首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
One explanation for the widespread abundance of sexual reproduction is the advantage that genetically diverse sexual lineages have under strong pressure from virulent coevolving parasites. Such parasites are believed to track common asexual host genotypes, resulting in negative frequency‐dependent selection that counterbalances the population growth‐rate advantage of asexuals in comparison with sexuals. In the face of genetically diverse asexual lineages, this advantage of sexual reproduction might be eroded, and instead sexual populations would be replaced by diverse assemblages of clonal lineages. We investigated whether parasite‐mediated selection promotes clonal diversity in 22 natural populations of the freshwater snail Melanoides tuberculata. We found that infection prevalence explains the observed variation in the clonal diversity of M. tuberculata populations, whereas no such relationship was found between infection prevalence and male frequency. Clonal diversity and male frequency were independent of snail population density. Incorporating ecological factors such as presence/absence of fish, habitat geography and habitat type did not improve the predictive power of regression models. Approximately 11% of the clonal snail genotypes were shared among 2–4 populations, creating a web of 17 interconnected populations. Taken together, our study suggests that parasite‐mediated selection coupled with host dispersal ecology promotes clonal diversity. This, in return, may erode the advantage of sexual reproduction in M. tuberculata populations.  相似文献   

2.
Amplified fragment length polymorphism (AFLP) has been widely used for clone identification, but numerous studies have shown that clonemates do not always present identical AFLP fingerprints. Pairwise AFLP distances that distinguish known clones from nonclones have been used to identify a threshold genetic dissimilarity distance below which samples are considered to represent a single clone. Most studies to date have reported threshold values between 2% and 4%. Here, I determine the consistency of the clonal threshold across five species in the tropical plant genus Piper, and evaluate the sensitivity of genetic diversity indices and estimates of frequency of clonal reproduction to the threshold value selected. I sampled multiple ramets per individual from widely distributed plants for each of the five Piper species to set a threshold at the point where the error rate of clonal assignments was lowest. I then sampled all individuals of each shade‐tolerant species in a 1‐ha plot, and of each light‐demanding species in 25 × 35‐m plot, to estimate the frequency of asexual recruitment in natural populations using a series of different thresholds including the threshold set with the preliminary sampling. Clonal threshold values for the different species ranged from 0% to 5% AFLP genetic dissimilarity distance. To determine the sensitivity of estimates of clonal reproduction, I calculated several clonal diversity indexes for the natural populations of each of the five species guided by the range in clonal threshold values observed across the five Piper species. I show that small changes in the value of the clonal threshold can lead to very different conclusions regarding the level of clonal reproduction in natural populations.  相似文献   

3.
Studies on the ecological impacts of non‐timber forest products (NTFP) harvest reveal that plants are often more resilient to fruit and seed harvest than to bark and root harvest. Several studies indicate that sustainable fruit harvesting limits can be set very high (>80% fruit harvesting intensity). For species with clonal and sexual reproduction, understanding how fruit harvest affects clonal reproduction can shed light on the genetic risks and sustainability of NTFP harvest. We studied 18 populations of a gallery forest tree, Pentadesma butyracea (Clusiaceae), to test the impact of fruits harvest, climate and habitat size (gallery forest width) on the frequency of sexual or clonal recruitment in Benin, West Africa. We sampled populations in two ecological regions (Sudanian and Sudano‐Guinean) and in each region, we selected sites with low, moderate and high fruit harvesting intensities. These populations were selected in gallery forests with varying width to sample the natural variation in P. butyracea habitat size. Heavily harvested populations produced significantly less seedlings but had the highest density and proportion of clonal offspring. Our study suggests that for plant species with dual reproductive strategy (via seeds and clonal), fruit harvesting and associated disturbances that come with it can lead to an increase in the proportion of clonal offspring. This raises the issue that excessive fruit harvest by increasing the proportion of clonal offspring to the detriment of seed originated offspring may lead to a reduction in genetic diversity with consequence on harvested species capability to withstand environmental stochasticity.  相似文献   

