首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA aptamers represent an emerging class of pharmaceuticals with great potential for targeted cancer diagnostics and therapy. Several RNA aptamers that bind cancer cell-surface antigens with high affinity and specificity have been described. However, their clinical potential has yet to be realized. A significant obstacle to the clinical adoption of RNA aptamers is the high cost of manufacturing long RNA sequences through chemical synthesis. Therapeutic aptamers are often truncated postselection by using a trial-and-error process, which is time consuming and inefficient. Here, we used a "rational truncation" approach guided by RNA structural prediction and protein/RNA docking algorithms that enabled us to substantially truncateA9, an RNA aptamer to prostate-specific membrane antigen (PSMA),with great potential for targeted therapeutics. This truncated PSMA aptamer (A9L; 41mer) retains binding activity, functionality, and is amenable to large-scale chemical synthesis for future clinical applications. In addition, the modeled RNA tertiary structure and protein/RNA docking predictions revealed key nucleotides within the aptamer critical for binding to PSMA and inhibiting its enzymatic activity. Finally, this work highlights the utility of existing RNA structural prediction and protein docking techniques that may be generally applicable to developing RNA aptamers optimized for therapeutic use.  相似文献   

2.
The nucleocapsid (NC) protein of the human immunodeficiency virus-1 (HIV-1) plays an important role in the encapsidation of viral RNA and assembly of viral particle. Since the NC protein is resistant for mutation, it might be an excellent target for the anti-viral therapy. RNA aptamers that bind to the mature form of the NC protein were isolated from a RNA library. Surface plasmon resonance measurement and gel shift assay showed that the RNA aptamers specifically bind to the NC protein with high affinity and compete for the psi RNA binding to the NC protein. Mapping of the RNA aptamer showed at least two sites for the protein binding, suggesting a multiple and cooperative binding by the NC to RNA. In addition, the circular form of RNA avidly binds to the NC protein as a linear counter does. Stabilized RNA aptamer is expected to act as an inhibitor for the viral packaging.  相似文献   

3.
Production and processing of aptamer microarrays   总被引:4,自引:0,他引:4  
Aptamers are nucleic acid species that are selected in vitro for their specific binding properties. We describe methods for the production and processing of aptamer microarrays, including detailed procedures for the high-throughput, enzymatic synthesis of 5' RNA biotinylated aptamers and for arraying them onto streptavidin-coated glass slides. Also presented are methods for processing the aptamer microarrays, including blocking, washing, drying, and scanning. Examples are shown for the specific capture of fluorescently labeled target proteins either alone in binding buffer or in competition with labeled intracellular proteins from cell lysates. Consideration is given to the challenges involved in producing multiplex aptamer chips composed of aptamers taken from disparate literature sources, and to the development of standardized methods for characterizing the performance of capture reagents used in biosensors.  相似文献   

4.
5.
RNA aptamers are in vitro-selected binding domains that recognize their respective ligand with high affinity and specificity. They are characterized by complex three-dimensional conformations providing preformed binding pockets that undergo conformational changes upon ligand binding. Small molecule-binding aptamers have been exploited as synthetic riboswitches for conditional gene expression in various organisms. In the present study, double electron-electron resonance (DEER) spectroscopy combined with site-directed spin labeling was used to elucidate the conformational transition of a tetracycline aptamer upon ligand binding. Different sites were selected for post-synthetic introduction of either the (1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl) methanethiosulfonate by reaction with a 4-thiouridine modified RNA or of 4-isocyanato-2,6-tetramethylpiperidyl-N-oxid spin label by reaction with 2'-aminouridine modified RNA. The results of the DEER experiments indicate the presence of a thermodynamic equilibrium between two aptamer conformations in the free state and capture of one conformation upon tetracycline binding.  相似文献   

