首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three‐photon microscopy excited at the 1700‐nm window enables deep‐tissue penetration. However, the refractive indices of commonly used immersion oils, and the resultant pulse broadening are not known, preventing imaging optimization. Here, we demonstrate detailed characterization of the refractive index, pulse broadening and distortion for excitation pulses at this window for commonly used immersion oils. On the physical side, we uncover that absorption, rather than material dispersion, is the main cause of pulse broadening and distortion. On the application side, comparative three‐photon imaging results indicate that 1600‐nm excitation yields 5 times higher three‐photon signal than 1690‐nm excitation.   相似文献   

2.
Multiphoton microscopy (MPM) excited at the 1700-nm window has enabled deep-tissue penetration in biological tissue, especially brain. MPM of skin may also benefit from this deep-penetration capability. Skin is a layered structure with varying refractive index (from 1.34 to 1.5). Consequently, proper immersion medium should be selected when imaging with high numerical aperture objective lens. To provide guidelines for immersion medium selection for skin MPM, here we demonstrate comparative experimental investigation of deep-skin MPM excited at 1600 nm in vivo, using both silicone oil and deuterium dioxide (D2O) immersion. We specifically characterize imaging depths, signal levels and spatial resolution. Our results show that both immersion media give similar performance in imaging depth and spatial resolution, while signal levels are slightly better with silicone oil immersion. We also demonstrate that local injection of fluorescent beads into the skin is a viable technique for spatial resolution characterization in vivo.   相似文献   

3.
One benefit of excitation at the 1700‐nm window is the more accessible modalities of multiphoton signal generation. It is demonstrated here that the transmittance performance of the objective lens is of vital importance for efficient higher‐order multiphoton signal generation and collection excited at the 1700‐nm window. Two commonly used objective lenses for multiphoton microscopy (MPM) are characterized and compared, one with regular coating and the other with customized coating for high transmittance at the 1700‐nm window. Our results show that, fourth harmonic generation imaging of mouse tail tendon and 5‐photon fluorescence of carbon quantum dots using the regular objective lens shows an order of magnitude signal higher than those using the customized objective lens. Besides, the regular objective lens also enables a 3‐photon fluorescence imaging depth of >1600 μm in mouse brain in vivo. Our results will provide guidelines for objective lens selection for MPM at the 1700‐nm window.  相似文献   

4.
Multiphoton action cross‐sections are the prerequisite for excitation light selection. At the 1700‐nm window suitable for deep‐tissue imaging, wavelength‐dependent 3‐photon action cross‐sections ησ3 for RFPs are unknown, preventing wavelength selection. Here we demonstrate: (1) ex vivo measurement of wavelength‐dependent ησ3 for purified RFPs; (2) a multiphoton imaging guided measurement system for in vivo measurement; and (3) in vivo measurement of wavelength‐dependent ησ3 in RFP labeled cells. These fundamental results will provide guidelines for excitation wavelength selection for 3‐photon fluorescence imaging of RFPs at the 1700‐nm window, and augment the existing database of multiphoton action cross‐sections for fluorophores.   相似文献   

5.
Elastic fibers are key constituents of the skin. The commonly adopted optical technique for visualizing elastic fibers in the animal skin in vivo is 2‐photon microscopy (2 PM) of autofluorescence, which typically suffers from low signal level. Here we demonstrate a new optical methodology to image elastic fibers in animal models in vivo: 3‐photon microscopy (3 PM) excited at the 1700‐nm window combining with preferential labeling of elastic fibers using sulforhodamine B (SRB). First, we demonstrate that intravenous injection of SRB can circumvent the skin barrier (encountered in topical application) and preferentially label elastic fibers, as verified by simultaneous 2 PM of both autofluorescence and SRB fluorescence from skin structures. Then through 3‐photon excitation property characterization, we show that 3‐photon fluorescence can be excited from SRB at the 1700‐nm window, and 1600‐nm excitation is most efficient according to our 3‐photon action cross section measurement. Based on these results and using our developed 1600‐nm femtosecond laser source, we finally demonstrate 3 PM of SRB‐labeled elastic fibers through the whole dermis in the mouse skin in vivo, with only 3.7‐mW optical power deposited on the skin surface. We expect our methodology will provide novel optical solution to elastic fiber research.  相似文献   