4.
Most perennial plants combine sexual reproduction with some form of clonal propagation. These mixed strategies may produce considerable variation among populations in levels of clonal diversity in response to ecological factors limiting one or other reproductive mode. Surveys of style morph frequencies in 163 populations of the eastern North American, clonal, tristylous aquatic, Decodon verticillatus (L.) Ell. (Lythraceae) suggested a wide range of clonal diversity among populations. Populations consisting of a single style morph were most common at the northern margin of the species' range and could have arisen through severe founder events followed by exclusive clonal propagation. Here, we test this hypothesis by comparing allozyme variation in populations monomorphic and polymorphic for style length located in Ontario and Michigan. Each of the four populations monomorphic for style length were fixed for a single three-locus allozyme genotype while the seven trimorphic and five dimorphic populations contained an average of 26 multilocus genotypes each. Measures of genotypic diversity were high in polymorphic populations (average D = 0.93 ± 0.02 standard error; D = 0.00 for all populations monomorphic for style length). Three of the populations monomorphic for style length were fixed for a heterozygous genotype at one of the loci surveyed, suggesting that each consists of a single clone. In contrast, genotype frequencies in polymorphic populations conformed to Hardy-Weinberg proportions indicative of sexual reproduction. The range of clonal diversity found in D. verticillatus is the largest reported for a clonal plant species, although the literature is too limited to determine whether this is truly unusual. Clonal diversity in D. verticillatus is likely to be regulated largely by ecological factors affecting seed production and establishment. However, genetically based sexual sterility also occurs in some populations.  相似文献   

5.
Genetic data are often crucial for designing management strategies for rare and endangered species. Ziziphus celata is an endangered sandhill shrub endemic to the Lake Wales Ridge of central Florida. This self-incompatible clonal species is known from only 14 wild populations, most of which are small (under 100 plants). Focusing on the five populations discovered in 2007, we evaluate the level of genetic diversity and identify clonal lineages within the wild populations of the species with a set of microsatellite loci. To account for somatic mutations and genotyping errors, we identified clonal lineages using a threshold cutoff for pair-wise genetic distances among samples. The microsatellites had up to 18 alleles/locus, and, consistent with outcrossing, samples were highly heterozygous (average population level H o  = 0.69). Most populations of Z. celata consist of a single clone, and the most diverse population has only 10 clones. Overall Z. celata comprises 41 multi-locus genotypes, and 30 clonal lineages. With nearly 1,000 recorded plants (595 genotyped) and only 30 clonal lineages, Ziziphus celata is highly clonal: clonal richness, R = 0.049. The pair-wise distance method facilitates identification of clonal lineages, avoiding overestimation of clonal diversity. In most cases, the samples that grouped into a lineage were one to four plants differing from a surrounding genotype by a single microsatellite repeat insertion/deletion mutation, consistent with these having arisen via somatic mutations. Our data will enable managers to incorporate extant diversity from wild populations into ex situ collections. Additionally, our research demonstrates the utility of microsatellites for conservation of imperiled species, identifying genotypes of high priority for preservation.  相似文献   

6.
Aceria tosichella (the wheat curl mite, WCM) is a global pest of wheat and other cereals, causing losses by direct damage, as well as the transmission of plant viruses. The mite is considered to have an unusually wide host range for an eriophyoid species. The present study tested the commonly held assumption that WCM is a single, highly polyphagous species by assessing the host range of genetically distinct lineages of WCM occurring in Poland on different host plants. Genotyping was performed by analyzing nucleotide sequence data from fragments of the mitochondrial cytochrome c oxidase subunit I (COI) and the nuclear D2 region of 28S rDNA. Mean between‐lineage distance estimated using COI data was found to be one order of magnitude greater than the within‐clade lineage and, in some cases, comparable to distances between WCM lineages and a congeneric outgroup species. Host acceptance was tested by quantifying population growth for different WCM mitochondrial (mt)DNA lineages when transferred from source host plants to test plants. These experiments revealed significant differences in host colonization ability between mtDNA lineages, ranging from highly polyphagous to more host‐specific. The present study reveals that WCM is composed of several discrete genetic lineages with divergent host‐acceptance and specificity traits. Genetic variation for host acceptance within A. tosichella s.l. may act as a reproductive barrier between these lineages, most of which had narrow host ranges. Two lineages appear to have high pest potential on cereals, whereas several others appear to specialize on wild grass species. We conclude that WCM is not a homogeneous species comprising polyphagous panmictic populations rather it is a complex of genetically distinct lineages with variable host ranges and therefore variable pest potential. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 165–180.  相似文献   

