首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. The Drosophila cardini group includes 15 species, which are subdivided into the D. cardini and D. dunni subgroups. Although many phylogenetic hypotheses have been proposed for this group during the last five decades (based on patterns of reproductive isolation, morphology of male genitalia, chromosomal inversions, isozyme variation, or molecular sequence data), these are mostly discordant with each other. We aimed to clarify some of the evolutionary patterns related to the origin of this incongruence, while also attempting to provide a better-supported phylogenetic hypothesis for the D. cardini subgroup. For this purpose, sequences from three mitochondrial and three nuclear loci were gathered for at least eight species, and both individual gene trees and joint species tree estimates were evaluated. Although there was concordance among gene trees within each of the nuclear and mitochondrial sets, considerable incongruence was revealed in the comparisons between these two data sets. The branching position of D. neocardini was the main source of incongruence, and species trees reconstructed using different approaches with and without this species were particularly incongruent. In addition to providing a better approximation of the evolutionary history of the D. cardini group, this study suggests that incomplete lineage sorting or introgression may be biasing previous species tree estimates. More generally, the results also suggest that the use of supermatrix methods can lead to an overestimation of support for the inferred relationships, and highlight the potential effects of different taxon sampling strategies in phylogenetic reconstruction.  相似文献   

2.
Until recently, studies of divergence and gene flow among closely‐related taxa were generally limited to pairs of sister taxa. However, organisms frequently exchange genes with other non‐sister taxa. The “northern oriole” group within genus Icterus exemplifies this problem. This group involves the extensively studied hybrid zone between Baltimore oriole (Icterus galbula) and Bullock's oriole (I. bullockii), an alleged hybrid zone between I. bullockii and black‐backed oriole (I. abeillei), and likely mtDNA introgression between I. galbula and I. abeillei. Here, we examine the divergence population genetics of the entire northern oriole group using a multipopulation Isolation‐with‐Migration (IM) model. In accordance with Haldane's rule, nuclear loci introgress extensively beyond the I. galbula–I. bullockii hybrid zone, while mtDNA does not. We found no evidence of introgression between I. bullockii and I. abeillei or between I. galbula and I. abeillei when all three species were analyzed together in a three‐population model. However, traditional pairwise analysis suggested some nuclear introgression from I. abeillei into I. galbula, probably reflecting genetic contributions from I. bullockii unaccounted for in a two‐population model. Thus, only by including all members of this group in the analysis was it possible to rigorously estimate the level of gene flow among these three closely related species.  相似文献   

3.
Introgression and incomplete lineage sorting (ILS) are two of the main sources of gene‐tree incongruence; both can confound the assessment of phylogenetic relationships among closely related species. The Triatoma phyllosoma species group is a clade of partially co‐distributed and cross‐fertile Chagas disease vectors. Despite previous efforts, the phylogeny of this group remains unresolved, largely because of substantial gene‐tree incongruence. Here, we sequentially address introgression and ILS to provide a robust phylogenetic hypothesis for the T. phyllosoma species group. To identify likely instances of introgression prior to molecular scrutiny, we assessed biogeographic data and information on fertility of inter‐specific crosses. We first derived a few explicit hybridization hypotheses by considering the degree of spatial overlap within each species pair. Then, we assessed the plausibility of these hypotheses in the light of each species pair's cross‐fertility. Using this contextual information, we evaluated mito‐nuclear (cyt b, ITS‐2) gene‐tree incongruence and found evidence suggesting introgression within two species pairs. Finally, we modeled ILS using a Bayesian multispecies coalescent approach and either (a) a “complete” dataset with all the specimens in our sample, or (b) a “filtered” dataset without putatively introgressed specimens. The “filtered tree” had higher posterior‐probability support, as well as more plausible topology and divergence times, than the “complete tree.” Detecting and filtering out introgression and modeling ILS allowed us to derive an improved phylogenetic hypothesis for the T. phyllosoma species group. Our results illustrate how biogeographic and ecological‐reproductive contextual information can help clarify the systematics and evolution of recently diverged taxa prone to introgression and ILS.  相似文献   