6.
Small molecules provide rich targets for biosensing applications due to their physiological implications as biomarkers of various aspects of human health and performance. Nucleic acid aptamers have been increasingly applied as recognition elements on biosensor platforms, but selecting aptamers toward small molecule targets requires special design considerations. This work describes modification and critical steps of a method designed to select structure-switching aptamers to small molecule targets. Binding sequences from a DNA library hybridized to complementary DNA capture probes on magnetic beads are separated from nonbinders via a target-induced change in conformation. This method is advantageous because sequences binding the support matrix (beads) will not be further amplified, and it does not require immobilization of the target molecule. However, the melting temperature of the capture probe and library is kept at or slightly above RT, such that sequences that dehybridize based on thermodynamics will also be present in the supernatant solution. This effectively limits the partitioning efficiency (ability to separate target binding sequences from nonbinders), and therefore many selection rounds will be required to remove background sequences. The reported method differs from previous structure-switching aptamer selections due to implementation of negative selection steps, simplified enrichment monitoring, and extension of the length of the capture probe following selection enrichment to provide enhanced stringency. The selected structure-switching aptamers are advantageous in a gold nanoparticle assay platform that reports the presence of a target molecule by the conformational change of the aptamer. The gold nanoparticle assay was applied because it provides a simple, rapid colorimetric readout that is beneficial in a clinical or deployed environment. Design and optimization considerations are presented for the assay as proof-of-principle work in buffer to provide a foundation for further extension of the work toward small molecule biosensing in physiological fluids.  相似文献   

7.
The glycine riboswitch has a tandem dual aptamer configuration, where each aptamer is a separate ligand-binding domain, but the aptamers function together to bind glycine cooperatively. We sought to understand the molecular basis of glycine riboswitch cooperativity by comparing sites of tertiary contacts in a series of cooperative and noncooperative glycine riboswitch mutants using hydroxyl radical footprinting, in-line probing, and native gel-shift studies. The results illustrate the importance of a direct or indirect interaction between the P3b hairpin of aptamer 2 and the P1 helix of aptamer 1 in cooperative glycine binding. Furthermore, our data support a model in which glycine binding is sequential; where the binding of glycine to the second aptamer allows tertiary interactions to be made that facilitate binding of a second glycine molecule to the first aptamer. These results provide insight into cooperative ligand binding in RNA macromolecules.  相似文献   

8.
Prostatic acid phosphatase (PAP) expression increases proportionally with prostate cancer progression, making it useful in prognosticating intermediate to high-risk prostate cancers. A novel ligand that can specifically bind to PAP would be very helpful for guiding prostate cancer therapy. RNA aptamers bind to target molecules with high specificity and have key advantages such as low immunogenicity and easy synthesis. Here, human PAP-specific aptamers were screened from a 2′-fluoropyrimidine (FY)-modified RNA library by SELEX. The candidate aptamer families were identified within six rounds followed by analysis of their sequences and PAP-specific binding. A gel shift assay was used to identify PAP binding aptamers and the 6N aptamer specifically bound to PAP with a Kd value of 118 nM. RT-PCR and fluorescence labeling analyses revealed that the 6N aptamer bound to PAP-positive mammalian cells, such as PC-3 and LNCaP. IMR-90 negative control cells did not bind the 6N aptamer. Systematic minimization analyses revealed that 50 nucleotide sequences and their two hairpin structures in the 6N 2′-FY RNA aptamer were equally important for PAP binding. Renewed interest in PAP combined with the versatility of RNA aptamers, including conjugation of anti-cancer drugs and nano-imaging probes, could open up a new route for early theragnosis of prostate cancer.  相似文献   

9.
Aptamers are good molecular recognition elements for biosensors. Especially, their conformational change, which is induced by the binding to the target molecule, enables the development of several types of useful detection systems. We applied this property to bound/free separation, which is a crucial process for highly sensitive detection. We designed aptamers which change their conformation upon binding to the target molecule and thereby expose a single-strand bearing the complementary sequence to the capture probe immobilized onto the support. We named the designed aptamers "capturable aptamers" and the capture probe "capture DNA". Three capturable aptamers were designed based on the PrP aptamer, which binds to prion protein. One of these capturable aptamers was demonstrated to recognize prion protein and change its conformation upon binding to it. A detection system using this designed capturable aptamer for prion protein was developed. Capturable aptamers and capture DNA allow us to perform simple bound/free separation with only one target ligand.  相似文献   

