium iodide (PI) uptake assay showed the higher level of cell death in Au NPs treated C. albicans cells, further confirming the loss of plasma membrane integrity. Cytotoxicity analysis of Au NPs on HEK293T and A549 cells showed no cytotoxic effect up to 64 μg/mL of Au NPs concentration, indicating the potential use in in vivo studies. Also, the recovery of C. albicans infected zebrafish after Au NPs therapy suggest green synthesized Au NPs from S. maxima polysaccharide as a prospective anticandidal agent.  相似文献   

2.
In our study, green synthesis of silver nanoparticles was carried out using a red algae Gelidium corneum extract as reducing agent. The obtained silver nanoparticles were characterized by UV–vis, TEM, XRD, FTIR and ICP-MS measurements. FTIR measurements indicated the possible functional groups responsible for the stabilization and reduction of nanoparticles, while XRD analysis results explained the crystalline structure of the particles with centric cubic geometry. TEM micrographs showed that the size of the nanoparticles was between 20–50 nm. According to the broth microdilution test results, AgNPs showed a high antimicrobial activity with very low MIC values (0.51 μg/ml for Candida albicans yeast and 0.26 μg/ml for Escherichia coli bacteria). The different ultrastructural effects of silver nanoparticles on yeast and bacterial cells were observed by TEM. Antibiofilm efficacy studies were also examined in two stages as prebiofilm and postbiofilm effect. In prebiofilm effect studies, AgNPs (0.51 μg/ ml) exhibited 81% reducing effect on biofilm formation. The highest reduction rate in postbiofilm studies was 73.5% and this was achieved with 2.04 μg/ml AgNPs. Our data support that the silver nanoparticles obtained by this environmentally friendly process have potential to be used for industrial and therapeutic purposes.  相似文献   

3.
Taking into consideration the needs of greener bioprocesses and novel enhancers for synthesis using microbial processes, biosurfactants, and/or biosurfactant producing microbes are emerging as an alternate source for the rapid synthesis of nanoparticles. A microemulsion technique using an oil-water-surfactant mixture was shown to be a promising approach for nanoparticle synthesis. Biosurfactants are natural surfactants derived from microbial origin composed mostly of sugar and fatty acid moieties, they have higher biodegradability, lower toxicity, and excellent biological activities. The biosurfactant mediated process and microbial synthesis of nanoparticles are now emerging as clean, nontoxic, and environmentally acceptable “green chemistry’’ procedures. The biosurfactant-mediated synthesis is superior to the methods of bacterial- or fungal-mediated nanoparticle synthesis, since biosurfactants reduce the formation of aggregates due to the electrostatic forces of attraction and facilitate a uniform morphology of the nanoparticles. In this review, we highlight the biosurfactant mediated synthesis of nanoparticles with relevant details including a greener bioprocess, sources of biosurfactants, and biological synthesized nanoparticles based on the available literature and laboratory findings.  相似文献   

4.
近年来,纳米硒凭借其良好的导电、光热以及抗癌等特性,在纳米技术、生物医学以及环境修复等诸多领域得到广泛应用。实验选择前期筛选得到的贪铜杆菌Cupriavidus sp. SHE,文中探究了该菌株的细胞上清液、全细胞以及胞内提取物合成纳米硒的能力,并对细胞上清液合成的纳米硒进行形貌表征与官能团分析,最后选取革兰氏阳性菌假单胞菌Pseudomonas sp. PI1和革兰氏阴性菌大肠杆菌Escherichia coli BL21进行抗菌实验。结果表明,菌株Cupriavidussp.SHE的细胞上清液、全细胞以及胞内提取物均具有合成纳米硒的能力。对于菌株Cupriavidus sp. SHE细胞上清液而言,在该实验中,研究范围内其合成纳米硒的最佳条件是SeO2浓度为5 mmol/L,pH为7。透射电子显微镜结果表明合成的纳米硒颗粒主要为球形,平均直径为196nm。X射线衍射结果表明合成的纳米硒晶体类型为六方形结构。傅立叶转换红外光谱和聚丙烯酰胺凝胶电泳结果表明纳米硒表面有小分子蛋白结合,可能参与了纳米硒的合成和稳定过程。此外,抗菌实验表明菌株Cupriavidus sp. SHE细胞上清液合成的纳米硒颗粒对菌株E.coli BL21和Pseudomonas sp. PI1均无明显的抗菌活性。综上,该研究表明菌株Cupriavidus sp.SHE在细胞上清液中产生的蛋白类物质在其合成纳米硒的过程中发挥了重要作用,合成的生物纳米硒颗粒无毒且生物相容性良好,未来在生物医学等领域具有较好的应用潜力。  相似文献   

