首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To clarify the diversity and function of isozymes of ascorbate peroxidase (APX) in plants, a method of producing large quantities of these proteins is needed. Here, we describe an Escherichia coli expression system for the rapid and economic expression of two rice APX genes, APXa and APXb (GeneBank accession Nos. D45423 and AB053297, respectively). The two genes were cloned into the pGEX-6p-3 vector to allow expression of APX as a glutathione-S-transferase (GST) fusion protein. The GST-APXa and GST-APXb fusion proteins were purified by affinity chromatography using a glutathione-Sepharose 4B column, with final yields of 40 and 73 mg g–1 dry cells, respectively. Specific activities were 15 and 20 mM ascorbate min–1 mg–1 protein, respectively. The Km values for ascorbate were 4 and 1 mM, respectively, and those for H2O2 were 0.3 and 0.7 mM, respectively indicating that the two rice isoenzymes have different properties.Revisions requested 27 September 2004; Revisions received 12 November 2004  相似文献   

2.
Exposure of the W3110 strain ofEscherichia coli K12 to low concentrations of glutaraldehyde or formaldehyde results in an unusual pattern of protein expression, as determined by high-resolution, two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). A decline in total protein synthesis is accompanied by the upregulation of three proteins of approximate molecular weight 38 kDa. In the presence of 0.1 mM glutaraldehyde this response occurs within the first 5 min of incubation, and with 0.1 mM formaldehyde, within the first 30 min of incubation. The 38 kDa proteins continue to be expressed at high levels until cell death. Comparison of our 2-D PAGE patterns withE. coli gene-protein and plasmid indexes indicates that one of the proteins may be the major gene product of thepyrC locus. This pattern of protein synthesis may indicate a novelE. coli stress response.  相似文献   

3.
The partition of n-hexadecane in the spent growth medium of Acinetobacter sp. HOI-N was determined by measuring the increase in the relative aqueous solubility of 3H-hexadecane as compared to controls. The amount of hexadecane partitioned was proportional to the protein concentration. The specific solubility of hexadecane (nmol/mg protein) was analyzed by least-squares fitting yielding an average slope of 0.6 with a standard deviation of 0.3, indicating either nonequilibrium of hexadecane or physical aggregation of protein. The amount of hexadecane partitioned was concentration dependent yielding optically clear microemulsions at hexadecane concentrations of less than 1.4mM and macroemulsions at hexadecane concentrations of 1.4mM or greater. Preliminary results indicated that hexadecane and partitioned by a lipoprotein complex.  相似文献   

4.
We report electric-dichroism and electron-microscopic studies of chromatin fibers fixed by protein–protein crosslinking at salt concentrations ranging from 10 to 100 mM. The results confirm a progressive disorganization of the fiber as the salt concentration is lowered. The positive dichroism and large polarizability anisotropy characteristic of the 300-Å diameter fiber found in 100 mM salt are replaced by negative dichroism and smaller effective polarizability anisotropy or dipole moment for samples fixed at lower salt concentration. We interpret the results in terms of segmental, field-induced orientation of the disorganized structure which is present in low salt concentrations. We also observed a field-induced absorbance decrease in chromatin fibers fixed at salt concentration at and below 100 mM. All three optical effects, namely overall orientation of the high-salt fixed fiber, segmental orientation of the low-salt fixed fiber, and field-induced absorbance decrease, occur on roughly the same time scale, 20–100 μs for 50 nucleosome polynucleosomes. The polarizability anisotropy of fibers fixed in 100 mM salt was found to be proportional to the length of the fragment and to the reciprocal square root of the conductivity of the solution used for electric-dichroism measurements. Addition of Mg2+ to the measurement buffer affected the dichroism amplitude of samples fixed below 100 mM salt but not those fixed at 100 mM salt. The results reinforce the need for caution in interpreting electric-dichroism measurements on chromatin fibers because of possible field-induced distortion effects.  相似文献   

5.
M T Record 《Biopolymers》1967,5(10):975-992
An approximate analytical expression for the electrostatic free energy of a polynucleo-tide in any of its possible ordered or random conformations is derived by integration of the screened-Coulomb potential energy function over all charge pairs in the structure. The electrostatic free energy of any form is found to be a linear function of the logarithm of the monovalent counterion concentration, in the range of low salt concentrations. Hence the electrostatic free energy difference between ordered and disordered forms in a polynucleotide structural transition is a linear function of the logarithm of the monovalent counterion concentration. A free energy balance applied to a two-state model for the transition then yields a linear dependence of the transition temperature Tm upon the logarithm of the counterion concentration. Calculation of the quantity dTm/d log M, where M is the monovalent counterion concentration, shows it to be a characteristic constant for a given transition, with a magnitude and sign proportional to the charge density difference between the ordered and disordered forms. Use of any one of several alternate, simple assumptions yields predicted dTm/d log M values in good agreement with experimental data for various polynucleotide transitions.  相似文献   