6.
In recent years, two‐photon fluorescence microscopy has gained significant interest in bioimaging. It allows the visualization of deeply buried inhomogeneities in tissues. The near‐infrared (NIR) dyes are also used for deep tissue imaging. Indocyanine green (ICG) is the only U.S. Food and Drug Administration (FDA) approved exogenous contrast agent in the NIR region for clinical applications. However, despite its potential candidature, it had never been used as a two‐photon contrast agent for biomedical imaging applications. This letter provides an insight into the scope and application of the two‐photon excitation property of ICG to the second excited singlet (S2) state in aqueous solution. Furthermore, in this work, we demonstrate the two‐photon cellular imaging application of ICG using direct fluorescence emission from S2 state for the first time. Our results show that two‐photon excitation to S2 state of ICG could be achieved with approximately 790 nm wavelength of femtosecond laser, which lies in well‐known “tissue‐optical window.” This property would enable light to penetrate much deeper in the turbid medium such as biological tissues. Thus, ICG could be used as the first FDA approved NIR exogenous contrast agent for two‐photon imaging. These findings can make remarkable influence on preclinical and clinical cell imaging.   相似文献   

7.
Osteocytes are the most abundant cells in bone and always the focus of bone research. They are embedded in the highly scattering mineralized bone matrix. Consequently, visualizing osteocytes deep in bone with subcellular resolution poses a major challenge for in vivo bone research. Here we overcome this challenge by demonstrating 3‐photon imaging of osteocytes through the intact mouse skull in vivo. Through broadband transmittance characterization, we establish that the excitation at the 1700‐nm window enables the highest optical transmittance through the skull. Using label‐free third‐harmonic generation (THG) imaging excited at this window, we visualize osteocytes through the whole 140‐μm mouse skull and 155 μm into the brain in vivo. By developing selective labeling technique for the interstitial space, we visualize the “sandwich” structure of osteocytes in their native environment. Our work provides novel imaging methodology for bone research in vivo.   相似文献   

8.
Near‐infrared (NIR) radiation has been employed using one‐ and two‐photon excitation of fluorescence imaging at wavelengths 650–950 nm (optical window I) for deep brain imaging; however, longer wavelengths in NIR have been overlooked due to a lack of suitable NIR‐low band gap semiconductor imaging detectors and/or femtosecond laser sources. This research introduces three new optical windows in NIR and demonstrates their potential for deep brain tissue imaging. The transmittances are measured in rat brain tissue in the second (II, 1,100–1,350 nm), third (III, 1,600–1,870 nm), and fourth (IV, centered at 2,200 nm) NIR optical tissue windows. The relationship between transmission and tissue thickness is measured and compared with the theory. Due to a reduction in scattering and minimal absorption, window III is shown to be the best for deep brain imaging, and windows II and IV show similar but better potential for deep imaging than window I.

  相似文献   


9.
Energetic femtosecond pulses at the 1700‐nm window are a prerequisite for deep‐tissue three‐photon microscopy (3PM). Soliton self‐frequency shift (SSFS) in photonic‐crystal (PC) rod has been the only technique to generate such pulses suitable for 3PM. Here we demonstrate through SSFS in an air‐core fiber, we can generate most energetic femtosecond soliton pulses at the 1700‐nm window, 5.2 times higher than that from PC rod. However, the air‐core soliton pulse width is 5.9 times longer than that of PC rod soliton. Based on comparative 3PM excited with both air‐core and PC rod solitons, we propose the more suitable source for 3PM. We further elucidate the challenge of generating shorter soliton pulses from air‐core fibers through numerical simulation.  相似文献   

10.
We report the employment of an optical window between 1600 nm and 1850 nm for bond‐selective deep tissue imaging through harmonic vibrational excitation and acoustic detection of resultant pressure waves. In this window where a local minimum of water absorption resides, we found a 5 times enhancement of photoacoustic signal by first overtone excitation of the methylene group CH2 at 1730 nm, compared to the second overtone excitation at 1210 nm. The enhancement allows 3D mapping of intramuscular fat with improved contrast and of lipid deposition inside an atherosclerotic artery wall in the presence of blood. Moreover, lipid and protein are differentiated based on the first overtone absorption profiles of CH2 and methyl group CH3 in this window. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Astrocytes play a key role in the central nervous system. However, methods of visualizing astrocytes in the deep brain in vivo have been lacking. 3‐photon fluorescence imaging of astrocytes labeled by sulforhodamine 101 (SR101) is demonstrated in deep mouse brain in vivo. Excitation wavelength selection was guided by wavelength‐dependent 3‐photon action cross section (ησ 3) measurement of SR101. 3‐photon fluorescence imaging of the SR101‐labeled vasculature enabled an imaging depth of 1340‐μm into the mouse brain. This justifies the deep imaging capability of the technique and indicates that the imaging depth is not determined by the signal‐to‐background ratio limit encountered in 2‐photon fluorescence imaging. Visualization of astrocytes 910 μm below the surface of the mouse brain in vivo is demonstrated, 30% deeper than that using 2‐photon fluorescence microscopy. Through quantitative comparison of the signal difference between the SR101‐labeled blood vessels and astrocytes, the challenges of visualizing astrocytes below the white matter is further elucidated.   相似文献   