5.
The cyanobacteria Phormidium valderianum, P. tenue and Microcoleus chthonoplastes and the green algae Rhizoclonium fontinale, Ulva intestinalis, Chara zeylanica and Pithophora oedogoniana were exposed to hydrogen tetrachloroaurate solution and were screened for their suitability for producing nano‐gold. All three cyanobacteria genera and two of the green algae (Rhizoclonium fontinale and Ulva intestinalis) produced gold nanoparticles intracellularly, confirmed by purple colouration of the thallus within 72?h of treatment at 20°C. Extracted nanoparticle solutions were examined by UV‐vis spectroscopy, transmission electron microscopy (TEM) and X‐ray diffractometry (XRD). XRD confirmed the reduction of Au (III) to Au (0). UV‐vis spectroscopy and TEM studies indicated the production of nanoparticles having different shapes and sizes. Phormidium valderianum synthesized mostly spherical nanoparticles, along with hexagonal and triangular nanoparticles, at basic and neutral pHs (pH 9 and pH 7, respectively). Medicinally important gold nanorods were synthesized (together with gold nanospheres) only by P. valderianum at acidic pH (pH 5); this was initially determined by two surface plasmon bands in UV‐vis spectroscopy and later confirmed by TEM. Spherical to somewhat irregular particles were produced by P. tenue and Ulva intestinalis (TEM studies). The UV‐vis spectroscopy of the supernatant of other algal extracts indicated the formation of mostly spherical particles. Production of gold nanoparticles by algae is more ecofriendly than purely chemical synthesis. However, the choice of algae is important: Chara zeylanica and Pithophora oedogoniana were found to be unable to produce nanoparticles.  相似文献   