4.
The genetic divergence between two closely related rockfishes, Sebastes longispinis and Sebastes hubbsi, was inferred from both mitochondrial DNA (mtDNA) sequence variations and amplified fragment length polymorphism (AFLP) markers. The two species were placed into two distinct clades in a neighbour-joining tree based on the AFLP data, clearly indicating that they represented separate species. Although this evidence, together with a previous morphological study, revealed clear differences between the two species, no obvious clustering of haplotypes by species was detected in the minimum spanning network inferred from sequence variations in the mtDNA control region (c. 500 base pairs). In fact, the significant Φ(ST) estimates indicated only a restriction of gene flow between the two species. Uncorrected pairwise sequence differences in mtDNA between two species were small (1·8% at maximum, on the lower end of the range of control region divergence between previously studied sister species pairs), suggesting their speciation event as having been fairly recent. The incongruent results of AFLP and mtDNA phylogenies suggested incomplete lineage sorting and introgression of mtDNA in the course of the evolution of the two species. Differences in their main distributional ranges and the small level of sequence divergence in mtDNA suggests that speciation and dispersal may have been associated with glacio-eustatic sea level fluctuations between the Japanese Archipelago and the Korean Peninsula during the past 0·4 million years.  相似文献   

5.
Abstract Between 1973 and 2003 mean morphological features of the cactus finch, Geospiza scandens, and the medium ground finch, G. fortis, populations on the Galápagos island of Daphne Major were subject to fluctuating directional selection. An increase in bluntness or robustness in the beak of G. scandens after 1990 can only partly be explained by selection. We use 16 microsatellite loci to test predictions of the previously proposed hypothesis that introgressive hybridization contributed to the trend, resulting in genes flowing predominantly from G. fortis to G. scandens. To identify F1 hybrids and backcrosses we use pedigrees where known, supplemented by the results of assignment tests based on 14 autosomal loci when parents were not known. We analyze changes in morphology and allelic composition in the two populations over a period of 15–20 years. With samples that included F1 hybrids and backcrosses, the G. scandens population became more similar to the G. fortis population both genetically and morphologically. Gene flow between species was estimated to be three times greater from G. fortis to G. scandens than in the opposite direction, resulting in a 20% reduction in the genetic difference between the species. Nevertheless, removing identified F1 hybrids and backcrosses from the total sample and reanalyzing the traits did not eliminate the convergence. The two species also converged in beak shape by 22.2% and in body size by 45.5%. A combination of introgressive hybridization and selection jointly provide the best explanation of convergence in morphology and genetic constitution under the changed ecological conditions following a major El Niño event in 1983. The study illustrates how species without postmating barriers to gene exchange can alternate between convergence and divergence when environmental conditions oscillate.  相似文献   

6.
7.
The dramatic expansion of the geographical range of coyotes over the last 90 years is partly explained by changes to the landscape and local extinctions of wolves, but hybridization may also have facilitated their movement. We present mtDNA sequence data from 686 eastern coyotes and measurements of 196 skulls related to their two-front colonization pattern. We find evidence for hybridization with Great Lakes wolves only along the northern front, which is correlated with larger skull size, increased sexual dimorphism and a five times faster colonization rate than the southern front. Northeastern haplotype diversity is low, suggesting that this population was founded by very few females moving across the Saint Lawrence River. This northern front then spread south and west, eventually coming in contact with an expanding front of non-hybrid coyotes in western New York and Pennsylvania. We suggest that hybridization with wolves in Canada introduced adaptive variation that contributed to larger size, which in turn allowed eastern coyotes to better hunt deer, allowing a more rapid colonization of new areas than coyotes without introgressed wolf genes. Thus, hybridization is a conduit by which genetic variation from an extirpated species has been reintroduced into northeastern USA, enabling northeastern coyotes to occupy a portion of the niche left vacant by wolves.  相似文献   

8.
Ornamental colours usually evolve as honest signals of quality, which is supported by the fact that they frequently depend on individual condition. It has generally been suggested that some, but not all types of ornamental colours are condition dependent, indicating that different evolutionary mechanisms underlie the evolution of multiple types of ornamental colours even when these are exhibited by the same species. Stress hormones, which negatively affect condition, have been shown to affect colour traits based on different pigments and structures, suggesting that they mediate condition dependence of multiple ornament types both among and within individuals. However, studies investigating effects of stress hormones on different ornament types within individuals are lacking, and thus, evidence for this hypothesis is scant. Here, we investigated whether corticosterone mediates condition dependence of multiple ornaments by manipulating corticosterone levels and body condition (via food availability) using a two‐factorial design and by assessing their effect on multiple colour traits in male common lizards. Corticosterone negatively affected ventral melanin‐ and carotenoid‐based coloration, whereas food availability did not affect coloration, despite its significant effect on body condition. The corticosterone effect on melanin‐ and carotenoid‐based coloration demonstrates the condition dependence of both ornaments. Moreover, corticosterone affected ventral coloration and had no effect on the nonsexually selected dorsal coloration, showing specific effects of corticosterone on ornamental ventral colours. This suggests that corticosterone simultaneously mediates condition dependence of multiple colour traits and that it therefore accounts for covariation among them, which may influence their evolution via correlational selection.  相似文献   

