首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Development of accurate methods for predicting progression of tuberculosis (TB) from the latent state is recognized as vitally important in controlling TB, because a majority of cases develop from latent infections. Past TB that has never been treated has a higher risk of progressing than does latent Mycobacterium tuberculosis infection in patients who have previously received treatment. Antibody responses against 23 kinds of M. tuberculosis proteins in individuals with past TB who had not been medicated were evaluated. These individuals had significantly higher concentrations of antibodies against Antigen 85A and mycobacterial DNA‐binding protein 1 (MDP1) than did those with active TB and uninfected controls. In addition, immunohistochemistry revealed colocalization of tubercle bacilli, antigen 85 and MDP1 inside tuberculous granuloma lesions in an asymptomatic subject, showing that M. tuberculosis in lesions expresses both antigen 85 and MDP1. Our study suggests the potential usefulness of measuring antibody responses to antigen 85A and MDP1 for assessing the risk of TB progression.  相似文献   

2.
BackgroundRegulatory T cells (Tregs) play a critical role during Mycobacterium tuberculosis (Mtb) infection, modulating host responses while neutralizing excessive inflammation. However, their impact on regulating host protective immunity is not completely understood. Here, we demonstrate that Treg cells abrogate the in vitro microbicidal activity against Mtb.MethodsWe evaluated the in vitro microbicidal activity of peripheral blood mononuclear cells (PBMCs) from patients with active tuberculosis (TB), individuals with latent tuberculosis infection (LTBI, TST+/IGRA+) and healthy control (HC, TST-/IGRA-) volunteers. PBMCs, depleted or not of CD4+CD25+ T-cells, were analyzed to determine frequency and influence on microbicidal activity during in vitro Mtb infection with four clinical isolates (S1, S5, R3, and R6) and one reference strain (H37Rv).ResultsThe frequency of CD4+CD25highFoxP3+ cells were significantly higher in Mtb infected whole blood cultures from both TB patients and LTBI individuals when compared to HC. Data from CD4+CD25+ T-cells depletion demonstrate that increase of CD4+CD25highFoxP3+ is associated with an impairment of Th-1 responses and a diminished in vitro microbicidal activity of LTBI and TB groups.ConclusionsTregs restrict host anti-mycobacterial immunity during active disease and latent infection and thereby may contribute to both disease progression and pathogen persistence.  相似文献   

3.
Interferon-gamma release assays (IGRAs) have proven to be useful to accurately detect Mycobacterium tuberculosis (Mtb) infection, but they cannot reliably discriminate between active tuberculosis (TB) and latent tuberculosis infection (LTBI). This study aims to test whether Mtb-specific tumor necrosis factor-alpha (TNF-α) could be used as a new tool for the rapid diagnosis of active TB disease. The secretion of TNF-α by Mtb-specific antigen-stimulated peripheral blood mononuclear cells (PBMCs) of sixty seven participants was investigated in the study. Our results showed that the total measurement of TNF-α secretion by Mtb-specific antigen-stimulated PBMCs is not a good biomarker for active TB diagnosis. However, we found that calculation of Mtb-specific TNF-α not only distinguish between active and latent TB infection, but also can differentiate active TB from non-TB patients. Using the cutoff value of 136.9 pg/ml for Mtb-specific TNF-α, we were able to differentiate active TB from LTBI. Sensitivity and specificity were 72% and 90.91%. These data suggest that Mtb-specific TNF-α could be a potential biomarker for the diagnosis of active TB disease.  相似文献   

4.

Background

There is a need for reliable markers to diagnose active and latent tuberculosis (TB). The interferon gamma release assays (IGRAs) are compared to the tuberculin skin test (TST) more specific, but cannot discriminate between recent or remote TB infection. Here the Flow-cytometric Assay for Specific Cell-mediated Immune-response in Activated whole blood (FASCIA), which quantifies expanded T-lymphoblasts by flow-cytometric analysis after long-term antigen stimulation of whole blood, is combined with cytokine/chemokine analysis in the supernatant by multiplex technology for diagnosis of Mycobacterium tuberculosis (Mtb) infection.