10.
Nucleic acid aptamer selection by systematic evolution of ligands by exponential enrichment (SELEX) has shown great promise for use in the development of research tools, therapeutics and diagnostics. Typically, aptamers are identified from libraries containing up to 1016 different RNA or DNA sequences by 5–10 rounds of affinity selection towards a target of interest. Such library screenings can result in complex pools of many target-binding aptamers. New high-throughput sequencing techniques may potentially revolutionise aptamer selection by allowing quantitative assessment of the dynamic changes in the pool composition during the SELEX process and by facilitating large-scale post-SELEX characterisation. In the present study, we demonstrate how high-throughput sequencing of SELEX pools, before and after a single round of branched selection for binding to different target variants, can provide detailed information about aptamer binding sites, preferences for specific target conformations, and functional effects of the aptamers. The procedure was applied on a diverse pool of 2′-fluoropyrimidine-modified RNA enriched for aptamers specific for the serpin plasminogen activator inhibitor-1 (PAI-1) through five rounds of standard selection. The results demonstrate that it is possible to perform large-scale detailed characterisation of aptamer sequences directly in the complex pools obtained from library selection methods, thus without the need to produce individual aptamers.  相似文献   

11.
Six RNA aptamers that bind to yeast phenylalanine tRNA were identified by in vitro selection from a random-sequence pool. The two most abundantly represented aptamers interact with the tRNA anticodon loop, each through a sequence block with perfect Watson-Crick complementarity to the loop. It was possible to truncate one of these aptamers to a simple hairpin loop that forms a classical 'kissing complex' with the anticodon loop. Three other aptamers have nearly complete complementarity to the anticodon loop. The sixth aptamer has two sequence blocks, one complementary to the tRNA T loop and the other to the D loop; this aptamer binds better to a mutant tRNA that disrupts the normal D-loop/T-loop tertiary interaction than to the wild-type tRNA. Selection of complements to tRNA loops occurred despite an attempt to direct binding to tertiary structural features of tRNA. This serves as a reminder of how special the RNA-RNA interactions are that are not based on complementarity. Nonetheless, these aptamers must present the tRNA complement in some special structural context; the simple single-strand complement of the anticodon loop did not bind tRNA effectively.  相似文献   

12.
A sol-gel microarray system was developed for a protein interaction assay with high activity. Comparing to 2-dimensional microarray surfaces, sol-gel can offer a more dynamic and broad range for proteins. In the present study, this sol-gel-integrated protein array was used in binding affinity analysis for aptamers. Six RNA aptamers and their target protein, yeast TBP (TATA-binding protein), were used to evaluate this method. A TBP-containing sol-gel mixture was spotted using a dispensing workstation under high-humidity conditions and each Cy-3-labeled aptamer was incubated. The dissociation constants (K(d)) were calculated by plotting the fluorescent intensity of the bound aptamers as a function of the TBP concentrations. The K(d) value of the control aptamer was found to be 8?nM, which agrees well with the values obtained using the conventional method, electric mobility shift assay. The sol-gel-based binding affinity measurements fit well with conventional binding affinity measurements, suggesting their possible use as an alternative to the conventional method. In addition, aptamer affinity measurements by the sol-gel-integrated protein chip make it possible to develop a simple high-throughput affinity method for screening high-affinity aptamers.  相似文献   

13.
应用核酸适配子检测细胞因子的新方法—ELONA法   总被引:2,自引:0,他引:2  
以人肿瘤坏死因子(Human tumor necrosis factor,hTNF—α)特异性的核酸适配子为检测分子建立了酶联寡聚核苷酸吸附试验(Enzyme—linked Oligonucleotide assay,ELONA)方法,用于hTNF—α的检测。通过SELEX(Systematic Evolution of Ligands by Exponential Enrichment)方法从随机RNA库中筛选到与hTNF—α特异结合的RNA适配子。根据其序列,用体外转录方法合成生物素标记的RNA适配子,并对其进行了氨基修饰以增加其稳定性。以hTNF—α的单克隆抗体为捕获分子,生物素标记的hTNF—α特异性RNA适配子为检测分子建立了ELONA方法,并对这种检测方法的灵敏度、精密度和准确度等进行了分析。同时用ELONA和ELISA方法检测了正常人血清中的hTNF—α水平,并对检测结果进行比较。结果显示,ELONA方法的灵敏度为100pg/mL,具有较好的精密度和准确度。ELONA法的检测结果与ELISA法检测结果基本一致。该方法适用于血清、细胞培养上清等多种生物标本中各种细胞因子及其它蛋白的检测。  相似文献   