6.
Background, Aims and Scope Using renewable feedstock and introducing biocatalysts in the chemical industry have been suggested as the key strategies to reduce the environmental impact of chemicals. The Swedish interdisciplinary programme ‘Greenchem’, is aiming to develop these strategies. One target group of chemicals for Greenchem are wax esters which can be used in wood surface coatings for wood furniture, etc. The aim of this study was to conduct a life cycle assessment of four different wood surface coatings, two wax-based coatings and two lacquers using ultra violet light for hardening (UV lacquers). One of the two wax-based coatings is based on a renewable wax ester produced with biocatalysts from rapeseed oil, denoted ‘green wax’, while the other is based on fossil feedstock and is denoted ‘fossil wax’. The two UV lacquers consist of one ‘100% UV’ coating and one ‘water-based UV’ coating. The scope was to compare the environmental performance of the new ‘green’ coating with the three coatings which are on the market today. Methods The study has a cradle-to-grave perspective and the functional unit is ‘decoration and protection of 1 m2 wood table surface for 20 years’. Extensive data collection and calculations have been performed for the two wax-based coatings, whereas mainly existing LCI data have been used to characterise the production of the two UV lacquers. Results For all impact categories studied, the ‘100% UV’ lacquer is the most environmentally benign alternative. The ‘water-based UV’ is the second best alternative for all impact categories except EP, where the ‘fossil wax’ is slightly better. For GWP the ‘fossil wax’ has the highest contribution followed by the ‘green wax’. For AP and EP it is the ‘green wax’ that makes the highest environmental impact due to the contribution from the cultivation of the rapeseed and the production of the rapeseed oil. For POCP the ‘fossil wax’ makes the highest contribution, slightly higher than the contribution from the ‘green wax’. Also the energy requirements for the ‘100% UV’ lacquer is much lower than for the other coatings. The results from the toxicological evaluation conducted in this study, which was restricted to include only the UV lacquers, are inconclusive, giving different results depending on the model chosen, EDIP97 or USES. Discussion The result in this study shows that the environmental benefits of using revewable feedstock and processes based on biocatalysis in the production of wax esters used in wood surface coatings are rather limited. This is due to the high environmental impact from other steps in the life cycle of the coating. Conclusions Overall the ‘100% UV’ lacquer seems to be the best alternative from an environmental point of view. This study shows that the hot spots of the life cycle of the coatings are the production of the ingredients, but also the application and drying of the coatings. The toxicity assessment shows the need for the development of a new model, a model which finds common ground in order to overcome the current situation of diverging results of toxicity assessments. The results in this study also point to the importance of investigating the environmental performance of a product based on fossil or renewable feedstock from a life cycle perspective. Recommendations and Perspectives The results in this study show that an efficient way to improve the wood coating industry environmentally is to increase the utilization of UV lacquers that are 100% UV-based. These coatings can also be even further improved by introducing biocatalytic processes and producing epoxides and diacrylates from renewable raw material instead of the fossil-based ones produced with conventional chemical methods in use today. In doing this, however, choosing a vegetable oil with good environmental performance is important. An alternative application of the ‘green wax’ analysed in this study may be as an ingredient in health care products, for example, which may result in greater environmental benefits than when the wax is used inwood coating products. The results in this study illustrate the importance of investigating the environmental performance of a product from cradle-to-grave perspective and not consider it ‘green’ because it is based on renewable resources.  相似文献   

7.
8.
Comparison of bio CeO2-Nps prepared using Trianthema Portulastrum leaf extract with chemical CeO2-Nps is of interest. The ultraviolet - visible, x-ray diffraction, HR - TEM, FT - IR, and photoluminescence studies were conducted with CeO2-Nps. UV-Maximum absorptionat 292 nm was completed using UV-visible spectrum. The HR–TEM images showed 38 nm bio CeO2-Nps with spherical morphology. This showed the polycrystalline character of CeO2-Nps similar to XRD data. The presence of metal oxide is confirmed by FT - IR analyses. The CeO2-Nps showed the potential photocatalytic activity for Acid black 1 color degradation after exposure to sunlight. Chem and bio CeO2-Nps have a degradation rate of 86.66 and 94.33%, respectively for acid black 1 dye. The synthesized CeO2-Nps are also evaluated for antibacterial and antioxidant activity. The bio CeO2-Nps has antibacterial activity for Pseudomonas aeruginosa (17 ± 0.56 mm) and Staphylococcus aureus (16 ± 0.24 mm) at low concentrations of 100 µl. The CeO2-Nps bio showed high inhibition of radical DPPH IC50 µg/ml, at 95.17 ± 21. Thus, we show that CeO2-Nps have environmentally friendly properties that are useful for dye degradation with antimicrobial and antioxidant activities.  相似文献   

9.
Nanotechnology is an emerging field with tremendous potential and usage of medicinal plants and green preparation of nanoparticles (NPs) is one of the widely explored areas. These have been shown to be effective against different biological activities such as diabetes mellitus, cancer, antioxidant, antimicrobial, etc. The current studies focus on the green synthesis of zinc NPs (ZnO NPs) from aqueous leaf extract of Murraya koenigii (MK). The synthesized Murraya koeingii zinc oxide NPs (MK ZnO NPs) were characterized using UV–visible spectroscopy, dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive spectrum (EDS) and cyclic voltammetry (CV). The synthesized MK ZnO NPs were evaluated for their in vitro antidiabetic, antioxidant, antimicrobial, and cytotoxic activity. They demonstrated significant antidiabetic and cytotoxic activity, as well as moderate free-radical scavenging and antibacterial activity.  相似文献   