Methods and Findings

Consecutive patients with suspected TB (n = 85), with microbiologically verified active pulmonary TB (n = 33), extra pulmonary TB (n = 21), clinical TB (n = 11), presumed latent TB infection (LTBI) (n = 23), patients negative for TB (n = 8) and 21 healthy controls were studied. Blood samples were analyzed with FASCIA and multiplex technology to determine and correlate proliferative responses and the value of 14 cytokines for diagnosis of Mtb infection: IFN- γ, IL-2, TNF-α, IP-10, IL-12, IL-6, IL-4, IL-5, IL-13, IL-17, MIP-1β, GM-CSF, IFN-α2 and IL-10. Cytokine levels for IFN-γ, IP-10, MIP-1β, IL-2, TNF-α, IL-6, IL-10, IL-13 and GM-CSF were significantly higher after stimulation with the Mtb specific antigens ESAT-6 and CFP-10 in patients with active TB compared to healthy controls (p<0.05) and correlated with proliferative responses. IP-10 was positive in all patients with verified TB, if using a combination of ESAT-6 and CFP-10 and was the only marker significantly more sensitive in detecting active TB then IFN-γ (p = 0.012). Cytokine responses in patients with active TB were more frequent and detected at higher levels than in patients with LTBI.

Conclusions

IP-10 seems to be an important marker for diagnosis of active and latent TB. Patients with active TB and LTBI responded with similar cytokine profiles against TB antigens but proliferative and cytokine responses were generally higher in patients with active TB.  相似文献   

5.
Mycobacterium tuberculosis (Mtb) leads to approximately 1.5 million human deaths every year. In pulmonary tuberculosis (TB), Mtb must drive host tissue destruction to cause pulmonary cavitation and dissemination in the tissues. Matrix metalloproteinases (MMPs) are endopeptidases capable of degrading all components of pulmonary extracellular matrix (ECM). It is well established that Mtb infection leads to upregulation of MMPs and also causes disturbance in the balance between MMPs and tissue inhibitors of metalloproteinases (TIMPs), thus altering the extracellular matrix deposition. In TB, secretion of MMPs is mainly regulated by NF‐κB, p38 and MAPK signalling pathways. In addition, recent studies have demonstrated the immunomodulatory roles of MMPs in Mtb pathogenesis. Researchers have proposed a new regimen of improved TB treatment by inhibition of MMP activity to hinder matrix destruction and to minimize the TB‐associated morbidity and mortality. The proposed regimen involves adjunctive use of MMP inhibitors such as doxycycline, marimastat and other related drugs along with front‐line anti‐TB drugs to reduce granuloma formation and bacterial load. These findings implicate the possible addition of economical and well‐tolerated MMP inhibitors to current multidrug regimens as an attractive mean to increase the drug potency. Here, we will summarize the recent advancements regarding expression of MMPs in TB, their immunomodulatory role, as well as their potential as therapeutic targets to control the deadly disease.  相似文献   

6.
Interleukin‐1β (IL‐1β) represents one of the most important mediators of inflammation and host responses to infection. Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, induces IL‐1β secretion at the site of infection, but the underlying mechanism(s) are poorly understood. In this work we show that Mtb infection of macrophages stimulates caspase‐1 activity and promotes the secretion of IL‐1β. This stimulation requires live intracellular bacteria expressing a functional ESX‐1 secretion system. ESAT‐6, an ESX‐1 substrate implicated in membrane damage, is both necessary and sufficient for caspase‐1 activation and IL‐1β secretion. ESAT‐6 promotes the access of other immunostimulatory agents such as AG85 into the macrophage cytosol, indicating that this protein may contribute to caspase‐1 activation largely by perturbing host cell membranes. Using a high‐throughput shRNA‐based screen we found that numerous NOD‐like receptors (NLRs) and CARD domain‐containing proteins (CARDs) were important for IL‐1β secretion upon Mtb infection. Most importantly, NLRP3, ASC and caspase‐1 form an infection‐inducible inflammasome complex that is essential for IL‐1β secretion. In summary, we show that recognition of Mtb infection by the NLRP3 inflammasome requires the activity of the bacterial virulence factor ESAT‐6, and the subsequent IL‐1β response is regulated by a number of NLR/CARD proteins.  相似文献   

