首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Intrinsically disordered proteins are biomolecules that do not have a definite 3D structure; therefore, their dynamical simulation cannot start from a known list of atomistic positions, such as a Protein Data Bank file. We describe a method to start a computer simulation of these proteins. The first step of the procedure is the creation of a multi-rod configuration of the molecule, derived from its primary sequence. This structure is dynamically evolved in vacuo until its gyration radius reaches the experimental average value; at this point solvent molecules, in explicit or implicit implementation, are added to the protein and a regular molecular dynamics simulation follows. We have applied this procedure to the simulation of tau, one of the largest totally disordered proteins.  相似文献   

3.
Intrinsically disordered protein domains often have multiple binding partners. It is plausible that the strength of pairing with specific partners evolves from an initial low affinity to a higher affinity. However, little is known about the molecular changes in the binding mechanism that would facilitate such a transition. We previously showed that the interaction between two intrinsically disordered domains, NCBD and CID, likely emerged in an ancestral deuterostome organism as a low-affinity interaction that subsequently evolved into a higher-affinity interaction before the radiation of modern vertebrate groups. Here we map native contacts in the transition states of the low-affinity ancestral and high-affinity human NCBD/CID interactions. We show that the coupled binding and folding mechanism is overall similar but with a higher degree of native hydrophobic contact formation in the transition state of the ancestral complex and more heterogeneous transient interactions, including electrostatic pairings, and an increased disorder for the human complex. Adaptation to new binding partners may be facilitated by this ability to exploit multiple alternative transient interactions while retaining the overall binding and folding pathway.  相似文献   

4.
The classical protein structure-function paradigm has been challenged by the emergence of intrinsically disordered proteins (IDPs), the proteins that do not adopt well-defined three-dimensional structures under physiological conditions. This development was accompanied by the introduction of a “coupled binding and folding” paradigm that suggests folding of IDPs upon binding to their partners. However, our recent studies challenge this general view by revealing a novel, previously unrecognized phenomenon – uncoupled binding and folding. This biologically important mechanism is characteristic of members of a new family of IDPs involved in immune signaling and underlies their unusual properties including: (1) specific homodimerization, (2) the lack of folding upon binding to a well-folded protein, another IDP molecule, or to lipid bilayer membranes, and (3) the “scissors-cut paradox”. The third phenomenon occurs in diverse IDP interactions and suggests that properties of IDP fragments are not necessarily additive in the context of the entire protein. The “no disorder-to-order transition” type of binding is distinct from known IDP interactions and is characterized by an unprecedented observation of the lack of chemical shift and peak intensity changes in multidimensional NMR spectra, a fingerprint of proteins, upon complex formation. Here, I focus on those interactions of IDPs with diverse biological partners where the binding phase driven by electrostatic interactions is not be necessarily followed by the hydrophobic folding phase. I also review new multidisciplinary knowledge about immune signaling-related IDPs and show how it expands our understanding of cell function with multiple applications in biology and medicine.  相似文献   

5.
6.
Molecular recognition features (MoRFs) are intrinsically disordered protein regions that bind to partners via disorder‐to‐order transitions. In one‐to‐many binding, a single MoRF binds to two or more different partners individually. MoRF‐based one‐to‐many protein–protein interaction (PPI) examples were collected from the Protein Data Bank, yielding 23 MoRFs bound to 2–9 partners, with all pairs of same‐MoRF partners having less than 25% sequence identity. Of these, 8 MoRFs were bound to 2–9 partners having completely different folds, whereas 15 MoRFs were bound to 2–5 partners having the same folds but with low sequence identities. For both types of partner variation, backbone and side chain torsion angle rotations were used to bring about the conformational changes needed to enable close fits between a single MoRF and distinct partners. Alternative splicing events (ASEs) and posttranslational modifications (PTMs) were also found to contribute to distinct partner binding. Because ASEs and PTMs both commonly occur in disordered regions, and because both ASEs and PTMs are often tissue‐specific, these data suggest that MoRFs, ASEs, and PTMs may collaborate to alter PPI networks in different cell types. These data enlarge the set of carefully studied MoRFs that use inherent flexibility and that also use ASE‐based and/or PTM‐based surface modifications to enable the same disordered segment to selectively associate with two or more partners. The small number of residues involved in MoRFs and in their modifications by ASEs or PTMs may simplify the evolvability of signaling network diversity.  相似文献   