6.
Summary Callus of the mangrove plant, Sonneratia alba J. Smith, established from pistils of flower buds were cultured on solid Murashige and Skoog medium supplemented with 0 to 500 mM NaCl. Maximum growth was observed with 50 mM NaCl, and net growth of callus occurred for concentrations up to 200 mM NaCl. At 500 mM NaCl, growth of callus was completely inhibited, although a part of the tissue was still alive after 30 d. Cellular levels of Na+ and Cl were greatly increased by the treatment with NaCl. Uptake of K+ was also enhanced and was accompanied by increasing levels of Na+ and Cl so that the Na+/K+ ratio was almost constant (4.1–4.2) in callus grown with 50–200 mM NaCl. Levels of Mg2+ and Ca2+ were not changed significantly with 50–200 mM NaCl, whereas levels of free NH 4 + , NO 3 and SO 4 2− ions, which are convertible to organic compounds, were lowest in callus grown with 50 mM NaCl. The rate of conversion of 15NH 4 + into macromolecules during 30 d culture with 0–100 mM NaCl did not vary greatly, but 200 mM NaCl reduced the biosynthesis of macromolecules from this ion. The highest rate of conversion of 15NO 3 into macromolecules was observed at 50 mM NaCl. Identification of compatible solutes with NMR-spectroscopy indicated that mannitol is the compatible solute for intact plants of Sonneratia alba, but no accumulation of mannitol was found in calluses, not even in those grown at high concentrations of NaCl.  相似文献   

7.
Vinca rosea L. crown-gall tumor callus tissue cultures treated with N-benzyl-N methyl propargylamine (pargyline) exhibited a decrease in the level of endogenous indoleacetic acid from 0.42 μg/mg of protein to less than 0.30 μg/mg of protein. A simultaneous decrease in the specific activity of mitochondrial amine oxidase from 3000 units to less than 250 units at 1.0 μM, 0.01 mM, 0.1 mM and 1.0 mM pargyline, suggested a relationship between amine oxidase function and indoleacetic acid synthesis. Tryptamine incorporation into indoleacetic acid was also decreased at these concentrations. Pargyline inhibited tumor callus growth significantly (based on fresh weight measurements) at the highest concentration, 1.0mM. These data support the hypothesis of a coordinate metabolic system linking mitochondrial amine oxidase activity and indole acetic acid synthesis. Inhibitory action of pargyline on the enzyme is reflected in reduced indoleacetic acid levels and, ultimately, in reduced callus growth rates.  相似文献   

8.
Extended exposure ofEscherichia coli 15 THU to 1-thioglycerol resulted in morphological changes. Cells growing with 10 mM 1-thioglycerol were shorter in the stationary phase than untreated organisms. Sixty mM 1-thioglycerol caused the appearance of double cells connected with constricted septal regions. Electron microscopic examination of the elongated cells failed to show septal structures. The specific cause of the appearance of constricted bridges between cells may be the inhibition of ftsA protein by 60 mM 1-thioglycerol.  相似文献   

9.
NanC is an Escherichia coli outer membrane protein involved in sialic acid (Neu5Ac, i.e., N-acetylneuraminic acid) uptake. Expression of the NanC gene is induced and controlled by Neu5Ac. The transport mechanism of Neu5Ac is not known. The structure of NanC was recently solved (PDB code: 2WJQ) and includes a unique arrangement of positively charged (basic) side chains consistent with a role in acidic sugar transport. However, initial functional measurements of NanC failed to find its role in the transport of sialic acids, perhaps because of the ionic conditions used in the experiments. We show here that the ionic conditions generally preferred for measuring the function of outer-membrane porins are not appropriate for NanC. Single channels of NanC at pH 7.0 have: (1) conductance 100 pS to 800 pS in 100 mM KCl to 3 M KCl), (2) anion over cation selectivity (V reversal = +16 mV in 250 mM KCl || 1 M KCl), and (3) two forms of voltage-dependent gating (channel closures above ±200 mV). Single-channel conductance decreases by 50% when HEPES concentration is increased from 100 μM to 100 mM in 250 mM KCl at pH 7.4, consistent with the two HEPES binding sites observed in the crystal structure. Studying alternative buffers, we find that phosphate interferes with the channel conductance. Single-channel conductance decreases by 19% when phosphate concentration is increased from 0 mM to 5 mM in 250 mM KCl at pH 8.0. Surprisingly, TRIS in the baths reacts with Ag|AgCl electrodes, producing artifacts even when the electrodes are on the far side of agar–KCl bridges. A suitable baseline solution for NanC is 250 mM KCl adjusted to pH 7.0 without buffer.  相似文献   