7.
The objective of this study was to evaluate people attending a primary health clinic in Rio de Janeiro, Brazil for immunoreactivity to five Mycobacterium tuberculosis antigens, as these antigens are markers of immune response and factors associated with active TB. The serum antibody titers of different categories of patients (defined by microbiological and radiological characteristics and by response to therapy on follow‐up) to 38 kDa, 16 kDa, MPT64, ESAT‐6 and MT10.3 antigens were determined blind with ELISA. Positive tests to each antigen were defined with ROC analysis. OR were calculated for factors associated with humoral response in patients with active TB. A total of 201 patients underwent serological testing. Patients with confirmed active TB responded more frequently to MPT64 (44%), 16 kDa (37.7%) and 38 kDa (36.1%). ESAT‐6 and MT10.3 were also able to distinguish people in TB groups from controls. TB infected subjects responded less frequently to ESAT‐6 and MT10.3 (3.7% and 11%, respectively). Sensitivity and specificity to all antigens combined were 58.4% and 60.7%, respectively. Reactivity to 38 kDa and to MPT64 was more likely among alcohol users OR 2.61 (95%CI;1.05–6.94) and OR 3.27 (95%CI;1.33–8.15), respectively. 16 kDa antigen elicited a more protective response among smokers, OR 0.29 (95%CI; 0.10–0.83). It was concluded that reactivity to all antigens tested represented markers of active disease. ESAT‐6 and MT10.3 could not be identified as markers of TB infection in this community. Sensitivity was higher to all antigens combined, but at a cost of lower specificity. Interestingly, among factors associated with positive immunoreactivity, alcohol use and smoking seem to polarize the humoral response in different directions. This finding deserves further investigation.  相似文献   

8.
The recent emergence of multidrug‐resistant and extensively drug‐resistant strains of Mtb and the epidemic of TB in populations co‐infected with human immunodeficiency virus demonstrate that TB remains a leading infectious disease. Moreover, the failure of BCG to protect against this disease indicates that new vaccines against TB are urgently needed. Experimental evidence has revealed that TNF plays a major role in host defense against Mtb in both active and latent phases of infection. Release of TNF, which would induce mycobacteria‐mediated macrophage apoptosis and thus reduce the spread of mycobacteria, is one of the most important and early responses of macrophages challenged with Mtb. In order to identify the usefulness of TNF in improving the effectiveness of TB vaccine, in the current study a novel rBCG strain expressing the fusion gene of Ag85B‐Esat6‐TNF‐α in BCG Danish strain was constructed, and its ability to induce an immune response in C57BL/6 mice evaluated. It was found that immunization with strains of rBCG‐Ag85B‐Esat6‐TNF‐α can induce a stronger immune response than does immunization with rBCG‐Ag85B‐Esat6 or parental BCG. The results indicate that rBCG‐Ag85B‐Esat6‐TNF‐α is a promising candidate for further study.  相似文献   

9.
The aim of this study was to investigate the pathogenesis of Mycoplasma pneumoniae (MP) infection and its association with cardiac and hepatic damage. Between March 2013 and March 2014, 59 children with MP pneumonia (MPP) and 30 healthy children were enrolled. Serum titers of TLR4, T cell immunoglobulin and mucin‐domain (TIM) 3, IL‐10, TNF‐α, and IFN‐γ were measured both in children with MPP and healthy children. Additionally, MP‐specific antibody titer and creatine kinase‐MB (CK‐MB), and alanine transaminase (ALT) titers were measured in patients with MPP. There were significant differences between the MPP patients and healthy controls in titers of TIM1 (P < 0.01), TLR2 (P = 0.028), TLR4 (P = 0.019), IL‐10 (P < 0.01), TNF‐α (P < 0.01) and IFN‐γ (P < 0.01); however, no significant difference was found in TIM3 titers (P = 0.8181). TIM1 was correlated with CK‐MB (P = 0.025), whereas both TIM1 and TLR2 titers were correlated with MP‐specific antibody titers (P < 0.001; P = 0.003, respectively). Additionally, there were correlations between ALT, TIM3, and TLR2 titers (P = 0.025; P = 0.037, respectively). The titers of TIM1 were significantly higher in patients with cardiac damage (P = 0.007) than in those without it, whereas the titers of TLR2 were significantly higher in patients with hepatic damage (P = 0.026) than in those without it. TLR2, TLR4 and TIM1 may be involved in the process of MP infection. Additionally, TLR2, TLR4, TIM1 and TIM3 may play particular roles in the pathogenesis of MPP‐associated cardiac and hepatic damage.  相似文献   