9.
Evolutionary history of Muscicapidae flycatchers is inferred from nuclear and mitochondrial DNA (mtDNA) sequence comparisons and population genetic analysis of nuclear and mtDNA markers. Phylogenetic reconstruction based on sequences from the two genomes yielded similar trees with respect to the order at which the species split off. However, the genetic distances fitted a nonlinear, polynomial model reflecting diminishing divergence rate of the mtDNA sequences compared to the nuclear DNA sequences. This could be explained by Haldane's rule because genetic isolation might evolve more rapidly on the mitochondrial rather than the nuclear genome in birds. This is because hybrid sterility of the heterogametic sex (females) would predate that of the homogametic sex (males), leading to sex biased introgression of nuclear genes. Analyses of present hybrid zones of pied (Ficedula hypoleuca) and collared flycatchers (F. albicollis) may indicate a slight sexual bias in rate of introgression, but the introgression rates were too low to allow proper statistical analyses. It is suggested, however, that the observed deviation from linearity can be explained by a more rapid mutational saturation of the mtDNA sequences than of the nuclear DNA sequences, as supported by analyses of third codon position transversions at two protein coding mtDNA genes. A phylogeographic scenario for the black and white flycatcher species is suggested based on interpretation of the genetic data obtained. Four species appear to have diverged from a common ancestor relatively simultaneously during the Pleistocene. After the last glaciation period, pied and collared flycatchers expanded their breeding ranges and eventually came into secondary contact in Central and Eastern Europe and on the Baltic Isles.  相似文献   

10.
Many species have mitochondrial DNA lineages that are phylogenetically intermixed with other species, but studies have rarely tested the cause of such paraphyly. In this study, we tested two hypotheses that could explain mitochondrial paraphyly of Holarctic gadwalls (Anas strepera) with respect to Asian falcated ducks (A. falcata). First, hybridization could have resulted in falcated duck mitochondrial DNA (mtDNA) introgressing into the gadwall gene pool. Second, gadwalls and falcated ducks could have diverged so recently that mtDNA lineages have not sorted to reciprocal monophyly. We used coalescent analyses of three independent loci to distinguish between these two hypotheses. Two lines of evidence support introgression. First, analyses of the three loci combined show that some introgression is necessary to explain current genetic diversity in gadwalls. Second, we generated alternative predictions regarding time since divergence estimated from mtDNA: falcated ducks and gadwalls would have diverged between 65,000 and 700,000 years before present (ybp) under the introgression hypothesis and between 11,000 and 76,000 ybp under the incomplete lineage sorting hypothesis. The two independent nuclear introns indicated that these species diverged between 210,000 and 5,200,000 ybp, which did not overlap the predicted time for incomplete lineage sorting. These analyses also suggested that ancient introgression ( approximately 14,000 ybp) has resulted in the widespread distribution and high frequency of falcated-like mtDNA (5.5% of haplotypes) in North America. This is the first study to use a rigorous quantitative framework to reject incomplete lineage sorting as the cause of mitochondrial paraphyly.  相似文献   

11.
We evaluated the relationship between Celeus undatus and Celeus grammicus, with the objective of clarifying their evolutionary history. We analysed fragments of the mitochondrial and nuclear genes of 57 specimens. For comparative purposes, we inspected the plumage patterns of 77 skins. Our findings highlight the absence of reciprocal monophyly between the two taxa, given their reduced genetic divergence, and the lack of any clear separation of the two forms in the haplotype networks. A similar situation was found in the STRUCTURE analysis, with reciprocal contributions from the two taxa to the respective clusters, indicating that C. grammicus and C. undatus cannot be differentiated using the molecular markers. Corroborating the genetic data, our plumage analyses also failed to find any clear diagnostic characters between the polytypic C. undatus and C. grammicus, as they are defined at present. The genetic profile is consistent with either extensive historical gene flow between the species or, alternatively, incomplete lineage sorting, rather than recent secondary contact. The lack of monophyly between the two taxa impeded subspecies‐level phylogeographic inferences, with the subspecific variation being interpreted as a probable artefact of the phenotypic plasticity of the two forms. These findings indicate clearly that the two taxa form a single evolutionary unit, in which the morphological differentiation used to diagnose the species, combined with their geographic distribution, is at odds with the incomplete separation of the taxa. This may reflect disparities in the rates of differentiation between molecular and phenotypic markers, which is possibly due to the variation in selection pressures along a humidity gradient in Amazonia.  相似文献   