7.
To assess the potential of intrinsically disordered proteins (IDPs) as drug design targets, we have analyzed the ligand-binding cavities of two datasets of IDPs (containing 37 and 16 entries, respectively) and compared their properties with those of conventional ordered (folded) proteins. IDPs were predicted to possess more binding cavity than ordered proteins at similar length, supporting the proposed advantage of IDPs economizing genome and protein resources. The cavity number has a wide distribution within each conformation ensemble for IDPs. The geometries of the cavities of IDPs differ from the cavities of ordered proteins, for example, the cavities of IDPs have larger surface areas and volumes, and are more likely to be composed of a single segment. The druggability of the cavities was examined, and the average druggable probability is estimated to be 9% for IDPs, which is almost twice that for ordered proteins (5%). Some IDPs with druggable cavities that are associated with diseases are listed. The optimism versus obstacles for drug design for IDPs is also briefly discussed.  相似文献   

8.
Intrinsically disordered proteins (IDPs) are extensively involved in dynamic signaling processes which require a high association rate and a high dissociation rate for rapid binding/unbinding events and at the same time a sufficient high affinity for specific recognition. Although the coupled folding-binding processes of IDPs have been extensively studied, it is still impossible to predict whether an unfolded protein is suitable for molecular signaling via coupled folding-binding. In this work, we studied the interplay between intrinsic folding mechanisms and coupled folding-binding process for unfolded proteins through molecular dynamics simulations. We first studied the folding process of three representative IDPs with different folded structures, that is, c-Myb, AF9, and E3 rRNase. We found the folding free energy landscapes of IDPs are downhill or show low barriers. To further study the influence of intrinsic folding mechanism on the binding process, we modulated the folding mechanism of barnase via circular permutation and simulated the coupled folding-binding process between unfolded barnase permutant and folded barstar. Although folding of barnase was coupled to target binding, the binding kinetics was significantly affected by the intrinsic folding free energy barrier, where reducing the folding free energy barrier enhances binding rate up to two orders of magnitude. This accelerating effect is different from previous results which reflect the effect of structure flexibility on binding kinetics. Our results suggest that coupling the folding of an unfolded protein with no/low folding free energy barrier with its target binding may provide a way to achieve high specificity and rapid binding/unbinding kinetics simultaneously.  相似文献   

9.
Intrinsically disordered proteins (IDPs) are often involved in signaling and regulatory functions, through binding to cellular targets. Many IDPs undergo disorder‐to‐order transitions upon binding. Both the binding mechanisms and the magnitudes of the binding rate constants can have functional importance. Previously we have found that the coupled binding and folding of any IDP generally follows a sequential mechanism that we term dock‐and‐coalesce, whereby one segment of the IDP first docks to its subsite on the target surface and the remaining segments subsequently coalesce around their respective subsites. Here we applied our TransComp method within the framework of the dock‐and‐coalesce mechanism to dissect the binding kinetics of two Rho‐family GTPases, Cdc42 and TC10, with two intrinsically disordered effectors, WASP and Pak1. TransComp calculations identified the basic regions preceding the GTPase binding domains (GBDs) of the effectors as the docking segment. For Cdc42 binding with both WASP and Pak1, the calculated docking rate constants are close to the observed overall binding rate constants, suggesting that basic‐region docking is the rate‐limiting step and subsequent conformational coalescence of the GBDs on the Cdc42 surface is fast. The possibility that conformational coalescence of the WASP GBD on the TC10 surface is slow warrants further experimental investigation. The account for the differences in binding rate constants among the three GTPase‐effector systems and mutational effects therein yields deep physical and mechanistic insight into the binding processes. Our approach may guide the selection of mutations that lead to redesigned binding pathways. Proteins 2016; 84:674–685. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
Intrinsically disordered proteins (IDPs), also known as intrinsically unstructured proteins (IUPs), lack a well-defined 3D structure in vitro and, in some cases, also in vivo. Here, we discuss the question of proteolytic sensitivity of IDPs, with a view to better explaining their in vivo characteristics. After an initial assessment of the status of IDPs in vivo, we briefly survey the intracellular proteolytic systems. Subsequently, we discuss the evidence for IDPs being inherently sensitive to proteolysis. Such sensitivity would not, however, result in enhanced degradation if the protease-sensitive sites were sequestered. Accordingly, IDP access to and degradation by the proteasome, the major proteolytic complex within eukaryotic cells, are discussed in detail. The emerging picture appears to be that IDPs are inherently sensitive to proteasomal degradation along the lines of the "degradation by default" model. However, available data sets of intracellular protein half-lives suggest that intrinsic disorder does not imply a significantly shorter half-life. We assess the power of available systemic half-life measurements, but also discuss possible mechanisms that could protect IDPs from intracellular degradation. Finally, we discuss the relevance of the proteolytic sensitivity of IDPs to their function and evolution.  相似文献   