10.
Progress with protein‐based tuberculosis (TB) vaccines has been limited by poor availability of adjuvants suitable for human application. Here, we developed and tested a novel approach to molecular engineering of adjuvanticity that circumvents the need for exogenous adjuvants. Thus, we generated and expressed in transgenic tobacco plants the recombinant immune complexes (RICs) incorporating the early secreted Ag85B and the latency‐associated Acr antigen of Mycobacterium tuberculosis, genetically fused as a single polypeptide to the heavy chain of a monoclonal antibody to Acr. The RICs were formed by virtue of the antibody binding to Acr from adjacent molecules, thus allowing self‐polymerization of the complexes. TB‐RICs were purified from the plant extracts and shown to be biologically active by demonstrating that they could bind to C1q component of the complement and also to the surface of antigen‐presenting cells. Mice immunized with BCG and then boosted with two intranasal immunizations with TB‐RICs developed antigen‐specific serum IgG antibody responses with mean end‐point titres of 1 : 8100 (Acr) and 1 : 24 300 (Ag85B) and their splenocytes responded to in vitro stimulation by producing interferon gamma. 25% of CD4+ proliferating cells simultaneously produced IFN‐γ, IL‐2 and TNF‐α, a phenotype that has been linked with protective immune responses in TB. Importantly, mucosal boosting of BCG‐immunized mice with TB‐RICs led to a reduced M. tuberculosis infection in their lungs from log10 mean = 5.69 ± 0.1 to 5.04 ± 0.2, which was statistically significant. We therefore propose that the plant‐expressed TB‐RICs represent a novel molecular platform for developing self‐adjuvanting mucosal vaccines.  相似文献   

11.
There is an urgent need for effective prophylactic measures against Mycobacterium tuberculosis (Mtb) infection, particularly given the highly variable efficacy of Bacille Calmette-Guerin (BCG), the only licensed vaccine against tuberculosis (TB). Most studies indicate that cell-mediated immune responses involving both CD4+ and CD8+ T cells are necessary for effective immunity against Mtb. Genetic vaccination induces humoral and cellular immune responses, including CD4+ and CD8+ T-cell responses, against a variety of bacterial, viral, parasitic and tumor antigens, and this strategy may therefore hold promise for the development of more effective TB vaccines. Novel formulations and delivery strategies to improve the immunogenicity of DNA-based vaccines have recently been evaluated, and have shown varying degrees of success. In the present study, we evaluated DNA-launched Venezuelan equine encephalitis replicons (Vrep) encoding a novel fusion of the mycobacterial antigens α-crystallin (Acr) and antigen 85B (Ag85B), termed Vrep-Acr/Ag85B, for their immunogenicity and protective efficacy in a murine model of pulmonary TB. Vrep-Acr/Ag85B generated antigen-specific CD4+ and CD8+ T cell responses that persisted for at least 10 wk post-immunization. Interestingly, parenterally administered Vrep-Acr/Ag85B also induced T cell responses in the lung tissues, the primary site of infection, and inhibited bacterial growth in both the lungs and spleens following aerosol challenge with Mtb. DNA-launched Vrep may, therefore, represent an effective approach to the development of gene-based vaccines against TB, particularly as components of heterologous prime-boost strategies or as BCG boosters.  相似文献   