10.
Rogers  M. E.  Grieve  C. M.  Shannon  M. C. 《Plant and Soil》2003,253(1):187-194
The combined effect of NaCl and P on the growth of lucerne was studied in two hydroponic greenhouse experiments. NaCl concentrations were identical in each experiment (0, 50 and 100 mM NaCl) while external P concentrations were low (viz. 0.002, 0.02 and 0.2 mM measured as 0.006, 0.026 and 0.2 mM, respectively) in one experiment and higher (0.5 and 5.0 mM) in the second. Plant biomass was reduced more by the low P levels than by high concentrations of NaCl. A significant NaCl*P effect was found where external P concentrations were low (0.006–0.2 mM) but there was no difference in plant production between the two P concentrations of 0.5 and 5.0 mM. Shoot and root concentrations of Na and Cl increased significantly with increasing NaCl concentration in both experiments and there were some differences in the concentrations of these ions at different external P levels. At low P, NaCl had no significant effect on shoot concentrations of P; however, root P concentrations tended to decrease with increasing NaCl level. Increasing external P from 0.006 to 0.2 mM led to significant increases in P concentrations in both roots and shoots. At higher P, concentrations of P in both the shoots and the roots did not differ with external NaCl or P conditions. Our results illustrate the complex relationship that exists between NaCl and P at low P levels. We conclude that high or non-limiting concentrations of P (0.2 – 5.0 mM) do not affect lucerne's response to NaCl.  相似文献   

11.
Slowly cooled cells of an extreme thermophilic eubacterium Calderobacterium hydrogenophilum possess ribosomes with weakly associated subunits. These ribosomal subunits are capable of association to 70S ribosomes either at higher Mg2+ concentrations (30–40 mM) or at 4–10 mM Mg2+ and in the presence of polyamines. The contribution of 30S and 50S subunits to the hydrodynamic stability of ribosomes was examined by forming hybrid 30S–50S couples from C. hydrogenophilum and Escherichia coli. At lower Mg2+ (4–10 mM) heterogeneous subunits containing 30S E. coli and 50S C. hydrogenophilum and homogeneous subunits of the thermophilic bacterium associated only in the presence of polyamines. Ribosomal subunits associated at 30 mM Mg2+ lose thermal stability and activity concerning poly(AUG)-dependent binding of f[3H]Met-tRNA to the P-site on 70S ribosomes or translation of poly(UG). Poly(AUG), deacylated-tRNA or initiator-tRNA have no valuable effect on association of 30S and 50S subunits. Protein synthesis initiation factor IF3 of C. hydrogenophilum prevents association of ribosomal subunits to 70S ribosomes at physiological temperature (70°C). The factor also stimulates dissociation of 70S ribosomes of E. coli at 37°C. The codon-specific binding of f[3H]Met-tRNA to homogeneous 70S ribosomes of C. hydrogenophilum at 70°C is dependent on the presence of initiation factors and concentrations of tri-pentaamines. However, excess of polyamines inhibited the reaction. Our results indicate that tri-pentaamines enhance conformational stability of 70S initiation complex at elevated temperatures.  相似文献   

12.
Summary Cultured human pancreatic carcinoma cells (MIA PaCa-2) have been shown previously to be very sensitive toE. coli l-asparaginase (EC II). The present studies have demonstrated that another enzyme,Acinetobacter glutaminase-asparaginase (AGA) is much more effective in inhibiting cell growth. At the concentration of 0.0025 U/ml of AGA activity the enzyme totally inhibited cell growth, whereas the EC II with the same concentration did not show any effect. The inhibition of cell growth correlated well with inhibition of protein and glycoprotein synthesis. The addition ofl-glutamine at the concentration of 1 mM completely reversed the inhibition of protein synthesis. Similarly, the addition ofl-glutamine at the concentration of 3 mM daily on 3 successive days after adding AGA resulted in significant reversal of growth inhibition. The results of this study indicate that the action of AGA on MIA PaCa-2 is, to a great extent, exerted through itsl-glutaminase activity. This work was supported in part by USPHS Grant CA 19182. Dr. Wu is recipient of Research Career Development Award Grant CA00686 and Dr. Yunis is a Howard Hughes Investigator.  相似文献   

