In vivo terahertz (THz) imaging of human skin needs to be done in reflection geometry due to the high attenuation of THz light by water in the skin. To aid the measurement procedure, there is typically an imaging window onto which the patient places the area of interest. The window enables better pulse alignment and helps keep the patient correctly positioned during the measurement. In this paper, we demonstrate how the occlusion caused by the skin contact with the imaging window during the measurement affects the THz response. By studying both rapid point measurements and imaging over an area of a human volar forearm, we find that even 5 seconds of occlusion affects the THz response. As the occlusion time increases, the skin surface water content increases, resulting in the reduction of the amplitude of the reflected THz pulse, especially in the first 3 minutes. Furthermore, it was found that the refractive index of the volar forearm increased by 10% to 15% after 20 minutes of occlusion. In this work, we examine and propose a model for the occlusion effects due to the quartz window with a view to compensating for its influence. 相似文献
Skin aging is a multifactorial phenomenon that involves alterations at the molecular, cellular and tissue levels. Our aim was to carry out a multiparametric biophysical and Raman characterization of skin barrier between individuals of different age groups (<24 and >70 years old). Our results showed a significant decrease of lipids to proteins ratio overall the thickness of the stratum corneum and higher lateral packing in the outer part of the SC for elderly. This can explain the decrease in trans epidermal water loss measured values rather than only SC thickening. Both age groups showed similar water content at SC surface while elderly presented higher water content in deep SC and viable epidermis. Mechanical measurements showed a decrease in the elasticity and an increase in the fatigability with age and were correlated with partially bound water. Highest correlation and anti-correlation values were observed for the deepest part of the SC and the viable epidermis. 相似文献
Quantitative noninvasive assessment of water content in tissues is important for biomedicine. Optical spectroscopy is potentially capable of solving this problem; however, its applicability for clinical diagnostics remains questionable. The presented study compares diffuse reflectance spectroscopy, Raman spectroscopy and multispectral imaging in the characterization of cutaneous edema. The source-detector geometries for each method are selected based on Monte Carlo simulations results to detect the signal from the dermis. Then, the kinetics of the edema development is studied for two models. All methods demonstrate synchronous trends for histamine-induced edema: The water content reaches a maximum of 1 hour after histamine application and then gradually decreases. For the venous occlusion, a 51% increase in water content is observed with Raman spectroscopy. The differences in water content estimation by three methods are explained based on the light propagation model. The obtained results are essential for introducing quantitative optical water measurement technology to the clinics. 相似文献
Terahertz Pulsed Imaging(TPI) is a new medical imaging modality forthe detection of epithelial cancers. Overthe last two years this technique has beenapplied to the study of in vitrobasal cell carcinoma (BCC). Usingtime-domain analysis the contrast betweendiseased and normal tissue has been shownto be statistically significant, andregions of increased terahertz (THz)absorption correlated well with thelocation of the tumour sites in histology.Understanding the source of this contrastthrough frequency-domain analysis mayfacilitate the diagnosis of skin cancer andrelated skin conditions using TPI. Wepresent the first frequency-domain analysisof basal cell carcinoma in vitro,with the raw power spectrum giving aninsight into the surface features of theskin. Further data manipulation is requiredto determine whether spectral informationcan be extrapolated at depth. These resultshighlight the complexity of working inreflection geometry. 相似文献
Diabetes, as a chronic metabolic disease, can impair the immune function of monocytes/macrophages (MMs). However, it is unclear how MM immune response to inflammation with the development of diabetes, and whether immune response around the inflammatory foci depends on the depth in tissue. Footpad provides a classical physiological site for monitoring cellular behavior during inflammation, but limited to the superficial dermis due to the strong scattering of footpad. Herein, we used confocal microscopy to monitor the motility of MMs in deeper tissue around inflammatory foci with the development of type 1 diabetic (T1D) mice through a switchable footpad skin optical clearing window. Delayed‐type hypersensitivity (DTH) model was elicited on the footpad of T1D. Results demonstrated that progressive T1D led to the gradually potentiated MM recruitment and increased expression of monocyte chemoattractant protein‐1 during DTH, but MM migration displacement, motion velocity and motility coefficient were significantly attenuated. Besides, MMs from the deeper dermis had a much larger migration displacement than those from superficial dermis at early stages of DTH but an opposite tendency at late stages for non‐T1D, while progressive T1D obscured this difference gradually. This study will be helpful for investigating the influences of progressive metabolic diseases on immune response. MM motion trajectory at depth of superficial dermis and the deeper dermis at AOVA (heat‐aggregated ovalbumin)—4 hours and AOVA—72 hours on non‐T1D (A) and T1D—4 weeks (B). Mean motility coefficient (C) at the 2 depths. Data were pooled from 6 mice per group. *P < .05 and **P < .01 compared among different T1D disease durations. #P < .05 compared between different depths. 相似文献
