首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Malaria is a life‐threatening infectious blood disease affecting humans and other animals caused by parasitic protozoans belonging to the Plasmodium type especially in developing countries. The gold standard method for the detection of malaria is through the microscopic method of chemically treated blood smears. We developed an automated optical spatial coherence tomographic system using a machine learning approach for a fast identification of malaria cells. In this study, 28 samples (15 healthy, 13 malaria infected stages of red blood cells) were imaged by the developed system and 13 features were extracted. We designed a multilevel ensemble‐based classifier for the quantitative prediction of different stages of the malaria cells. The proposed classifier was used by repeating k‐fold cross validation dataset and achieve a high‐average accuracy of 97.9% for identifying malaria infected late trophozoite stage of cells. Overall, our proposed system and multilevel ensemble model has a substantial quantifiable potential to detect the different stages of malaria infection without staining or expert.   相似文献   

2.
    
In this study, we developed a dual‐modality tomographic system that integrated photoacoustic imaging (PAI) and diffuse optical tomography (DOT) into a single platform for imaging human finger joints with fine structures and associated optical properties. In PAI, spherical focused transducers were utilized to collect acoustic signals, and the concept of virtual detector was applied in a conventional back‐projection algorithm to improve the image quality. A finite‐element based reconstruction algorithm was employed to quantitatively recover optical property distribution in the objects for DOT. The phantom results indicate that PAI has a maximum lateral resolution of 70 µm in resolving structures of targets. DOT was able to recover both optical absorption and reduced scattering coefficients of targets accurately. To validate the potential of this system in clinical diagnosis of joint diseases, the distal interphalangeal (DIP) joints of 4 healthy female volunteers were imaged. We successfully obtained high‐resolution images of the phalanx and the surrounding soft tissue via PAI, and recovered both optical absorption and reduced scattering coefficients of phalanx using DOT. The in vivo results suggest that this dual‐modality system has the potential for the early diagnosis of joint diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA).

Integrated PAI/DOT imaging interface (top) and typical reconstruction of structures and associated optical properties of a female finger joint via PAI and DOT (bottom).  相似文献   


3.
    
We describe a quantitative fluorescence projection tomography technique which measures the 3‐D fluorescence lifetime distribution in optically cleared specimens up 1 cm in diameter. This is achieved by acquiring a series of wide‐field time‐gated images at different relative time delays with respect to a train of excitation pulses, at a number of projection angles. For each time delay, the 3‐D time‐gated intensity distribution is reconstructed using a filtered back projection algorithm and the fluorescence lifetime subsequently determined for each reconstructed horizontal plane by iterative fitting to a mono‐exponential decay. Due to its inherently ratiometric nature, fluorescence lifetime is robust against intensity based artefacts as well as producing a quantitative measure of the fluorescence signal. We present a 3‐D fluorescence lifetime reconstruction of a mouse embryo labelled with an alexa‐488 conjugated antibody targeted to the neurofilament, which clearly differentiates between the extrinsic label and the autofluorescence, particularly from the heart and dorsal aorta. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
    
Polarization-sensitive optical coherence tomography (PS-OCT) enables three-dimensional imaging of biological tissues based on the inherent contrast provided by scattering and polarization properties. In fibrous tissue such as the white matter of the brain, PS-OCT allows quantitative mapping of tissue birefringence. For the popular PS-OCT layout using a single circular input state, birefringence measurements are based on a straight-forward evaluation of phase retardation data. However, the accuracy of these measurements strongly depends on the signal-to-noise ratio (SNR) and is prone to mapping artifacts when the SNR is low. Here we present a simple yet effective approach for improving the accuracy of PS-OCT phase retardation and birefringence measurements. By performing a noise bias correction of the detected OCT signal amplitudes, the impact of the noise floor on retardation measurements can be markedly reduced. We present simulation data to illustrate the influence of the noise bias correction on phase retardation measurements and support our analysis with real-world PS-OCT image data.  相似文献   

5.
    