13.
Summary Our aim was to examine whether lipopolysaccharide of Escherichia coli, polyamines of dietetic and/or bacterial origin, and products of the bacterial metabolism influence cell proliferation in epithelial cells from the colon and small intestine. Lipopolysaccharide of Escherichia coli 0111:B4 was incubated with cultures from human colonic mucosa. The mitoses were arrested with Vincristine and the total number of metaphases per crypt was counted. In addition, lipopolysaccharide was incubated with a human colonic epithelial cell line from adenocarcinoma (LS-123 cells) and with a nontransformed small intestinal cell line from germ-free rats (IEC-6 cells) for 24 h. In the last 4 h, the cells were labeled with tritiated thymidine. The cells were incubated with putrescine, cadaverine, and spermidine at 10−11–10−3 M and with acetic acid (10−5–10−1 M), acetaldehyde (10−10–10−4 M) and ammonium chloride (1–20 mM). Lipopolysaccharide of Escherichia coli increased the number of arrested metaphases in human colonic crypts and DNA synthesis in L-123 and IEC-6 cells (P<0.001). All polyamines increased DNA synthesis in the colonic and small intestinal cell lines, the effects being more marked for putrescine (P<0.001). The higher concentrations of acetic acid increased DNA synthesis in both epithelial cell lines (P<0.001). Acetaldehyde slightly decreased DNA synthesis in LS-123 cells at cytotoxic concentrations. Ammonium chloride did not significantly affect DNA synthesis. The final concentration of nonionized ammonia was less than 3%. It is concluded that lipopolysaccharides of Escherichia coli and intraluminal factors derived from microorganisms increase cell proliferation in human colonic crypts and intestinal epithelial cell lines.  相似文献   

14.
We have used refractive index matching to determine the concentration of protein in the fibers in fibrin clots and of needlelike crystals of native fibrinogen. Our results are in agreement with those of Carr and Hermans [(1978) Macromolecules 11 , 46–50], as determined by light scattering—namely, that protein makes up about 20% of the volume of the fiber. However, we have found that the protein concentration is strongly dependent on ionic strength. An increase in ionic strength caused a substantial drop in the protein concentration. In a buffer containing 100 mM NaCl, the protein concentration was 26.6–29.8 g of protein per 100 cm3 of polymer, and at 200 mM NaCl it was reduced to 22.1–23.1 g/100 cm3.  相似文献   

15.
Dilution of protein–surfactant complexes is an integrated step in microfluidic protein sizing, where the contribution of free micelles to the overall fluorescence is reduced by dilution. This process can be further improved by establishing an optimum surfactant concentration and quantifying the amount of protein based on the fluorescence intensity. To this end, we study the interaction of proteins with anionic sodium dodecyl sulfate (SDS) and cationic hexadecyl trimethyl ammonium bromide (CTAB) using a hydrophobic fluorescent dye (sypro orange). We analyze these interactions fluourometrically with bovine serum albumin, carbonic anhydrase, and beta‐galactosidase as model proteins. The fluorescent signature of protein–surfactant complexes at various dilution points shows three distinct regions, surfactant dominant, breakdown, and protein dominant region. Based on the dilution behavior of protein–surfactant complexes, we propose a fluorescence model to explain the contribution of free and bound micelles to the overall fluorescence. Our results show that protein peak is observed at 3 mM SDS as the optimum dilution concentration. Furthermore, we study the effect of protein concentration on fluorescence intensity. In a single protein model with a constant dye quantum yield, the peak height increases with protein concentration. Finally, addition of CTAB to the protein–SDS complex at mole fractions above 0.1 shifts the protein peak from 3 mM to 4 mM SDS. The knowledge of protein–surfactant interactions obtained from these studies provides significant insights for novel detection and quantification techniques in microfluidics.  相似文献   

16.
The rhoptry 2 protein (Rop2) is an interesting protein of Toxoplasma gondii that is involved in the parasite invasion of host cell, it has three T-cell epitopes and high antigenic value. However, the expression of Rop2 as a recombinant protein in Escherichia coli is not an easy task, showing low levels of expression or degradation and solubility problems. Using a recombinant Rop2196–561 fused to 6 histidine residues, we showed high levels of expression in bacteria growing in terrific broth. rRop2196–561 was purified mainly as a soluble product and in high concentrations (approx 1 mg/mL) under native conditions (40 mM imidazol in phosphate buffer). However, after a cycle of freezing-thawing rRop2196–561 became insoluble. When glycerol was added to 26%, immediately after purification, the protein stayed soluble after cycles of freezing-thawing. Finally, it was demonstrated that under these conditions soluble rRop2196–561 keeps its diagnostic value in contrast with the insoluble protein.  相似文献   