11.
A considerable number of functional proteins are unstructured under physiological condition. These "intrinsically disordered" proteins exhibit induced folding when they bind their targets. The induced folding comprises two elementary processes: folding and binding. Two mechanisms are possible for the induced folding: either folding before binding or binding before folding. We found that these two mechanisms can be distinguished by the target-concentration dependence of folding kinetics. We also created two types of mutants of staphylococcal nuclease showing the different inhibitor-concentration dependence of induced folding kinetics. One mutant obeys the scheme of binding before folding, while the other the folding before binding. This is the first experimental evidence demonstrating that both mechanisms are realized for a single protein. Binding before folding is possible, when the protein lacks essential nonlocal interaction to stabilize the native conformation. The results cast light on the protein folding mechanism involved in the intrinsically disordered proteins.  相似文献   

12.
Ganguly D  Chen J 《Proteins》2011,79(4):1251-1266
Coupled binding and folding is frequently involved in specific recognition of so-called intrinsically disordered proteins (IDPs), a newly recognized class of proteins that rely on a lack of stable tertiary fold for function. Here, we exploit topology-based Gō-like modeling as an effective tool for the mechanism of IDP recognition within the theoretical framework of minimally frustrated energy landscape. Importantly, substantial differences exist between IDPs and globular proteins in both amino acid sequence and binding interface characteristics. We demonstrate that established Gō-like models designed for folded proteins tend to over-estimate the level of residual structures in unbound IDPs, whereas under-estimating the strength of intermolecular interactions. Such systematic biases have important consequences in the predicted mechanism of interaction. A strategy is proposed to recalibrate topology-derived models to balance intrinsic folding propensities and intermolecular interactions, based on experimental knowledge of the overall residual structure level and binding affinity. Applied to pKID/KIX, the calibrated Gō-like model predicts a dominant multistep sequential pathway for binding-induced folding of pKID that is initiated by KIX binding via the C-terminus in disordered conformations, followed by binding and folding of the rest of C-terminal helix and finally the N-terminal helix. This novel mechanism is consistent with key observations derived from a recent NMR titration and relaxation dispersion study and provides a molecular-level interpretation of kinetic rates derived from dispersion curve analysis. These case studies provide important insight into the applicability and potential pitfalls of topology-based modeling for studying IDP folding and interaction in general.  相似文献   

13.
The tau protein belongs to the category of intrinsically disordered proteins, which in their native state do not have an average stable structure and fluctuate between many conformations. In its physiological state, tau helps nucleating and stabilising the microtubules in the axons of the neurons. On the other hand, the same tau is involved in the development of Alzheimer disease, when it aggregates in paired helical filaments forming fibrils, which form insoluble tangles. The beginning of the pathological aggregation of tau has been attributed to a local transition of protein portions from random coil to a β-sheet. These structures would very likely be transient; therefore, we performed a molecular dynamics simulation of tau to gather information on the existence of segments of tau endowed with a secondary structure. We combined the results of our simulation with small-angle X-ray scattering experimental data to extract from the dynamics a set of most probable conformations of tau. The analysis of these conformations highlights the presence of transient secondary structures such as turns, β-bridges, β-sheets and α-helices. It also shows that a large segment of the N-terminal region is found near the repeats domain in a globular-like shape.  相似文献   

14.
The past decade has witnessed great advances in our understanding of protein structure‐function relationships in terms of the ubiquitous existence of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs). The structural disorder of IDPs/IDRs enables them to play essential functions that are complementary to those of ordered proteins. In addition, IDPs/IDRs are persistent in evolution. Therefore, they are expected to possess some advantages over ordered proteins. In this review, we summarize and survey nine possible advantages of IDPs/IDRs: economizing genome/protein resources, overcoming steric restrictions in binding, achieving high specificity with low affinity, increasing binding rate, facilitating posttranslational modifications, enabling flexible linkers, preventing aggregation, providing resistance to non‐native conditions, and allowing compatibility with more available sequences. Some potential advantages of IDPs/IDRs are not well understood and require both experimental and theoretical approaches to decipher. The connection with protein design is also briefly discussed.  相似文献   