A growing body of evidence has substantiated the significance of quantitative phase imaging (QPI) in enabling cost‐effective and label‐free cellular assays, which provides useful insights into understanding the biophysical properties of cells and their roles in cellular functions. However, available QPI modalities are limited by the loss of imaging resolution at high throughput and thus run short of sufficient statistical power at the single‐cell precision to define cell identities in a large and heterogeneous population of cells—hindering their utility in mainstream biomedicine and biology. Here we present a new QPI modality, coined multiplexed asymmetric‐detection time‐stretch optical microscopy (multi‐ATOM) that captures and processes quantitative label‐free single‐cell images at ultrahigh throughput without compromising subcellular resolution. We show that multi‐ATOM, based upon ultrafast phase‐gradient encoding, outperforms state‐of‐the‐art QPI in permitting robust phase retrieval at a QPI throughput of >10 000 cell/sec, bypassing the need for interferometry which inevitably compromises QPI quality under ultrafast operation. We employ multi‐ATOM for large‐scale, label‐free, multivariate, cell‐type classification (e.g. breast cancer subtypes, and leukemic cells vs peripheral blood mononuclear cells) at high accuracy (>94%). Our results suggest that multi‐ATOM could empower new strategies in large‐scale biophysical single‐cell analysis with applications in biology and enriching disease diagnostics.   相似文献   

6.
    
Compression optical coherence elastography (OCE) typically requires a mechanical actuator to impart a controlled uniform strain to the sample. However, for handheld scanning, this adds complexity to the design of the probe and the actuator stroke limits the amount of strain that can be applied. In this work, we present a new volumetric imaging approach that utilizes bidirectional manual compression via the natural motion of the user's hand to induce strain to the sample, realizing compact, actuator‐free, handheld compression OCE. In this way, we are able to demonstrate rapid acquisition of three‐dimensional quantitative microelastography (QME) datasets of a tissue volume (6 × 6 × 1 mm3) in 3.4 seconds. We characterize the elasticity sensitivity of this freehand manual compression approach using a homogeneous silicone phantom and demonstrate comparable performance to a benchtop mounted, actuator‐based approach. In addition, we demonstrate handheld volumetric manual compression‐based QME on a tissue‐mimicking phantom with an embedded stiff inclusion and on freshly excised human breast specimens from both mastectomy and wide local excision (WLE) surgeries. Tissue results are coregistered with postoperative histology, verifying the capability of our approach to measure the elasticity of tissue and to distinguish stiff tumor from surrounding soft benign tissue.  相似文献   

7.
    
Morphological changes in the outer retina such as drusen are established biomarkers to diagnose age‐related macular degeneration. However, earlier diagnosis might be possible by taking advantage of more subtle changes that accompany tissues that bear polarization‐altering properties. To test this hypothesis, we developed a method based on polarization‐sensitive optical coherence tomography with which volumetric data sets of the macula were obtained from 10 young (<25 years) and 10 older (>54 years) subjects. All young subjects and 5 of the older subjects had retardance values induced by the retinal pigment epithelium and Bruch's membrane (RPE‐BM) complex that were just above the noise floor measurement (5°‐13° at 840 nm). In contrast, elevated retardance, up to 180°, was observed in the other 5 older subjects. Analysis of the degree of polarization uniformity (DOPU) demonstrates that reduced DOPU (<0.4) in the RPE is associated with elevated double pass phase retardation (DPPR) below the RPE‐BM complex, suggesting that the observed elevated DPPR in older subjects is the result of increased scattering or polarization scrambling. Collectively, our measurements show that the outer retina can undergo dramatic change in its polarization properties with age, and in some cases still retain its clinically normal appearance.   相似文献   

8.
介绍了分子对比剂在光学相干层析成像(optical coherence tom ography,OCT)技术中的研究现状,概述了迄今出现的几种不同的光学相干层析分子成像方法(m olecu lar contrast OCT,简称为MCOCT),讨论了MCOCT的几个重要的实际问题:对比剂的选择范围、激发光强的限制、各种方法灵敏度比较以及MCOCT应用于临床与生物学领域需要考虑的因素。  相似文献   

9.
    
We present a robust, low-cost single-shot implementation of differential phase microscopy utilising a polarisation-sensitive camera to simultaneously acquire four images from which phase contrast images can be calculated. This polarisation-resolved differential phase contrast (pDPC) microscopy technique can be easily integrated with fluorescence microscopy.  相似文献   

10.
    
Label‐free quantitative imaging is highly desirable for studying live cells by extracting pathophysiological information without perturbing cell functions. Here, we demonstrate a novel label‐free multimodal optical imaging system with the capability of providing comprehensive morphological and molecular attributes of live cells. Our morpho‐molecular microscopy (3M) system draws on the combined strength of quantitative phase microscopy (QPM) and Raman microscopy to probe the morphological features and molecular fingerprinting characteristics of each cell under observation. While the commonr‐path geometry of our QPM system allows for highly sensitive phase measurement, the Raman microscopy is equipped with dual excitation wavelengths and utilizes the same detection and dispersion system, making it a distinctive multi‐wavelength system with a small footprint. We demonstrate the applicability of the 3M system by investigating nucleated and nonnucleated cells. This integrated label‐free platform has a promising potential in preclinical research, as well as in clinical diagnosis in the near future.   相似文献   

11.
A statistical model for X-ray scattering of a non-periodic sample to high angles is introduced. It is used to calculate analytically the correlation of distinct diffraction measurements of a particle as a continuous function of particle orientation. Diffraction measurements with shot-noise are also considered. This theory provides a general framework for a deeper understanding of single particle imaging techniques used at X-ray free-electron lasers. Many of these techniques use correlations as a measure of diffraction-pattern similarity in order to determine properties of the sample, such as particle orientation.  相似文献   

12.
    