17.
Summary The effect of inorganic phosphate concentrations on antibiotic and extracellular protein production by Myxococcus coralloides D have been examined. Antibiotic production by growing cells of this myxobacterium was maximal at phosphate concentrations of 10–20 mM, but was inhibited by concentrations higher than 20 mM. The total extracellular protein and the extracellular protein per cell ratio were independent of phosphate levels in the culture broth. Offprint requests to: J. M. Arias  相似文献   

18.
Apart from substrate functions, a signaling role of sucrose in root growth regulation is well established. This raised the question whether sucrose signals might also be involved in formation of cluster‐roots (CRs) under phosphate (Pi) limitation, mediating exudation of phosphorus (P)‐mobilizing root exudates, e.g. in Lupinus albus and members of the Proteaceae. Earlier studies demonstrated that CR formation in L. albus was mimicked to some extent by external application of high sucrose concentrations (25 mM) in the presence of extremely high P supply (1–10 mM), usually suppressing CR formation. In this study, we re‐addressed this question using an axenic hydroponic culture system with normal P supply (0.1 mM) and a range of sucrose applications (0.25–25 mM). The 2.5 mM sucrose concentration was comparable with internal sucrose levels in the zone of CR initiation in first‐order laterals of P‐deficient plants (3.4 mM) and induced the same CR morphology. Similar to earlier studies, high sucrose concentrations (25 mM) resulted in root thickening and inhibition of root elongation, associated with a 10‐fold increase of the internal sucrose level. The sucrose analog palatinose and a combination of glucose/fructose failed to stimulate CR formation under P‐sufficient conditions, demonstrating a signal function of sucrose and excluding osmotic or carbon source effects. In contrast to earlier findings, sucrose was able to induce CR formation but had no effect on CR functioning with respect to citrate exudation, in vitro activity and expression of genes encoding phosphoenolpyruvate carboxylase, secretory acid phosphatase and MATE transporters, mediating P‐mobilizing functions of CRs.  相似文献   

19.
2-Deoxyribose 5-phosphate production through coupling of the alcoholic fermentation system of baker’s yeast and deoxyriboaldolase-expressing Escherichia coli was investigated. In this process, baker’s yeast generates fructose 1,6-diphosphate from glucose and inorganic phosphate, and then the E. coli convert the fructose 1,6-diphosphate into 2-deoxyribose 5-phosphate via D-glyceraldehyde 3-phosphate. Under the optimized conditions with toluene-treated yeast cells, 356 mM (121 g/l) fructose 1,6-diphosphate was produced from 1,111 mM glucose and 750 mM potassium phosphate buffer (pH 6.4) with a catalytic amount of AMP, and the reaction supernatant containing the fructose 1,6-diphosphate was used directly as substrate for 2-deoxyribose 5-phosphate production with the E. coli cells. With 178 mM enzymatically prepared fructose 1,6-diphosphate and 400 mM acetaldehyde as substrates, 246 mM (52.6 g/l) 2-deoxyribose 5-phosphate was produced. The molar yield of 2-deoxyribose 5-phosphate as to glucose through the total two step reaction was 22.1%. The 2-deoxyribose 5-phosphate produced was converted to 2-deoxyribose with a molar yield of 85% through endogenous or exogenous phosphatase activity.  相似文献   

20.
The effects of simultaneous changes of calcium, magnesium, iron, copper, and zinc concentrations were evaluated in normal human T and B lymphocytes, cultured in cation-depleted media. Optimal concentrations for thymidine incorporation (TI) in both cell populations were Fe and Zn 15 μM and Cu 5 μM; for t cells Ca 2 mM and Mg 4 mM; for B cells Ca 4 mM and Mg 6 mM. TI decreased with increasing molarity of cations and the decrease was particularly apparent with Cu. Minimal amounts of Ca and Mg (0.5 mM) were necessary for growth, even in presence of optimal concentrations of Fe, Cu, and Zn. Fe and Cu showed synergistic stimulatory effects at low concentrations and synergistic inhibitory effects at high concentrations. Antagonism between Fe and Zn, Cu and Zn, and Ca and Zn was also demonstrated. CD4/CD8 increased with PHA stimulation in presence of Zn, and decreased with ConA stimulation in presence of Zn or Fe. The results demonstrate: (1) the relationship and interdependence of Fe, Cu, and Zn concentrations in modulating the growth of normal lymphocytes; (2) the stimulatory effects of Fe on B cells and Zn on CD8 positive cells; (3) the inhibitory effect of Cu at concentrations lower than those of Fe and Zn; (4) the requirement of Ca and Mg in certain concentration and ratio for the action of the other cations; and (5) the Ca and Mg requirement for the growth of B cells higher than T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号