14.
目的 有效结合分子对接预测和表面等离子体共振实验评价技术,获得亲和力更强、序列最短的最优适配体。方法 针对前期筛选出的靶向蓖麻毒素的3条80 nt单链DNA适配体(L14、P3、L7),在明确各自二维随机区茎环序列与靶蛋白结合能力的基础上,以H-DOCK分子对接为指导,分别确定蓖麻毒素适配体随机区的最短结合单元,从而构建两端延长步进序列群,以表面等离子体共振技术测定序列群序列的亲和力和动力学参数,明确适配体的结合关键结构,从而筛选得到最优适配体。结果 3条全长适配体的随机区适配体L14r、P3r、L7r均可形成一定的茎环结构,其中L14r较L14的亲和力增强9倍、L7r增强2倍、P3r基本不变。对随机区适配体和蓖麻毒素进行分子对接,结果显示,L14r、P3r、L7r的对接分数值皆优于阴性序列40T,结合关键氨基酸个数分别为11、8、9个,存在距离小于5 ?的预测结合位点分别为20、12、15个,具有良好的与蓖麻毒素的结合能力。进一步明确了蓖麻毒素活性口袋所容纳的适配体最短结合单元L14rm、P3rm、L7rm的序列构成,在此基础上构建出两端延长步进序列群。针对该步进群,基于结合关键氨基酸个数、结合位点个数、对接得分等参数的变化和表面等离子体共振测定结果筛选出最优适配体。所获得的最优适配体L14rm、L7rm-2亲和力继续增强了1~2倍。结论 随机区适配体能有效地与蓖麻毒素结合,较之全长适配体亲和力更强,分子对接结合步进序列群设计,仅使用17条序列,便有效获得了3条最优适配体并明确其结合作用。3条结合蓖麻毒素的最优适配体——L14rm、P3r、L7rm-2的KD值分别为(64±30)、(167±19)、(120±1)nmol/L,亲和力提高到全长适配体的14、1、4倍。  相似文献   

15.
'Locked nucleic acids' (LNAs) are sugar modified nucleic acids containing the 2'-O-4'C-methylene-β-D-ribofuranoses. The substitution of RNAs with LNAs leads to an enhanced thermostability. Aptamers are nucleic acids, which are selected for specific target binding from a large library pool by the 'SELEX' method. Introduction of modified nucleic acids into aptamers can improve their stability. The stem region of a ricin A chain RNA aptamer was substituted by locked nucleic acids. Different constructs of the LNA-substituted aptamers were examined for their thermostability, binding activity, folding and RNase sensitivity as compared to the natural RNA counterpart. The LNA-modified aptamers were active in target binding, while the loop regions and the adjacent stem nucleotides remained unsubstituted. The thermostability and RNase resistance of LNA substituted aptamers were enhanced as compared to the native RNA aptamer. This study supports the approach to substitute the aptamer stem region by LNAs and to leave the loop region unmodified, which is responsible for ligand binding. Thus, LNAs possess an encouraging potential for the development of new stabilized nucleic acids and will promote future diagnostic and therapeutic applications.  相似文献   

16.
《Biophysical journal》2022,121(24):4770-4776
RNA aptamers are oligonucleotides with high binding affinity and specificity for target molecules and are expected to be a new generation of therapeutic molecules and targeted delivery materials. The tertiary structure of RNA molecules and RNA-protein interaction sites are increasingly important as potential targets for new drugs. The pathological mechanisms of diseases must be understood in detail to guide drug design. In developing RNA aptamers as drugs, information about the interaction mechanisms and structures of RNA aptamer-target protein complexes are useful. We constructed a database, RNA aptamer 3D-structural modeling (RNAapt3D), consisting of RNA aptamer data that are potential drug candidates. The database includes RNA sequences and computationally predicted RNA tertiary structures based on secondary structures and implements methods that can be used to predict unknown structures of RNA aptamer-target molecule complexes. RNAapt3D should enable the design of RNA aptamers for target molecules and improve the efficiency and productivity of candidate drug selection. RNAapt3D can be accessed at https://rnaapt3d.medals.jp.  相似文献   