Psoriasis is a chronic inflammatory skin disease involved with both complex morphological changes of skin and immune processes. The clinical diagnostics and research of psoriasis often require invasive biopsy which lacks their real-time dynamics in vivo. Here we report a noninvasive microscopic system developed by combining in vivo fluorescent microscopy, optical clearing, and immunolabeling to enable real-time imaging of immune cells and cytokines in blood flow in psoriatic animal models. The vascular morphology and time-lapse kinetics of interleukin (IL)-23, IL-17, tumor necrosis factor-α, and CD4+ cells in blood are captured at submicron resolution through the thickening epidermis and opaque scales during the development of psoriasis in vivo. Our data suggest IL-23 recruits CD4+ cells to release IL-17 in blood that further leaks out in the psoriatic skin area. This optical system enables noninvasive and real-time assessment of immune molecules and cells in vivo, providing good potential for medical researches on psoriasis. 相似文献
Near-IR spectroscopic methods have been developed to determine the degree of hydration of human skin in vivo. Noncontact reflectance spectroscopic imaging was used to investigate the distribution of skin moisture as a function of location. A human study in a clinical setting has generated quantitative data showing the effects of a drying agent and a moisturizer on delineated regions of the forearms of eight volunteers. Two digital imaging systems equipped with liquid-crystal tunable filters were used to collect stacks of monochromatic images at 10-nm intervals over the 650-1050 and 960-1700 nm wavelength bands. Synthetic images generated from measurements of water absorption band areas at three different near-IR wavelengths (970, 1200, and 1450 nm) showed obvious differences in the apparent distribution of water in the skin. Changes resulting from the skin treatments were much more evident in the long-wavelength images than in the short-wavelength ones. The variable sensitivity of the method at different wavelengths has been interpreted as being the result of different penetration depths of the IR light used in the reflectance studies. 相似文献
A Novel scalable approach using Terahertz (THz) waves together with the electromagnetic field simulation was applied to investigate four rabbits of eight rabbit corneas in vivo. One eye of each rabbits’ corneas was edema induced; the other eye of the corneas served as the control. The simulation revealed the propagation of THz waves at a certain distance along the sub-surface of the cornea. THz spectra have been collected close to the corneal surface by deviating the direct reflection of the THz beam for the edema cornea, the reflected wave intensity for edema corneas is generally larger compared with the control cornea. Upon edema becomes severe at the end of the observation, the reflected wave intensities obtained by detector corresponding to the corneal deep stroma layer approach to the same value for all observed corneas. Good correlation is observed between central corneal thickness measurements and THz wave reflection signal intensities. Our results demonstrated that THz spectroscopy technique could obtain the information from different corneal sublayers. 相似文献
Continuous-wave terahertz reflection imaging is a potential tool for biological tissues. Based on our home-made continuous-wave terahertz reflection imaging system, the effect of both polarization mode and reflection window on the imaging performance is studied theoretically and experimentally, showing good agreement. By taking obtaining sample information and image contrast into consideration, p-polarized terahertz waves are recommended. Moreover, considering the sample boundary identification and the image contrast, selection criteria for reflection window are proposed. This work will help to improve the performance of continuous-wave terahertz reflection imaging and accelerate the THz imaging in biological application. 相似文献
We use terahertz imaging to measure four human skin scars in vivo. Clear contrast between the refractive index of the scar and surrounding tissue was observed for all of the scars, despite some being difficult to see with the naked eye. Additionally, we monitored the healing process of a hypertrophic scar. We found that the contrast in the absorption coefficient became less prominent after a few months post‐injury, but that the contrast in the refractive index was still significant even months post‐injury. Our results demonstrate the capability of terahertz imaging to quantitatively measure subtle changes in skin properties and this may be useful for improving scar treatment and management.