12.
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) and remains a major cause of morbidity and mortality worldwide. In the host's immune response system, T cells play a critical role in mediating protection against Mtb infection, but the role of CD8+ T cells is still controversial. We evaluated the phenotypical characterization and cytotoxic ability of CD8+ T cells by flow cytometry‐based assay. Cytokine levels in serum were measured by multiplex cytokine assay. Our data show that cells from TB patients have an increased percentage of peripheral blood CD8+αβ+ T (p = 0.02) and CD56+CD8+ T (p = 0.02) and a decreased frequency of NKG2D+CD8+ T (p = 0.02) compared with healthy donors. Unlike CD8+ T cells from healthy donors, CD8+ T cells from TB patients exhibit greater cytotoxicity, mediated by HLA class I molecules, on autologous monocytes in the presence of mycobacterial antigens (p = 0.005). Finally, TB patients have a proinflammatory profile characterized by serum high level of TNF‐α (p = 0.02) and IL‐8 (p = 0.0001), but, interestingly, IL‐4 (p = 0.002) was also increased compared with healthy donors. Our data show evidence regarding the highly cytotoxic status of CD8+ T cells in Mtb infection. These cytotoxic cells restricted to HLA‐A, B, and C could be used to optimize strategies for designing new TB vaccines or for identifying markers of disease progression.  相似文献   

13.
Approximately 28% of the human population have been exposed to Mycobacterium tuberculosis (MTB), with the overwhelming majority of infected individuals not developing disease (latent TB infection (LTBI)). While it is known that uncontrolled HIV infection is a major risk factor for the development of TB, the effect of underlying LTBI on HIV disease progression is less well characterized, in part because longitudinal data are lacking. We sorted all participants of the Swiss HIV Cohort Study (SHCS) with at least 1 documented MTB test into one of the 3 groups: MTB uninfected, LTBI, or active TB. To detect differences in the HIV set point viral load (SPVL), linear regression was used; the frequency of the most common opportunistic infections (OIs) in the SHCS between MTB uninfected patients, patients with LTBI, and patients with active TB were compared using logistic regression and time-to-event analyses. In adjusted models, we corrected for baseline demographic characteristics, i.e., HIV transmission risk group and gender, geographic region, year of HIV diagnosis, and CD4 nadir. A total of 13,943 SHCS patients had at least 1 MTB test documented, of whom 840 (6.0%) had LTBI and 770 (5.5%) developed active TB. Compared to MTB uninfected patients, LTBI was associated with a 0.24 decreased log HIV SPVL in the adjusted model (p < 0.0001). Patients with LTBI had lower odds of having candida stomatitis (adjusted odds ratio (OR) = 0.68, p = 0.0035) and oral hairy leukoplakia (adjusted OR = 0.67, p = 0.033) when compared to MTB uninfected patients. The association of LTBI with a reduced HIV set point virus load and fewer unrelated infections in HIV/TB coinfected patients suggests a more complex interaction between LTBI and HIV than previously assumed.

Surprisingly little is known about how latent tuberculosis infection alters human physiology and immune function. Extensive statistical analyses of the large Swiss HIV Cohort Study suggests that latent tuberculosis infection can be protective in individuals with HIV.  相似文献   

14.
Background Tuberculosis (TB) and AIDS together present a devastating public health challenge. Over 3 million deaths every year are attributed to these twin epidemics. Annually, ~11 million people are coinfected with HIV and Mycobacterium tuberculosis (Mtb). AIDS is thought to alter the spontaneous rate of latent TB reactivation. Methodology Macaques are excellent models of both TB and AIDS. Therefore, it is conceivable that they can also be used to model coinfection. Using clinical, pathological, and microbiological data, we addressed whether latent TB infection in rhesus macaques can be reactivated by infection with simian immunodeficiency virus (SIV). Results A low‐dose aerosol infection of rhesus macaques with Mtb caused latent, asymptomatic TB infection. Infection of macaques exhibiting latent TB with a rhesus‐specific strain of SIV significantly reactivated TB. Conclusions Rhesus macaques are excellent model of TB/AIDS coinfection and can be used to study the phenomena of TB latency and reactivation.  相似文献   