12.
Sequential series multijunction dye‐sensitized solar cells (SSM‐DSCs) can power solar‐to‐fuel processes with a single illuminated area device. Dye selection and strategies limiting photon losses are critical in SSM‐DSC devices for higher performance systems. Herein, an efficient and readily applicable spin coating protocol on glass surfaces with an antireflective fluoropolymer (CYTOP) is applied to an SSM‐DSC architecture. Combining CYTOP with the use of an immersion oil between glass spacers in a three subcell SSM‐DSC with judiciously selected TiO2 photoanode sensitizers and thicknesses, an overall power conversion efficiency (PCE) of 10.1% is obtained with an output of 2.3 V. Without external bias, this SSM‐DSC configuration shows an impressive overall solar‐to‐fuel conversion efficiency of 6% when powering IrO2 and Au2O3 electrocatalysts for CO2 and H2O to CO and H2 conversion in aqueous solution. The role of CYTOP, immersion oil, sensitizer selection, and film thickness on SSM‐DSC devices is discussed along with the stability of this system.  相似文献   

13.
We demonstrate an accurate quantitative characterization of absolute two‐ and three‐photon absorption (2PA and 3PA) action cross sections of a genetically encodable fluorescent marker Sypher3s. Both 2PA and 3PA action cross sections of this marker are found to be remarkably high, enabling high‐brightness, cell‐specific two‐ and three‐photon fluorescence brain imaging. Brain imaging experiments on sliced samples of rat's cortical areas are presented to demonstrate these imaging modalities. The 2PA action cross section of Sypher3s is shown to be highly sensitive to the level of pH, enabling pH measurements via a ratiometric readout of the two‐photon fluorescence with two laser excitation wavelengths, thus paving the way toward fast optical pH sensing in deep‐tissue experiments.  相似文献   

14.
Fluorescence imaging in the second near‐infrared optical window (NIR‐II, 900‐1700 nm) has become a technique of choice for noninvasive in vivo imaging in recent years. Greater penetration depths with high spatial resolution and low background can be achieved with this NIR‐II window, owing to low autofluorescence within this optical range and reduced scattering of long wavelength photons. Here, we present a novel design of confocal laser scanning microscope tailored for imaging in the NIR‐II window. We showcase the outstanding penetration depth of our confocal setup with a series of imaging experiments. HeLa cells labeled with PbS quantum dots with a peak emission wavelength of 1276 nm can be visualized through a 3.5‐mm‐thick layer of scattering medium, which is a 0.8% Lipofundin solution. A commercially available organic dye IR‐1061 (emission peak at 1132 nm), in its native form, is used for the first time, as a NIR‐II fluorescence label in cellular imaging. Our confocal setup is capable of capturing optically sectioned images of IR‐1061 labeled chondrocytes in fixed animal cartilage at a depth up to 800 μm, with a superb spatial resolution of around 2 μm.   相似文献   

15.
Visualizing fine neuronal structures deep inside strongly light‐scattering brain tissue remains a challenge in neuroscience. Recent nanoscopy techniques have reached the necessary resolution but often suffer from limited imaging depth, long imaging time or high light fluence requirements. Here, we present two‐photon super‐resolution patterned excitation reconstruction (2P‐SuPER) microscopy for 3‐dimensional imaging of dendritic spine dynamics at a maximum demonstrated imaging depth of 130 μm in living brain tissue with approximately 100 nm spatial resolution. We confirmed 2P‐SuPER resolution using fluorescence nanoparticle and quantum dot phantoms and imaged spiny neurons in acute brain slices. We induced hippocampal plasticity and showed that 2P‐SuPER can resolve increases in dendritic spine head sizes on CA1 pyramidal neurons following theta‐burst stimulation of Schaffer collateral axons. 2P‐SuPER further revealed nanoscopic increases in dendritic spine neck widths, a feature of synaptic plasticity that has not been thoroughly investigated due to the combined limit of resolution and penetration depth in existing imaging technologies.   相似文献   