Hyperspectral imaging (HSI) is a technology with high potential in the field of non‐invasive detection of cancer. However, in complex imaging situations like HSI of the larynx with a rigid endoscope, various image interferences can disable a proper classification of cancerous tissue. We identified three main problems: i) misregistration of single images in a HS cube due to patient heartbeat ii) image noise and iii) specular reflections (SR). Consequently, an image pre‐processor is developed in the current paper to overcome these image interferences. It encompasses i) image registration ii) noise removal by minimum noise fraction (MNF) transformation and iii) a novel SR detection method. The results reveal that the pre‐processor improves classification performance, while the newly developed SR detection method outperforms global thresholding technique hitherto used by 46%. The novel pre‐processor will be used for future studies towards the development of an operational scheme for HS‐based larynx cancer detection.
RGB image of the larynx derived from the hyperspectral cube and corresponding specular reflections ( a ) manually segmented and ( b ) detected by a novel specular reflection detection method. 相似文献
Stimulated Raman scattering (SRS) microscopy is a nonlinear optical imaging method for visualizing chemical content based on molecular vibrational bonds. However, the imaging speed and sensitivity are currently limited by the noise of the light beam probing the Raman process. In this paper, we present a fast non-average denoising and high-precision Raman shift extraction method, based on a self-reinforcing signal-to-noise ratio (SNR) enhancement algorithm, for SRS spectroscopy and microscopy. We compare the results of this method with the filtering methods and the reported experimental methods to demonstrate its high efficiency and high precision in spectral denoising, Raman peak extraction and image quality improvement. We demonstrate a maximum SNR enhancement of 10.3 dB in fixed tissue imaging and 11.9 dB in vivo imaging. This method reduces the cost and complexity of the SRS system and allows for high-quality SRS imaging without use of special laser, complicated system design and Raman tags. 相似文献
Melasma is a skin disorder characterized by hyperpigmented patches due to increased melanin production and deposition. In this pilot study, we evaluate the potential of multiphoton microscopy (MPM) to characterize non‐invasively the melanin content, location, and distribution in melasma and assess the elastosis severity. We employed a clinical MPM tomograph to image in vivo morphological features in melasma lesions and adjacent normal skin in 12 patients. We imaged dermal melanophages in most dermal melasma lesions and occasionally in epidermal melasma. The melanin volume fraction values measured in epidermal melasma (14% ± 4%) were significantly higher (p < 0.05) than the values measured in perilesional skin (11% ± 3%). The basal keratinocytes of melasma and perilesions showed different melanin distribution. Elastosis was predominantly more severe in lesions than in perilesions and was associated with changes in melanin distribution of the basal keratinocytes. These results demonstrate that MPM may be a non‐invasive imaging tool for characterizing melasma. 相似文献
The main problem in delivery of drugs across the skin is the barrier function of the skin, which is located in the outermost layer of the skin, the stratum corneum. The stratum corneum consists of corneocytes surrounded by lipid layers, the so-called lipid lamellae. When applying drugs onto the skin, the major penetration pathway is the tortuous intercellular route along the lipid lamellae. In order to increase the number of drugs administered via the transdermal route, novel drug delivery systems have to be designed. Among these systems are iontophoresis, electroporation, microneedles, and vesicular systems. 相似文献
One of many problems to be faced when assessing in vivo human muscle mitochondria respiration by phosphorus magnetic resonance spectroscopy (31P-MRS) is the definition of the correct reference population and the values of reference range. To take into account most factors that influence muscle activity as age, sex, physical activity; nutritional state etc., an exceedingly high number of different reference groups are needed. To overcome this problem we developed specific tests to assess separately in vivo the activity and the functionality of muscle mitochondria by 31P-MRS in clinical settings. By activity we refer to muscle whole metabolic activity, i.e. the total oxidative capacity of muscle mitochondria which is influenced by many factors (age, sex, physical activity, nutritional state etc.). By functionality we refer to the qualitative aspects of mitochondrial respiration which depends on the integrity of mitochondrial multienzyme systems and on substrate availability. Our tests ha ve been experienced on some 1200 patients and are currently used to detect deficits of mitochondrial respiration and ion transport in patients with suspected primary or secondary muscle mitochondrial malfunctioning. (Mol Cell Biochem 174: 11–15, 1997) 相似文献