15.
《Molecular cell》2023,83(12):2035-2044.e7
  1. Download : Download high-res image (149KB)
  2. Download : Download full-size image
  相似文献   

16.
An intriguing regulatory mechanism is the ability of some proteins to recognize their binding partners in an isoform‐specific manner. In this study we undertook a systematic analysis of the specificity of the tropomodulin (Tmod) interaction with tropomyosin (TM) to show that affinities of different Tmod isoforms to TM are isoform‐dependent. Intrinsic disorder predictions, alignment of sequences, and circular dichroism were utilized to establish a structural basis for these isoform‐specific interactions. The affinity of model peptides derived from the N‐terminus of different TM isoforms to protein fragments that correspond to the two TM‐binding sites of different Tmod isoforms were analyzed. Several residues were determined to be responsible for the isoform‐dependent differences in affinity. We suggest that changing a set of residues rather than a single residue is needed to alter the binding affinity of one isoform to mimic the affinity of another isoform. The general intrinsic disorder predictor, PONDR® VLXT, was shown to be a useful tool for analyzing regions involved in isoform‐specific binding and for predicting the residues important for isoform differences in binding. Knowing the residues responsible for isoform‐specific affinity creates a tool suitable for studying the influence of Tmod/TM interactions on sarcomere assembly in muscle cells or actin dynamics in non‐muscle cells. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Intrinsically disordered proteins (IDPs) are now recognized to be prevalent in biology, and many potential functional benefits have been discussed. However, the frequent requirement of peptide folding in specific interactions of IDPs could impose a kinetic bottleneck, which could be overcome only by efficient folding upon encounter. Intriguingly, existing kinetic data suggest that specific binding of IDPs is generally no slower than that of globular proteins. Here, we exploited the cell cycle regulator p27(Kip1) (p27) as a model system to understand how IDPs might achieve efficient folding upon encounter for facile recognition. Combining experiments and coarse-grained modeling, we demonstrate that long-range electrostatic interactions between enriched charges on p27 and near its binding site on cyclin A not only enhance the encounter rate (i.e., electrostatic steering) but also promote folding-competent topologies in the encounter complexes, allowing rapid subsequent formation of short-range native interactions en route to the specific complex. In contrast, nonspecific hydrophobic interactions, while hardly affecting the encounter rate, can significantly reduce the efficiency of folding upon encounter and lead to slower binding kinetics. Further analysis of charge distributions in a set of known IDP complexes reveals that, although IDP binding sites tend to be more hydrophobic compared to the rest of the target surface, their vicinities are frequently enriched with charges to complement those on IDPs. This observation suggests that electrostatically accelerated encounter and induced folding might represent a prevalent mechanism for promoting facile IDP recognition.  相似文献   

19.
Intrinsically disordered proteins (IDPs)/regions do not have well‐defined secondary and tertiary structures, however, they are functional and it is critical to gain a deep understanding of their residue packing. The shape distributions methodology, which is usually utilized in pattern recognition, clustering, and classification studies in computer science, may be adopted to study the residue packing of the proteins. In this study, shape distributions of the globular proteins and IDPs were obtained to shed light on the residue packing of their structures. The shape feature that was used is the sphericity of tetrahedra obtained by Delaunay Tessellation of points of Cα coordinates. Then the sphericity probability distributions were compared by using Principal Component Analysis. This computational structural study shows that the set of IDPs constitute a more diverse set than the set of globular proteins in terms of the geometrical properties of their network structures.  相似文献   

20.
Supervillin, the largest member of the villin/gelsolin family, is a cytoskeleton regulating, peripheral membrane protein. Supervillin increases cell motility and promotes invasive activity in tumors. Major cytoskeletal interactors, including filamentous actin and myosin II, bind within the unique supervillin amino terminus, amino acids 1–830. The structural features of this key region of the supervillin polypeptide are unknown. Here, we utilize circular dichroism and bioinformatics sequence analysis to demonstrate that the N-terminal part of supervillin forms an extended intrinsically disordered region (IDR). Our combined data indicate that the N-terminus of human and bovine supervillin sequences (positions 1–830) represents an IDR, which is the largest IDR known to date in the villin/gelsolin family. Moreover, this result suggests a potentially novel mechanism of regulation of myosin II and F-actin via the intrinsically disordered N-terminal region of hub protein supervillin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号