15.
The risk of tuberculosis (TB) disease is higher in individuals with recent Mycobacterium tuberculosis (M.tb) infection compared to individuals with more remote, established infection. We aimed to define blood-based biomarkers to distinguish between recent and remote infection, which would allow targeting of recently infected individuals for preventive TB treatment. We hypothesized that integration of multiple immune measurements would outperform the diagnostic performance of a single biomarker. Analysis was performed on different components of the immune system, including adaptive and innate responses to mycobacteria, measured on recently and remotely M.tb infected adolescents. The datasets were standardized using variance stabilizing scaling and missing values were imputed using a multiple factor analysis-based approach. For data integration, we compared the performance of a Multiple Tuning Parameter Elastic Net (MTP-EN) to a standard EN model, which was built to the individual adaptive and innate datasets. Biomarkers with non-zero coefficients from the optimal single data EN models were then isolated to build logistic regression models. A decision tree and random forest model were used for statistical confirmation. We found no difference in the predictive performances of the optimal MTP-EN model and the EN model [average area under the receiver operating curve (AUROC) = 0.93]. EN models built to the integrated dataset and the adaptive dataset yielded identically high AUROC values (average AUROC = 0.91), while the innate data EN model performed poorly (average AUROC = 0.62). Results also indicated that integration of adaptive and innate biomarkers did not outperform the adaptive biomarkers alone (Likelihood Ratio Test χ2 = 6.09, p = 0.808). From a total of 193 variables, the level of HLA-DR on ESAT6/CFP10-specific Th1 cytokine-expressing CD4 cells was the strongest biomarker for recent M.tb infection. The discriminatory ability of this variable was confirmed in both tree-based models.A single biomarker measuring M.tb-specific T cell activation yielded excellent diagnostic potential to distinguish between recent and remote M.tb infection.  相似文献   

16.
Pulmonary tuberculosis (TB) is an airborne disease caused by the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb). Alveolar epithelial cells and macrophages are the first point of contact for Mtb in the respiratory tract. However, the mechanisms of mycobacterial attachment to, and internalization by, nonprofessional phagocytes, such as epithelial cells, remain incompletely understood. We identified syndecan 4 (Sdc4) as mycobacterial attachment receptor on alveolar epithelial cells. Sdc4 mRNA expression was increased in human and mouse alveolar epithelial cells after mycobacterial infection. Sdc4 knockdown in alveolar epithelial cells or blocking with anti‐Sdc4 antibody reduced mycobacterial attachment and internalization. At the molecular level, interactions between epithelial cells and mycobacteria involved host Sdc and the mycobacterial heparin‐binding hemagglutinin adhesin. In vivo, Sdc1/Sdc4 double‐knockout mice were more resistant to Mtb colonization of the lung. Our work reveals a role for distinct Sdcs in promoting mycobacterial entry into alveolar epithelial cells with impact on outcome of TB disease.  相似文献   

17.

Background

Tuberculosis (TB) is a contagious infectious disease caused by Mycobacterium tuberculosis (Mtb). This disease with two million deaths per year has the highest mortality rate among bacterial infections. The only available vaccine against TB is BCG vaccine. BCG is an effective vaccine against TB in childhood, however, due to some limitations, has not proper efficiency in adults. Also, BCG cannot produce an adequately protective response against reactivation of latent infections.

Objective

In the present study we will review the most recent findings about contribution of HspX protein in the vaccines against tuberculosis.

Methods

Therefore, many attempts have been made to improve BCG or to find its replacement. Most of the subunit vaccines for TB in various phases of clinical trials were constructed as prophylactic vaccines using Mtb proteins expressed in the replicating stage. These vaccines might prevent active TB but not reactivation of latent tuberculosis infection (LTBI). A literature search was performed on various online databases (PubMed, Scopus, and Google Scholar) regarding the roles of HspX protein in tuberculosis vaccines.

Results

Ideal subunit post-exposure vaccines should target all forms of TB infection, including active symptomatic and dormant (latent) asymptomatic forms. Among these subunit vaccines, HspX is the most important latent phase antigen of M. tuberculosis with a strong immunological response. There are many studies that have evaluated the immunogenicity of this protein to improve TB vaccine.