10.
Green synthesis method is being increasingly used in the development of safe, stable, and eco-friendly nanostructures with biological resources. In this study, extracellular and intracellular synthesis of gold nanoparticles (AuNPs) was carried out using green algae Chlorella sorokiniana Shihira & R.W. Fresh algae were isolated and identified from Musaözü Pond located in the province of Eskişehir and then extraction process were performed. Optimization studies were studied using pH value, metal salt concentration, and time parameters for extracellular synthesis and using only time parameter for intrasellular synthesis. Since more controlled and optimum conditions can be achieved in the production of AuNPs by extracellular synthesis, these nanoparticles (NPs) were used for characterization and antifungal activity studies. Optical, physical, and chemical properties of synthesized NPs were characterized by UV visible spectrophotometer (UV-Vis), dynamic light scattering (DLS), Zetasizer, X-Ray diffraction (XRD), Fourier transform ınfrared spectroscopy (FTIR), field emission scanning electron microscope (FE-SEM), ınductively coupled plasma mass spectrometer (ICP-MS) and transmission electron microscope (TEM) analysis. The optimum conditions for AuNPs synthesis were determined as 1 mM for HauCl4 concentration, 6 for pH value, and 60th min for time. AuNPs obtained from extracellular synthesis from C. sorokiniana extract are 5–15 nm in size and spherical shape. TEM images of extracellular synthesis show noticeable cell wall and membrane damages, cytoplasma dissolutions, and irregularities. AuNPs obtained by intracellular synthesis are in 20–40 nm size and localized in the cell wall and cytoplasm. These NPs exhibited significant antifungal activity against C. tropicalis, C. glabrata, and C. albicans isolates. AuNPs obtained by algae-mediated green synthesis have a significant potential for medical and industrial use, and this eco-friendly synthesis method can be easily scaled for future studies.  相似文献   

11.
It is known that α-glucosidase is linked with the antioxidant activity. Therefore, it is of interest to document the in- vitro and molecular docking analysis of chalconeimine derivatives with α-glucosidase (PDB ID: 2ZEO) for further consideration.  相似文献   

12.
The application of nanotechnology in biological research is beginning to have a major impact leading to the development of new types of tools for human health. One focus of nanobiotechnology is the development of nanoparticle-based formulations for use in drug or gene delivery systems. However most of the nano probes currently in use have varying levels of toxicity in cells or whole organisms and therefore are not suitable for in vivo application or long-term use. Here we test the potential of a novel silica based nanoparticle (organically modified silica, ORMOSIL) in living neurons within a whole organism. We show that feeding ORMOSIL nanoparticles to Drosophila has no effect on viability. ORMOSIL nanoparticles penetrate into living brains, neuronal cell bodies and axonal projections. In the neuronal cell body, nanoparticles are present in the cytoplasm, but not in the nucleus. Strikingly, incorporation of ORMOSIL nanoparticles into the brain did not induce aberrant neuronal death or interfered with normal neuronal processes. Our results in Drosophila indicate that these novel silica based nanoparticles are biocompatible and not toxic to whole organisms, and has potential for the development of long-term applications.  相似文献   