Effective intraoperative tumor margin assessment is needed to reduce re‐excision rates in breast‐conserving surgery (BCS). Mapping the attenuation coefficient in optical coherence tomography (OCT) throughout a sample to create an image (attenuation imaging) is one promising approach. For the first time, three‐dimensional OCT attenuation imaging of human breast tissue microarchitecture using a wide‐field (up to ~45 × 45 × 3.5 mm) imaging system is demonstrated. Representative results from three mastectomy and one BCS specimen (from 31 specimens) are presented with co‐registered postoperative histology. Attenuation imaging is shown to provide substantially improved contrast over OCT, delineating nuanced features within tumors (including necrosis and variations in tumor cell density and growth patterns) and benign features (such as sclerosing adenosis). Additionally, quantitative micro‐elastography (QME) images presented alongside OCT and attenuation images show that these techniques provide complementary contrast, suggesting that multimodal imaging could increase tissue identification accuracy and potentially improve tumor margin assessment.  相似文献   

13.
    
In vivo imaging of tissue/vasculature oxygen saturation levels is of prime interest in many clinical applications. To this end, the feasibility of combining two distinct and complementary imaging modalities is investigated: optoacoustics (OA) and near‐infrared optical tomography (NIROT), both operating noninvasively in reflection mode. Experiments were conducted on two optically heterogeneous phantoms mimicking tissue before and after the occurrence of a perturbation. OA imaging was used to resolve submillimetric vessel‐like optical absorbers at depths up to 25 mm, but with a spectral distortion in the OA signals. NIROT measurements were utilized to image perturbations in the background and to estimate the light fluence inside the phantoms at the wavelength pair (760 nm, 830 nm). This enabled the spectral correction of the vessel‐like absorbers' OA signals: the error in the ratio of the absorption coefficient at 830 nm to that at 760 nm was reduced from 60%‐150% to 10%‐20%. The results suggest that oxygen saturation (SO 2) levels in arteries can be determined with <10% error and furthermore, that relative changes in vessels' SO 2 can be monitored with even better accuracy. The outcome relies on a proper identification of the OA signals emanating from the studied vessels.   相似文献   

14.
    
Optical coherence tomography (OCT) is widely used for biomedical imaging and clinical diagnosis. However, speckle noise is a key factor affecting OCT image quality. Here, we developed a custom generative adversarial network (GAN) to denoise OCT images. A speckle‐modulating OCT (SM‐OCT) was built to generate low speckle images to be used as the ground truth. In total, 210 000 SM‐OCT images were used for training and validating the neural network model, which we call SM‐GAN. The performance of the SM‐GAN method was further demonstrated using online benchmark retinal images, 3D OCT images acquired from human fingers and OCT videos of a beating fruit fly heart. The denoise performance of the SM‐GAN model was compared to traditional OCT denoising methods and other state‐of‐the‐art deep learning based denoise networks. We conclude that the SM‐GAN model presented here can effectively reduce speckle noise in OCT images and videos while maintaining spatial and temporal resolutions.  相似文献   

15.
    
Quantification of the diffusion of small molecules and large lipid transporting lipoproteins across arterial tissues could be useful in elucidating the mechanism(s) of atherosclerosis. Optical coherence tomography (OCT) was used to determine the effect of temperature on the rate of diffusion of glucose and low‐density lipoproteins (LDL) in human carotid endarterectomy tissue in vitro. The permeability rate for glucose was calculated to be (3.51 ± 0.27) × 10–5 cm/s (n = 13) at 20 °C, and (3.70 ± 0.44) × 10–5 cm/s (n = 5) at 37 °C; for LDL the rate was (2.42 ± 0.33) × 10–5 cm/s (n = 5) at 20 °C and (4.77 ± 0.48) × 10–5 cm/s (n = 7) at 37 °C, where n is the number of samples. These results demonstrate that temperature does not significantly influence the permeation of small molecules (e.g. glucose), however, raising the temperature does significantly increase the permeation of LDL. These results provide new information about the capacity of an atherogenic lipoprotein to traverse the intimal layer of the artery. These results also demonstrate the potential of OCT for elucidating the dynamics of lipoprotein perfusion across the arterial wall. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
    