7.
Asexual reproduction by cloning may affect the genetic structure of populations, their potential to evolve, and, among foundation species, contributions to ecosystem functions. Macroalgae of the genus Fucus are known to produce attached plants only by sexual recruitment. Recently, however, clones of attached plants recruited by asexual reproduction were observed in a few populations of Fucus radicans Bergström et L. Kautsky and F. vesiculosus L. inside the Baltic Sea. Herein we assess the distribution and prevalence of clonality in Baltic fucoids using nine polymorphic microsatellite loci and samples of F. radicans and F. vesiculosus from 13 Baltic sites. Clonality was more common in F. radicans than in F. vesiculosus, and in both species it tended to be most common in northern Baltic sites, although variation among close populations was sometimes extensive. Individual clonal lineages were mostly restricted to single or nearby locations, but one clonal lineage of F. radicans dominated five of 10 populations and was widely distributed over 550 × 100 km of coast. Populations dominated by a few clonal lineages were common in F. radicans, and these were less genetically variable than in other populations. As thalli recruited by cloning produced gametes, a possible explanation for this reduced genetic variation is that dominance of one or a few clonal lineages biases the gamete pool resulting in a decreased effective population size and thereby loss of genetic variation by genetic drift. Baltic fucoids are important habitat‐forming species, and genetic structure and presence of clonality have implications for conservation strategies.  相似文献   

8.
The wheat curl mite (WCM), Aceria tosichella, is an important pest of wheat and other cereal crops that transmits wheat streak mosaic virus and several other plant viruses. Wheat curl mite has long been considered a single polyphagous species, but recent studies in Poland revealed a complex of genetically distinct lineages with divergent host‐acceptance traits, ranging from highly polyphagous to host‐specific. This diversity of WCM genotypes and host‐acceptance phenotypes in Europe, the presumed native range of WCM, raises questions about the lineage identities of invasive WCM populations on other continents and their relationships to European lineages. The goals of this study were to examine the global presence of WCM and determine the relatedness of lineages established in different continents, on the basis of phylogenetic analyses of mitochondrial and nuclear DNA sequence data. Host‐range bioassays of a highly polyphagous WCM lineage were performed to supplement existing data on this lineage's ability to colonise graminaceous and non‐graminaceous hosts. Invasive WCM populations in North and South America and Australia assorted with the only three known polyphagous and pestiferous WCM lineages (‘MT‐1’, ‘MT‐7’ and ‘MT‐8’) from a total of eight currently described lineages. These results show that the most polyphagous lineages were more successful colonisers and reflect a need for extensive surveys for WCM on both crops and wild grass species in invaded continents. The most invasive lineage (‘MT‐1’) was shown to successfully colonise all 10 plant species tested in three families and has spread to North and South America and Australia from its presumed origins in Eurasia.  相似文献   

9.
Many plant species combine sexual and clonal reproduction. Clonal propagation has ecological costs mainly related to inbreeding depression and pollen discounting; at the same time, species able to reproduce clonally have ecological and evolutionary advantages being able to persist when conditions are not favorable for sexual reproduction. The presence of clonality has profound consequences on the genetic structure of populations, especially when it represents the predominant reproductive strategy in a population. Theoretical studies suggest that high rate of clonal propagation should increase the effective number of alleles and heterozygosity in a population, while an opposite effect is expected on genetic differentiation among populations and on genotypic diversity. In this study, we ask how clonal propagation affects the genetic diversity of rare insular species, which are often characterized by low levels of genetic diversity, hence at risk of extinction. We used eight polymorphic microsatellite markers to study the genetic structure of the critically endangered insular endemic Ruta microcarpa. We found that clonality appears to positively affect the genetic diversity of R. microcarpa by increasing allelic diversity, polymorphism, and heterozygosity. Moreover, clonal propagation seems to be a more successful reproductive strategy in small, isolated population subjected to environmental stress. Our results suggest that clonal propagation may benefit rare species. However, the advantage of clonal growth may be only short‐lived for prolonged clonal growth could ultimately lead to monoclonal populations. Some degree of sexual reproduction may be needed in a predominantly clonal species to ensure long‐term viability.  相似文献   