13.
The present study demonstrated the in vitro embryotoxicity assessment of gold nanoparticles (AuNPs) and copper nanoparticles (CuNPs) prepared from the leaves extract of Angelica keiskei (Miq.) Koidz. and addressed their mode of antibacterial mechanisms. Both AuNPs and CuNPs were rapidly synthesized and the formations were observed within 1 h and 24 h, respectively. Further the morphological images of the nanoparticles were confirmed through transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The high-resolution X-ray diffraction (HR-XRD) analysis of the biosynthesized AuNPs and CuNPs were matched with joint committee on powder diffraction standards (JCPDS) file no of 04-0784 and 89-5899, respectively. A strong prominent Au and Cu signals were observed through energy dispersive spectroscopy (EDS) analysis. Fourier transform infrared spectroscopy (FT-IR) analysis confirmed the responsible phytochemicals for the synthesis of AuNPs and CuNPs. In order to assess the toxic effects of AuNPs and CuNPs, bactericidal activity was performed against few of the test pathogens in which the effective inhibition was observed against Gram-negative bacteria than the Gram-positive bacteria. The mode of action and interaction of nanoparticles were performed on the bacterial pathogens and the results concluded that the interaction of nanoparticles initially initiated on the surface of the cell wall adherence followed by ruptured the cells and caused the cell death. In addition to the antibacterial activity, in vitro embryotoxicity studies were performed against zebrafish embryos and the results confirmed that 200 µg/ml concentration of AuNPs showed the embryotoxicity, whereas 2 µg/ml of CuNPs resulted the embryotoxicity. Furthermore, the morphological anomalies of zebrafish embryos revealed the toxic nature of the synthesized nanoparticles.  相似文献   

14.
Copper oxide nanoparticles (CUNPs) were synthesized using Olea europaea leaf extract as reducing and protecting agent. The formation of nanoparticles was observed through a color change from yellowish to brownish black. The CUNPs were confirmed with UV–Vis spectrophotometer, which revealed a peak absorbance at 289 nm. The synthesized CUNPs were characterized by XRD, FTIR, SEM, and TEM. The XRD pattern revealed that CUNPs were crystalline in nature with a diameter around 20 nm. FTIR spectral analysis showed that CUNPs were capped with plant constituents. From SEM and TEM analyses, the CUNPs were generally found to be spherical in shape, and the size range was 20–50 nm. Free radical scavenging potential of CUNPs against DPPH was confirmed by its stable antioxidant effects. In addition, the toxicity of CUNPs in mice was also assessed by body weight and weights of liver, kidneys, spleen, and thymus. The immune response in mice was signaled through an obvious change in spleen and thymus index, with a decrease of ADA enzyme activity in serum, spleen, and thymus after CUNPs treatment. The CUNPs were found to exert cell growth arrest against AMJ‐13 and SKOV‐3 cancer cells in a dose‐dependent manner and induce cell death by apoptosis. Less significant cytotoxic effect was observed in normal dermal fibroblast cells. These findings suggest that CUNPs may have the potential to be anticancer agents. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:218–230, 2018  相似文献   

15.
Nanotechnology is the science which is about manipulating matter, atom by atom and is associated with particles smaller than 100 nm in size. Copper nanoparticles are used mainly due to its surplus amount, low cost, easy availability and biocompatible property. Green synthesis of copper nanoparticles is very simple, economical and eco-friendly method that does not involve any toxic chemicals. The aim of our study is green synthesis of copper nanoparticles using green tea and neem formulation and assessment of its antimicrobial effects. 20mM of copper sulphate solution is mixed with 40mL of plant extract and 60 mL of distilled water was added and made it into 100 ml solution. Once the copper nanoparticles are synthesized the solution is characterized using UV- vis-spectroscopy and was scanned in double beam UV-vis- spectrophotometer from 300 nm to 700nm wavelength. The antimicrobial property of copper nanoparticle is evaluated by agar well diffusion method. The colour change from green to brown and peak observed in UV-vis- spectrophotometer was associated with the synthesis of copper nanoparticles. Copper nanoparticle from green tea and tea extract has good antimicrobial activity against S.mutans, C.albicans, E.faecalis, & S.aureus. Copper nanoparticles can be efficiently synthesised from green and neem formulation. These copper nanoparticles showed good antibacterial properties and are effective against oral pathogens.  相似文献   