The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved crystallography, normally achieved by Laue (polychromatic) diffraction, for which the monochromatic laser radiation of a free-electron X-ray laser is unsuitable. We discuss the possibility of obtaining single-shot, angle-integrated rocking curves from CCB patterns, and the dependence of the resulting patterns on the focused beam coordinate when the beam diameter is larger or smaller than a nanocrystal, or smaller than one unit cell. We show how structure factor phase information is provided at overlapping interfering orders and how a common phase origin between different shots may be obtained. Their use in refinement of the phase-sensitive intensity between overlapping orders is suggested.  相似文献   

17.
    
The embryo phenotyping of genetic murine model is invaluable when investigating functions of genes underlying embryonic development and birth defect. Although traditional imaging technologies such as ultrasound are very useful for evaluating phenotype of murine embryos, the use of advanced techniques for phenotyping is desirable to obtain more information from genetic research. This letter tests the feasibility of optical coherence tomography (OCT) as a high‐throughput phenotyping tool for murine embryos. Three‐dimensional OCT imaging is performed for live and cleared mouse embryos in the late developmental stage (embryonic day 17.5). By using a dynamic focusing method and OCT angiography (OCTA) approach, our OCT imaging of the embryo exhibits rapid and clean visualization of organ structures deeper than 5 mm and complex microvasculature of perfused blood vessels in the murine embryonic body. This demonstration suggests that OCT imaging can be useful for comprehensively assessing embryo anatomy and angiography of genetically engineered mice.  相似文献   

18.
    
Optogenetics has emerged as an exciting tool for manipulating neural activity, which in turn, can modulate behavior in live organisms. However, detecting the response to the optical stimulation requires electrophysiology with physical contact or fluorescent imaging at target locations, which is often limited by photobleaching and phototoxicity. In this paper, we show that phase imaging can report the intracellular transport induced by optogenetic stimulation. We developed a multimodal instrument that can both stimulate cells with subcellular spatial resolution and detect optical pathlength (OPL) changes with nanometer scale sensitivity. We found that OPL fluctuations following stimulation are consistent with active organelle transport. Furthermore, the results indicate a broadening in the transport velocity distribution, which is significantly higher in stimulated cells compared to optogenetically inactive cells. It is likely that this label‐free, contactless measurement of optogenetic response will provide an enabling approach to neuroscience.   相似文献   

19.
    
For the extraction of the best possible X‐ray diffraction data from macromolecular crystals, accurate positioning of the crystals with respect to the X‐ray beam is crucial. In addition, information about the shape and internal defects of crystals allows the optimization of data‐collection strategies. Here, it is demonstrated that the X‐ray beam available on the macromolecular crystallography beamline P14 at the high‐brilliance synchrotron‐radiation source PETRA III at DESY, Hamburg, Germany can be used for high‐energy phase‐contrast microtomography of protein crystals mounted in an optically opaque lipidic cubic phase matrix. Three‐dimensional tomograms have been obtained at X‐ray doses that are substantially smaller and on time scales that are substantially shorter than those used for diffraction‐scanning approaches that display protein crystals at micrometre resolution. Adding a compound refractive lens as an objective to the imaging setup, two‐dimensional imaging at sub‐micrometre resolution has been achieved. All experiments were performed on a standard macromolecular crystallography beamline and are compatible with standard diffraction data‐collection workflows and apparatus. Phase‐contrast X‐ray imaging of macromolecular crystals could find wide application at existing and upcoming low‐emittance synchrotron‐radiation sources.  相似文献   

20.
    
This study objective is to validate a method for the measurement of two compound phantoms as a proof of concept for oxygen saturation level measurement via a thermal imaging bundle. The method consists of a thermal imaging system and an algorithm which estimates the compound concentration according to temperature rise. A temperature rise is obtained by illuminating the tissue with a laser with different wavelengths in the NIR range and measured using a thermal camera. A coherent thermal imaging bundle was used for image transmittance for minimal invasive transendoscopic use. The algorithm's estimation ability was evaluated using agar phantoms of varying Methylene Blue and ICG ratios as well as blood samples The Methylene Blue ratio in each phantom was estimated and the calculated average RMS of the error was 9.38%, a satisfying value for this stage, verifying the algorithm's and bundle's suitability for the use in a minimal invasive system. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号