10.
Cold‐adapted taxa are experiencing severe range shifts due to climate change and are expected to suffer a significant reduction of their climatically suitable habitats in the next few decades. However, it has been proposed that taxa with sufficient standing genetic and ecologic diversity will better withstand climate change. These taxa are typically more broadly distributed in geographic and ecological niche space, therefore they are likely to endure higher levels of populations loss than more restricted, less diverse taxa before the effects of those losses impact their overall diversity and resilience. Here, we explore the potential relationship between intraspecific genetic and ecological diversity and future resilience, using the cold‐adapted plant Primula farinosa. We employ high‐throughput sequencing to assess the genomic diversity of phylogeographic lineages in P. farinosa. Additionally, we use current climatic variables to define niche breadth and niche differentiation across lineages. Finally, we calibrate species distribution models (SDMs) and project the climatic preferences of each lineage on future climate to predict lineage‐specific shifts in climatically suitable habitats. Our study predicts relative persistence of future suitable habitats for the most genetically and ecologically diverse lineages of the cold‐adapted P. farinosa, but significant reduction of them for two out of its four lineages. While we do not provide specific experiments aimed at identifying the causal links between genetic diversity and resilience to climate change, our results indicate that greater genetic diversity and wider ecological breadth may buffer species responses to rapid climatic changes. This study further highlights the importance of integrating knowledge of intraspecific diversity for predicting species fate in response to climate change.  相似文献   

11.
The invasive ant species Wasmannia auropunctata displays both ecologically dominant and non‐dominant populations within its native range. Three factors could theoretically explain the ecological dominance of some native populations of W. auropunctata: (i) its clonal reproductive system, through demographic and/or adaptive advantages; (ii) its unicolonial social organization, through lower intraspecific and efficient interspecific competition; (iii) the human disturbance of its native range, through the modification of biotic and abiotic environmental conditions. We used microsatellite markers and behavioural tests to uncover the reproductive modes and social organization of dominant and non‐dominant native populations in natural and human‐modified habitats. Microsatellite and mtDNA data indicated that dominant and non‐dominant native populations (supercolonies as determined by aggression tests) of W. auropunctata did not belong to different evolutionary units. We found that the reproductive system and the social organization are neither necessary nor sufficient to explain W. auropunctata ecological dominance. Dominance rather seems to be set off by unknown ecological factors altered by human activities, as all dominant populations were recorded in human‐modified habitats. The clonal reproductive system found in some populations of W. auropunctata may however indirectly contribute to its ecological dominance by allowing the species to expand its environmental niche, through the fixation over time of specific combinations of divergent male and female genotypes. Unicoloniality may rather promote the range expansion of already dominant populations than actually trigger ecological dominance. The W. auropunctata model illustrates the strong impact of human disturbance on species’ ecological features and the adaptive potential of clonal reproductive systems.  相似文献   

12.
Invasive animals can facilitate the success of invasive plant populations through disturbance. We examined the relationship between the repeated foraging disturbance of an invasive animal and the population maintenance of an invasive plant in a coastal dune ecosystem. We hypothesized that feral wild hog (Sus scrofa) populations repeatedly utilized tubers of the clonal perennial, yellow nutsedge (Cyperus esculentus) as a food source and evaluated whether hog activity promoted the long‐term maintenance of yellow nutsedge populations on St. Catherine's Island, Georgia, United States. Using generalized linear mixed models, we tested the effect of wild hog disturbance on permanent sites for yellow nutsedge culm density, tuber density, and percent cover of native plant species over a 12‐year period. We found that disturbance plots had a higher number of culms and tubers and a lower percentage of native live plant cover than undisturbed control plots. Wild hogs redisturbed the disturbed plots approximately every 5 years. Our research provides demographic evidence that repeated foraging disturbances by an invasive animal promote the long‐term population maintenance of an invasive clonal plant. Opportunistic facultative interactions such as we demonstrate in this study are likely to become more commonplace as greater numbers of introduced species are integrated into ecological communities around the world.  相似文献   

13.
Communities of insect herbivores and their natural enemies are rich and ecologically crucial components of terrestrial biodiversity. Understanding the processes that promote their origin and maintenance is thus of considerable interest. One major proposed mechanism is ecological speciation through host‐associated differentiation (HAD), the divergence of a polyphagous species first into ecological host races and eventually into more specialized daughter species. The rich chalcid parasitoid communities attacking cynipid oak gall wasp hosts are structured by multiple host traits, including food plant taxon, host gall phenology, and gall structure. Here, we ask whether the same traits structure genetic diversity within supposedly generalist parasitoid morphospecies. We use mitochondrial DNA sequences and microsatellite genotypes to quantify HAD for Megastigmus (Bootanomyia) dorsalis, a complex of two apparently generalist cryptic parasitoid species attacking oak galls. Ancient Balkan refugial populations showed phenological separation between the cryptic species, one primarily attacking spring galls, and the other mainly attacking autumn galls. The spring species also contained host races specializing on galls developing on different host‐plant lineages (sections Cerris vs. Quercus) within the oak genus Quercus. These results indicate more significant host‐associated structuring within oak gall parasitoid communities than previously thought and support ecological theory predicting the evolution of specialist lineages within generalist parasitoids. In contrast, UK populations of the autumn cryptic species associated with both native and recently invading oak gall wasps showed no evidence of population differentiation, implying rapid recruitment of native parasitoid populations onto invading hosts, and hence potential for natural biological control. This is of significance given recent rapid range expansion of the economically damaging chestnut gall wasp, Dryocosmus kuriphilus, in Europe.  相似文献   