12.
Once thought rare in animal taxa, hybridization has been increasingly recognized as an important and common force in animal evolution. In the past decade, a number of studies have suggested that hybridization has driven speciation in some animal groups. We investigate the signature of hybridization in the genome of a putative hybrid species, Xiphophorus clemenciae, through whole genome sequencing of this species and its hypothesized progenitors. Based on analysis of this data, we find that X. clemenciae is unlikely to have been derived from admixture between its proposed parental species. However, we find significant evidence for recent gene flow between Xiphophorus species. Although we detect genetic exchange in two pairs of species analyzed, the proportion of genomic regions that can be attributed to hybrid origin is small, suggesting that strong behavioral premating isolation prevents frequent hybridization in Xiphophorus. The direction of gene flow between species is potentially consistent with a role for sexual selection in mediating hybridization.  相似文献   

13.
14.
Chloroplast DNA (cpDNA) sequence variation is currently the most widely used tool for the inference of phylogenetic relationships among plants at all taxonomic levels. Generally, noncoding regions tend to evolve faster than coding sequences and have recently been applied to the study of phylogenetic relationships among closely related taxa. An implicit assumption of many of these studies is that intraspecific cpDNA variation is either absent or low and therefore will not interfere with the reconstruction of interspecific relationships. A survey of cpDNA sequence variation in the common alpine plant species Draba aizoides L. was undertaken to assess levels of intraspecific cpDNA sequence variation. These levels were compared to levels of interspecific sequence divergence between D. aizoides and related alpine Draba species. Intraspecific cpDNA sequence divergence was extensive in D. aizoides, and intraspecific differences were often larger than interspecific differences. cpDNA haplotype relationships were explored using a maximum parsimony approach and minimum-spanning networks. Results from both methods were largely congruent but comparisons provided interesting insights into the presumed evolutionary history of cpDNA haplotypes. A combined effect of cpDNA introgression and complex lineage sorting was inferred to explain the pattern of cpDNA variation found in D. aizoides. Our results suggest that intraspecific cpDNA variation can be extensive and that intraspecific variation needs to be taken into account when inferring phylogenetic relationships among closely related taxa.  相似文献   

15.
16.
The Seychelles is a remarkably interesting archipelago for evolutionary studies, but only recently have molecular markers been used to explore its biogeographic patterns. Here we used morphological and molecular data to examine diversity and phylogenetic relationships of two endemic skink sister‐species from this archipelago: Trachylepis sechellensis and Trachylepis wrightii. Mitochondrial DNA genealogy rendered a monophyletic T. wrightii nested within a paraphyletic T. sechellensis, whereas nuclear DNA sequences from five unlinked markers reflected the accepted taxonomy. Hybridization and massive mtDNA introgression leading to the complete replacement of the native mtDNA lineage of T. sechellensis in some of the islands were invoked to explain this result, and morphological variation also seemed to reflect this pattern of reticulation. A Mio‐Pliocene divergence between both species is suggested. Multilocus molecular data were used to uncover biogeographic patterns within the archipelago, which reflected shared patterns with other co‐distributed lizard taxa; specifically a north–south marked structure, a close relationship between populations from Fregate and the southern islands, and a detectable isolation within the southern group, between Mahé, and Silhouette and North Islands. Gene flow from these latter islands towards the northern group was also suggested. These results add to the growing body of evidence of the influence of geographic distance and sea‐level oscillations in shaping the genetic structure of Seychellois taxa and of the existence of common biogeographic patterns across the archipelago.  相似文献   