16.
Skull optical clearing window permits us to perform in vivo cortical imaging without craniotomy, but mainly limits to visible (vis)‐near infrared (NIR)‐I light imaging. If the skull optical clearing window is available for NIR‐II, the imaging depth will be further enhanced. Herein, we developed a vis‐NIR‐II skull optical clearing agents with deuterium oxide instead of water, which could make the skull transparent in the range of visible to NIR‐II. Using a NIR‐II excited third harmonic generation microscope, the cortical vasculature of mice could be clearly distinguished even at the depth of 650 μm through the vis‐NIR‐II skull clearing window. The imaging depth after clearing is close to that without skull, and increases by three times through turbid skull. Furthermore, the new skull optical clearing window promises to realize NIR‐II laser‐induced targeted injury of cortical single vessel. This work enhances the ability of NIR‐II excited nonlinear imaging techniques for accessing to cortical neurovasculature in deep tissue.  相似文献   

17.
More recently, tremendous progress has been achieved in the development of two‐dimensional semiconductor materials applied in catalyst, energy application, sensor device and bioengineering since the birth of graphene isolated from graphite. Layered molybdenum disulfide (MoS2) as an indirect gap semiconductor can efficiently emit photoluminescence (PL) excited by visible light, which shows a great potential in adaptive biological imaging. However, 1 photon PL of MoS2 for cell imaging purposes suffers from strong autofluorescence and ion‐induced PL quenching. Herein, we report single layer small chitosan decorated MoS2 nanosheets as a nonbleaching, nonblinking optical nanoprobe under near infrared femtosecond laser excitation and their applications for strong 2 photon luminescence (TPL) and strong second harmonic generation (SHG) bioimaging. Furthermore, the TPL can resist the ion‐induced quenching on the cellular membrane. The proposed TPL and SHG of single‐layer MoS2 show great potential for real‐time, deep, multiphoton and three‐dimensional bioimaging under low‐power laser excitation.   相似文献   

18.
The D4 dopamine receptor belongs to the D2‐like family of dopamine receptors, and its exact regional distribution in the central nervous system is still a matter of considerable debate. The availability of a selective radioligand for the D4 receptor with suitable properties for positron emission tomography (PET) would help resolve issues of D4 receptor localization in the brain, and the presumed diurnal change of expressed protein in the eye and pineal gland. We report here on in vitro and in vivo characteristics of the high‐affinity D4 receptor‐selective ligand N‐{2‐[4‐(3‐cyanopyridin‐2‐yl)piperazin‐1‐yl]ethyl}‐3‐[11C]methoxybenzamide ([11C] 2 ) in rat. The results provide new insights on the in vitro properties that a brain PET dopamine D4 radioligand should possess in order to have improved in vivo utility in rodents.  相似文献   

19.
Optical coupling between a single, individually addressable neuron and a properly designed optical fiber is demonstrated. Two‐photon imaging is shown to enable a quantitative in situ analysis of such fiber–single‐neuron coupling in the live brain of transgenic mice. Fiber‐optic interrogation of single pyramidal neurons in mouse brain cortex is performed with the positioning of the fiber probe relative to the neuron accurately mapped by means of two‐photon imaging. These results pave the way for fiber‐optic interfaces to single neurons for a stimulation and interrogation of individually addressable brain cells in chronic in vivo studies on freely behaving transgenic animal models, as well as the integration of fiber‐optic single‐neuron stimulation into the optical imaging framework.

  相似文献   


20.
Near‐UV excited narrow line red‐emitting phosphors, Eu3+‐activated Y2MoO6 systems, were synthesized using a simple molten salt reaction. The structure and photoluminescence characteristics were investigated using X‐ray powder diffraction, UV–Vis absorption and fluorescent spectrophotometry. The excitation spectra show strong broad‐band absorptions in the near‐UV to blue light regions which match the radiation of near‐UV light‐emitting diode chips well. Under excitation of either near‐UV or blue light, intense red emission with a main peak of 611 nm is observed, ascribed to the 5D07F2 transition of Eu3+ ions; the optimal doping concentration is 20 mol%. The chromaticity coordinates (x = 0.65, y = 0.34) of the as‐obtained phosphor are very close to the National Television Standard Committee standard values (x = 0.67, y = 0.33). All these characteristics suggest that this material is a promising red‐emitting phosphor candidate for white‐LEDs based on near‐UV LED chips. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号