14.
Study of the congruence of population genetic structure between hosts and pathogens gives important insights into their shared phylogeographical and coevolutionary histories. We studied the population genetic structure of castrating anther‐smut fungi (genus Microbotryum) and of their host plants, the Silene nutans species complex, and the morphologically and genetically closely related Silene italica, which can be found in sympatry. Phylogeographical population genetic structure related to persistence in separate glacial refugia has been recently revealed in the S. nutans plant species complex across Western Europe, identifying several distinct lineages. We genotyped 171 associated plant–pathogen pairs of anther‐smut fungi and their host plant individuals using microsatellite markers and plant chloroplastic single nucleotide polymorphisms. We found clear differentiation between fungal populations parasitizing S. nutans and S. italica plants. The population genetic structure of fungal strains parasitizing the S. nutans plant species complex mirrored the host plant genetic structure, suggesting that the pathogen was isolated in glacial refugia together with its host and/or that it has specialized on the plant genetic lineages. Using random forest approximate Bayesian computation (ABC‐RF), we found that the divergence history of the fungal lineages on S. nutans was congruent with that previously inferred for the host plant and probably occurred with ancient but no recent gene flow. Genome sequences confirmed the genetic structure and the absence of recent gene flow between fungal genetic lineages. Our analyses of individual host–pathogen pairs contribute to a better understanding of co‐evolutionary histories between hosts and pathogens in natural ecosystems, in which such studies remain scarce.  相似文献   

15.
The current approaches to the study of clonal plants are reviewed. Most studies concentrate at the level of the ramet and clonal fragment exploring the “microscopic” view of clonal plants, dealing with the translocation of resources, clonal integration, plasticity of growth etc. The information gained, by this approach can be used in the understanding of higher levels of organization within the clonal system either with the help of spatially explicit modelling techniques, or by using means and distributions of size within a population instead of studying individual ramets separately. Plant scientists use the term clone with two meanings, viz. (a) a set of physiologically connected, but potentially independent ramets, and (b) a set of genetically identical, but potentially physically separated individuals. The overlap of these terms differs between individual plant species, depending on the extent of physical separation of the ramets and the degree of physiological integration between the ramets; the lower the frequency of ramet separation, the closer are the physiological and genetic concepts of the clone. Three critical areas seem to be neglected in clonal plant research: (a) the interrelationship between hierarchical levels in clonal plants, (b) the particular spatial structure of their environment, and (c) the importance of clonal plants in different ecological communities.  相似文献   

16.
Miller A 《Molecular ecology》2012,21(5):1036-1037
In long‐lived, clonally reproducing species, assessing organism size is a nontrivial endeavour because each genetically distinct entity (genet) may comprise multiple modular units (ramets). Attributes of clonally reproducing populations, such as genet size, longevity and clonal diversity (the number of genets in a population), have significant implications for the persistence of populations over time. In the context of climate change, population persistence contributes to community stability and ecosystem resilience. Do clonal individuals persist through periods of climatic oscillations? Are clonal populations composed of a few large and persistent clones, or do they include clones of different sizes and ages? In this issue, de Witte et al. (2012) present an exciting analysis of clonal diversity and genet longevity in populations of four arctic‐alpine plant species with contrasting life histories: Carex curvula, Dryas octopetala, Salix herbacea and Vaccinium uliginosum. Using amplified fragment length polymorphism (AFLP) data, the authors demonstrate that genet size ranged from a few centimetres to 18 metres and age estimates for the largest genets ranged from 500 to 4900 years. These data reveal that clonally reproducing populations include individuals that have outlived significant changes in climate. Despite the longevity of some individuals, clonal diversity within populations was high, with most individuals existing as small, relatively young genets. Long‐lived individuals, together with high numbers of younger plants, ensure repeated recruitment and population persistence over time. This study represents a novel and timely contribution to a growing body of work aimed at understanding population persistence in changing climates.  相似文献   