17.
Discordance between the mitochondrial and nuclear genomes is a prevalent phenomenon in nature, in which the underlying processes responsible are considered to be important in shaping genetic variation in natural populations. Among the evolutionary processes that best explain such genomic mismatches incomplete lineage sorting and introgression are commonly identified, however, many studies are unable to distinguish between these hypotheses, which has become a major challenge in the field. In this issue of Molecular Ecology, Firneno et al. (2020) present an elegant exploration of mitochondrial‐nuclear discordance in Mesoamerican toads. Integrating genome‐scale and spatial data to test between these hypotheses within an empirical model testing framework, they find strong support that incomplete lineage sorting explains the observed discordance. Their work, along with many previous articles in Molecular Ecology, highlights the commonality of mito‐nuclear discordance among species despite the expectations of tightly concerted mitochondrial and nuclear genome evolution. It is increasingly clear that the nuclear genomes of many species are (at least for short periods of evolutionary time) functionally compatible with multiple, divergent mitochondrial haplotypes. As such, we suggest future research not only seeks to understand the processes causing spatial mito‐nuclear discordance (e.g. incomplete lineage sorting, introgression), but also explores those that maintain discordance through time and space (e.g. relaxed selection on mito‐nuclear interactions, heterozygosity, population demographics). We also discuss the vital role that taxonomy plays in interpreting patterns of mito‐nuclear discordance when data‐consistent yet differing taxonomies are used, such as treating allopatrically distributed taxa as multiple isolated populations versus multiple micro‐endemic species.  相似文献   

18.
  • We investigate chloroplast DNA variation in a hyperdiverse community of tropical rainforest trees in French Guiana, focusing on patterns of intraspecific and interspecific variation. We test whether a species genetic diversity is higher when it has congeners in the community with which it can exchange genes and if shared haplotypes are more frequent in genetically diverse species, as expected in the presence of introgression.
  • We sampled a total of 1,681 individual trees from 472 species corresponding to 198 genera and sequenced them at a noncoding chloroplast DNA fragment.
  • Polymorphism was more frequent in species that have congeneric species in the study site than in those without congeners (30% vs. 12%). Moreover, more chloroplast haplotypes were shared with congeners in polymorphic species than in monomorphic ones (44% vs. 28%).
  • Despite large heterogeneities caused by genus‐specific behaviors in patterns of hybridization, these results suggest that the higher polymorphism in the presence of congeners is caused by local introgression rather than by incomplete lineage sorting. Our findings suggest that introgression has the potential to drive intraspecific genetic diversity in species‐rich tropical forests.
  相似文献   

19.
Hybridization and/or incomplete sorting of ancestral polymorphism are commonly implicated to explain discordant phylogenetic analyses of closely related species complexes. One genus in which these phenomena have been suggested to have played major roles based on phylogenetic data is Conradina, a genus of mints (Lamiaceae) endemic to the southeastern USA containing several endangered species. The goals of this study were to use microsatellite data to better understand patterns of genetic structure in Conradina, to test hypotheses of recent or ancient hybridization and incomplete lineage sorting, and to clarify species boundaries. Individuals from 55 populations representing all Conradina species were genotyped using 10 microsatellite loci. Analyses of the patterns of genetic structure in Conradina revealed a clear differentiation of populations following recognized species boundaries, indicating that species have diverged from one another genetically and interspecific hybridization has not occurred recently. Neither ancient hybridization nor incomplete lineage sorting is supported as the sole cause of species nonmonophyly, suggesting that both may have contributed to patterns found in phylogenetic trees; however, analyses of other types of data may be more appropriate to distinguish between these two hypotheses. Because all described species appear to be valid entities, the current listing status of most endangered species of Conradina is appropriate; however, populations of Conradina canescens are genetically differentiated into three groups, each of which may merit species status, and several recently discovered populations of Conradina in Dunn's Creek State Park in Florida are highly differentiated genetically and also appear to represent a new species.  相似文献   

20.
The Réunion grey white‐eye (Zosterops borbonicus), a small passerine endemic to the island of Réunion (Mascarene archipelago), constitutes an extraordinary case of phenotypic variation within a bird species, with conspicuous plumage colour differentiation at a microgeographical scale. To understand whether natural selection could explain such variability, we compared patterns of variation in morphological and plumage colour traits within and among populations. To quantify morphological variation, we used measurements obtained by Frank Gill in the 1960s from 239 individuals collected in 60 localities distributed over the entire island of Réunion. To quantify colour variation, we measured the reflectance spectra of plumage patches of 50 males from a subset of Gill's specimens belonging to the five recognized plumage colour variants and used a visual model to project these colours in an avian‐appropriate, tetrachromatic, colour space. We found that variants occupy different regions of the avian colour space and that between‐variant differences for most plumage patches could be discriminated by the birds. Differences in morphology were also detected, but these were, in general, smaller than colour differences. Overall, we found that variation in both plumage colour and morphology among variants is greater than would be expected if genetic drift alone was responsible for phenotypic divergence. As the plumage colour variants correspond to four geographical forms, our results suggest that phenotypic evolution in the Réunion grey white‐eye is at least partly explained by divergent selection in different habitats or regions. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 459–473.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号