16.
The nanoparticles such as hydroxyapatite, zinc oxide, titanium dioxide and zirconium nanoparticles have application in dentistry. Therefore, it is of interest to document the antimicrobial activity of silymarin mediated zinc oxide and hydroxy apatite nanoparticles against oral pathogens. Hence, we synthesized hydroxyapatie and zinc oxide nanoparticles with silymarin and characterized by UV-visible spectrophotometer. Data shows that silymarin mediated HAP and ZnO nanoparticles have antimicrobial activity against oral pathogens such as Pseudomonas sp, Staphylococcus aureus, Streptococcus mutans, Enterococcus faecalis and Candida albicans.  相似文献   

17.
18.
In vitro and in vivo assessment of herb drug interactions   总被引:3,自引:0,他引:3  
Herbal products contain several chemicals that are metabolized by phase 1 and phase 2 pathways and also serve as substrates for certain transporters. Due to their interaction with these enzymes and transporters there is a potential for alteration in the activity of drug metabolizing enzymes and transporters in presence of herbal components. Induction and inhibition of drug metabolizing enzymes and transporters by herbal component has been documented in several in vitro studies. While these studies offer a system to determine the potential for a herbal component to alter the pharmacokinetics of a drug, they cannot always be used to predict the magnitude of any potential effect in vivo. In vivo studies are the ultimate way to determine the clinical importance of herb drug interactions. However, lack of content uniformity and lack of documentation of the bioavailability of herbal components makes even in vivo human studies difficult to interpret as the effect may be product specific. It appears that St. John's wort extract is probably one of the most important herbal product that increases the metabolism and decreases the efficacy of several drugs. Milk thistle on the other hand appears to have minimal effect on phase 1 pathways and limited data exists for phase 2 pathways and transporter activity in vivo. Further systematic studies are necessary to assess the significance of herb drug interactions.  相似文献   

19.
Antimicrobial resistance continues to be an inexorable threat for the biomedical and biochemical researchers. Despite the novel discoveries in drug designing and delivery, high‐throughput screening and surveillance data render the prospects for new antimicrobial agents as bleak as ever. The advent of nanotechnology, however, strengthens pharmacology by offering effective therapeutics to treat this aforementioned problem. Several nanoparticles of the known elements have already been reported for their antimicrobial efficacy. Nanosized fabrication of elemental sulphur with suitable surface modifications offers to retrieve the use of sulphur (man's oldest known ecofriendly microbicide) as a potential antimicrobial agent. Sulphur nanoparticles (SNPs) are effective against both conventionally sulphur‐resistant and sulphur‐susceptible microbes (fungi and bacteria). Moreover, biocompatible polymers present on the surface of SNPs minimize toxicity during application. Here, we focus on various aspects of physicochemical features of SNPs and their biochemical interactions with microbes. The present review also illustrates the effects of SNPs on plants and animals in terms of cytotoxicity and biocompatibility.  相似文献   

20.
Failure in the prevention of cross-transmission from contaminated gloves has been recognized as an important factor that contributes to the spread of several healthcare-associated infections. Ex situ coating process with silver nanoparticles (AgNPs) using Eucalyptus citriodora ethanolic leaf extract as reducing and capping agents to coat glove surfaces has been developed to prevent this mode of transmission. Elemental analysis of coated gloves showed 24.8 Wt% silver densely adhere on the surface. The coated gloves fully eradicated important hospital-acquired pathogens including Gram-positive bacteria, Gram-negative bacteria, and yeasts within 1 h. The coated gloves showed significant reduction, an average of five logs when tested against all standard strains and most clinical isolates (< 0.01). Following prolonged exposure, the coating significantly reduced the numbers of most adhered pathogenic species, compared with uncoated gloves (p < 0.0001). AgNPs-coated gloves reduced microbial adhesion of mixed-species biofilms. A series of contamination and transmission assays demonstrated no transmission of viable organisms. Biocompatibility analysis confirmed high viability of HaCaT and L929 cells at all concentrations of AgNPs tested. The coated gloves were non-toxic with direct contact with L929 cells. The highly efficacious AgNPs-coated gloves potentially provide additional protection against transmission of healthcare-associated infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号