17.
Mapping the landscape of possible macromolecular polymer sequences to their fitness in performing biological functions is a challenge across the biosciences. A paradigm is the case of aptamers, nucleic acids that can be selected to bind particular target molecules. We have characterized the sequence-fitness landscape for aptamers binding allophycocyanin (APC) protein via a novel Closed Loop Aptameric Directed Evolution (CLADE) approach. In contrast to the conventional SELEX methodology, selection and mutation of aptamer sequences was carried out in silico, with explicit fitness assays for 44 131 aptamers of known sequence using DNA microarrays in vitro. We capture the landscape using a predictive machine learning model linking sequence features and function and validate this model using 5500 entirely separate test sequences, which give a very high observed versus predicted correlation of 0.87. This approach reveals a complex sequence-fitness mapping, and hypotheses for the physical basis of aptameric binding; it also enables rapid design of novel aptamers with desired binding properties. We demonstrate an extension to the approach by incorporating prior knowledge into CLADE, resulting in some of the tightest binding sequences.  相似文献   

18.
Human noroviruses (HuNoV) are the leading cause of acute viral gastroenteritis and an important cause of foodborne disease. Despite their public health significance, routine detection of HuNoV in community settings, or food and environmental samples, is limited, and there is a need to develop alternative HuNoV diagnostic reagents to complement existing ones. The purpose of this study was to select and characterize single-stranded (ss)DNA aptamers with binding affinity to HuNoV. The utility of these aptamers was demonstrated in their use for capture and detection of HuNoV in outbreak-derived fecal samples and a representative food matrix. SELEX (Systematic Evolution of Ligands by EXponential enrichment) was used to isolate ssDNA aptamer sequences with broad reactivity to the prototype GII.2 HuNoV strain, Snow Mountain Virus (SMV). Four aptamer candidates (designated 19, 21, 25 and 26) were identified and screened for binding affinity to 14 different virus-like particles (VLPs) corresponding to various GI and GII HuNoV strains using an Enzyme-Linked Aptamer Sorbant Assay (ELASA). Collectively, aptamers 21 and 25 showed affinity to 13 of the 14 VLPs tested, with strongest binding to GII.2 (SMV) and GII.4 VLPs. Aptamer 25 was chosen for further study. Its binding affinity to SMV-VLPs was equivalent to that of a commercial antibody within a range of 1 to 5 µg/ml. Aptamer 25 also showed binding to representative HuNoV strains present in stool specimens obtained from naturally infected individuals. Lastly, an aptamer magnetic capture (AMC) method using aptamer 25 coupled with RT-qPCR was developed for recovery and detection of HuNoV in artificially contaminated lettuce. The capture efficiency of the AMC was 2.5–36% with an assay detection limit of 10 RNA copies per lettuce sample. These ssDNA aptamer candidates show promise as broadly reactive reagents for use in HuNoV capture and detection assays in various sample types.  相似文献   

19.
倍氯米松(beclomethasone)是一种有效的糖皮质激素,而倍氯米松适配体是对倍氯米松具有亲和力与特异性的单链DNA分子.目前对两者的相互作用仍不清楚,研究适配体与药物的相互作用对适配体的应用具有一定的意义.本研究采用高分辨傅里叶变换离子回旋共振质谱仪(FT-MS)及分子对接软件计算模拟研究适配体与倍氯米松的相互...  相似文献   

20.
Aptamers are short single-stranded DNA or RNA sequences that are selected in vitro based on their high affinity to a target molecule. Dye-binding aptamers are promising tools for real-time detection of not only DNA or RNA sequences but also proteins of interest both in vitro and in vivo. In this study, we aimed to isolate an RNA aptamer to Cy3, a widely used, membrane-permeant, and nontoxic fluorescent cyanine dye. Extensive selection of affinity RNA molecules to Cy3 yielded a unique sequence aptamer named Cy3_apt. The selected Cy3_apt was 83 nucleotides long and successfully shortened to 49 nucleotides long with increased affinity to Cy3 by multiple base changes. The shortest Cy3_apt is composed of two separate hairpin modules that are required for the affinity to Cy3 as monitored by the surface plasmon resonance (SPR) assay. Also, the fluorescence of Cy3 increased on binding to Cy3_apt. The two modules of Cy3_apt, when detached from each other, functioned as a binary aptamer probe. We demonstrate that the binary Cy3_apt probe is applicable to the detection of target oligonucleotides or RNA-RNA interaction by tagging with target sequences. This binary probe consists of two folded modules, referred to as a folded binary probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号