17.
Speciation is often categorized based on geographic modes (allopatric, parapatric or sympatric). Although it is widely accepted that species can arise in allopatry and then later become sympatrically or parapatrically distributed, patterns in the opposite direction are also theoretically possible (e.g. sympatric lineages or ecotypes becoming parapatric), but such patterns have not been shown at a macrogeographic scale. Here, we analyse genetic, climatic, ecological and morphological data and show that two typically sympatric colour morphs of the salamander Plethodon cinereus (redback and leadback) appear to have become parapatrically distributed on Long Island, New York, with pure‐redback populations in the west and pure‐leadback populations in the east (and polymorphic populations in between and on the mainland). In addition, the pure‐leadback populations in eastern Long Island are genetically, ecologically and morphologically divergent from both mainland and other Long Island populations, suggesting the possibility of incipient speciation. This parapatric separation seems to be related to the different ecological preferences of the two morphs, preferences which are present on the mainland and across Long Island. These results potentially support the idea that spatial segregation of sympatric ecotypes may sometimes play an important part in parapatric speciation.  相似文献   

18.
As a consequence of postglacial range expansion, hybrid zones evolved where different genetic lineages met. In this study, we analysed the Chalk‐hill Blue Polyommatus coridon all along the contact zone of two expansive lineages. This zone stretches from the sandy areas of north‐eastern Germany, along the mountain ranges of the German–Czech border and throughout the eastern Alps. We studied allozymes (19 loci) of 38 populations (1542 individuals) and compared these data sets against 15 populations of the western and 15 populations of the eastern lineages and found different degrees of hybridization. Thus, the calcareous regions of Thuringia and Sachsen‐Anhalt were mostly colonized by the western lineage. The middle mountain ranges between Bavaria and Bohemia represented a strong barrier blocking further expansion and thus completely impeding hybridization in this region. More intense hybridization was detected in the populations of the eastern Alps, especially in the north‐eastern part, where the Danube most probably acted as an expansion corridor for both lineages followed by intensive hybridization. In the south‐eastern Alps, hybrid populations were mostly detected in the easternmost parts and along the larger river valley of Drava and Mur; pure western populations dominated in the other areas of this region. These results show that the degree of hybridization along a contact zone is correlated with the ecological demands of a species and the regional physical geographic circumstances. This finding was proved for the Chalk‐hill Blue in our study but is also the most likely scenario in most animal and plant species.  相似文献   

19.
This paper assesses the present state of the art of ploidy manipulation in the loach, Misgurnus anguillicaudatus (Teleoste: Cobitidae). Diploid sperm can be obtained from natural tetraploid individuals with four sets of homologous chromosomes. Using diploid sperm, various polyploids and androgenetic diploids have been produced. Cryptic clonal lineages are also recognized in wild populations of the loach. They produce unreduced diploid eggs genetically identical to somatic cells of the mother fish and most diploid eggs develop gynogenetically as a member of the clone. However, some eggs develop to triploid and/or diploid-triploid mosaic individuals by incorporation of sperm nucleus. Diploid-triploid mosaic males exclusively generate fertile diploid sperm with clonal genotypes. Such diploid sperm can also be obtained from artificially sex-reversed clonal individuals. Recent population studies suggested that Japanese M. anguillicaudatus might not be a single species, but a complex involving cryptic species, because wild populations exhibited genetic differentiation at interspecific level. This implies possible relationship between atypical reproduction and natural hybridization in the loach.  相似文献   

20.
Clonal expansion has been observed in several invasive fungal plant pathogens colonizing new areas, raising the question of the origin of clonal lineages. Using microsatellite markers, we retraced the evolutionary history of introduction of the chestnut blight fungus, Cryphonectria parasitica, in North America and western Europe. Combining discriminant analysis of principal components and approximate Bayesian computation analysis, we showed that several introduction events from genetically differentiated source populations have occurred in both invaded areas. In addition, a low signal of genetic recombination among different source populations was suggested in North America. Finally, two genetic lineages were present in both invaded areas as well as in the native areas, suggesting the existence of genetic lineages with a high capacity to establish in diverse environments and host species. This study confirmed the importance of multiple introductions, but questioned the role of genetic admixture in the success of introduction of a fungal plant pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号