Conclusion

According to the studies, HspX protein is a good candidate for development of subunit vaccines against TB infection.
  相似文献   

18.
Mycobacterium tuberculosis (Mtb) causes latent tuberculosis infection in one‐third of the world population and remains quiescent in the human body for decades. The dormant pathogen accumulates lipid droplets containing triacylglycerol (TAG). In mammals, perilipin regulates lipid droplet homeostasis but no such protein has been identified in Mtb. We identified an Mtb protein (PPE15) that showed weak amino acid sequence identities with mammalian perilipin‐1 and was upregulated in Mtb dormancy. We generated a ppe15 gene‐disrupted mutant of Mtb and examined its ability to metabolically incorporate radiolabeled oleic acid into TAG, accumulate lipid droplets containing TAG and develop phenotypic tolerance to rifampicin in two in vitro models of dormancy including a three‐dimensional human granuloma model. The mutant showed a significant decrease in the biosynthesis and accumulation of lipid droplets containing TAG and in its tolerance of rifampicin. Complementation of the mutant with a wild‐type copy of the ppe15 gene restored the lost phenotypes. We designate PPE15 as mycobacterial perilipin‐1 (MPER1). Our findings suggest that the MPER1 protein plays a critical role in the homeostasis of TAG ‐containing lipid droplets in Mtb and influences the entry of the pathogen into a dormant state.  相似文献   

19.
Here, we aimed to assess the feasibility of anti‐ESAT‐6 monoclonal antibody (mAb) coupling with IR783 and rhodamine fluorescent probe in the detection of ESAT‐6 expression in tuberculosis tissue of mice using near‐infrared fluorescence imaging. IR783 and rhodamine were conjugated to the anti‐ESAT‐6 mAb or IgG. Mice in the experimental group were injected with fluorescence‐labeled mAb probe, and mice in the control group were injected with fluorescence‐labeled non‐specific IgG antibody. Twenty‐four hours later, the lung tissue of mice was examined using ex vivo near‐infrared fluorescence imaging. In addition, the contrast‐to‐noise ratio (CNR) was calculated by measuring the signal intensities of the pulmonary lesions, normal lung tissue and background noise. The frozen lung tissue section was examined under fluorescence microscopy and compared with hemoxylin and eosin (HE) staining. The ex vivo near‐infrared fluorescence imaging showed that the fluorescence signal in the lung tuberculosis lesions in the experimental group was significantly enhanced, whereas there was only a weak fluorescence signal or even no fluorescence signal in the control group. CNR values were 64.40 ± 7.02 (n = 6) and 8.75 ± 3.87 (n = 6), respectively (t = 17.01, p < 0.001). The fluorescence accumulation distribution detected under fluorescence microscopy was consistent with HE staining of the tuberculosis region. In conclusion, anti‐ESAT‐6 mAb fluorescent probe could target and be applied in specific ex vivo imaging of mice tuberculosis, and may be of further use in tuberculosis in living mice. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Background: it is widely assumed that individuals with Mycobacterium tuberculosis (Mtb) infection remain at lifelong risk of tuberculosis (TB) disease. However, there is substantial evidence that self-clearance of Mtb infection can occur. We infer a curve of self-clearance by time since infection and explore its implications for TB epidemiology. Methods and findings: data for self-clearance were inferred using post-mortem and tuberculin-skin-test reversion studies. A cohort model allowing for self-clearance was fitted in a Bayesian framework before estimating the lifetime risk of TB disease and the population infected with Mtb in India, China and Japan in 2019. We estimated that 24.4% (17.8–32.6%, 95% uncertainty interval (UI)) of individuals self-clear within 10 years of infection, and 73.1% (64.6–81.7%) over a lifetime. The lifetime risk of TB disease was 17.0% (10.9–22.5%), compared to 12.6% (10.1–15.0%) assuming lifelong infection. The population at risk of TB disease in India, China and Japan was 35–80% (95% UI) smaller in the self-clearance scenario. Conclusions: the population with a viable Mtb infection may be markedly smaller than generally assumed, with such individuals at greater risk of TB disease. The ability to identify these individuals could dramatically improve the targeting of preventive programmes and inform TB vaccine development, bringing TB elimination within reach of feasibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号