首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human umbilical cord mesenchymal stem cells (hUC‐MSCs) transplantation has been shown to promote regeneration and neuroprotection in central nervous system (CNS) injuries and neurodegenerative diseases. To develop this approach into a clinical setting it is important to be able to follow the fates of transplanted cells by noninvasive imaging. Neural precursor cells and hematopoietic stem cells can be efficiently labeled by superparamagnetic iron oxide (SPIO) nanoparticle. The purpose of our study was to prospectively evaluate the influence of SPIO on hUC‐MSCs and the feasibility of tracking for hUC‐MSCs by noninvasive imaging. In vitro studies demonstrated that magnetic resonance imaging (MRI) can efficiently detect low numbers of SPIO‐labeled hUC‐MSCs and that the intensity of the signal was proportional to the number of labeled cells. After transplantation into focal areas in adult rat spinal cord transplanted SPIO‐labeled hUC‐MSCs produced a hypointense signal using T2‐weighted MRI in rats that persisted for up to 2 weeks. This study demonstrated the feasibility of noninvasive imaging of transplanted hUC‐MSCs. J. Cell. Biochem. 108: 529–535, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Near‐infrared fluorescence (NIRF) imaging by using infrared fluorescent protein (iRFP) gene labelling is a novel technology with potential value for in vivo applications. In this study, we expressed iRFP in mouse cardiac progenitor cells (CPC) by lentiviral vector and demonstrated that the iRFP‐labelled CPC (CPCiRFP) can be detected by flow cytometry and fluorescent microscopy. We observed a linear correlation in vitro between cell numbers and infrared signal intensity by using the multiSpectral imaging system. CPCiRFP injected into the non‐ischaemic mouse hindlimb were also readily detected by whole‐animal NIRF imaging. We then compared iRFP against green fluorescent protein (GFP) for tracking survival of engrafted CPC in mouse ischaemic heart tissue. GFP‐labelled CPC (CPCGFP) or CPC labelled with both iRFP and GFP (CPCiRFP GFP) were injected intramyocardially into mouse hearts after infarction. Three days after cell transplantation, a strong NIRF signal was detected in hearts into which CPCiRFP GFP, but not CPCGFP, were transplanted. Furthermore, iRFP fluorescence from engrafted CPCiRFP GFP was detected in tissue sections by confocal microscopy. In conclusion, the iRFP‐labelling system provides a valuable molecular imaging tool to track the fate of transplanted progenitor cells in vivo.  相似文献   

3.
J.M. Yoo  C. Yun  N.Q. Bui  J. Oh  S.Y. Nam 《IRBM》2019,40(1):45-50

Background

Stem cell therapy has a huge potential to enhance the recovery of damaged tissues and organs. However, it has been reported that majority of implanted stem cells cannot survive after implantation. Therefore, noninvasive monitoring of stem cell viability is essential to estimate the efficacy of stem cell therapy. However, current imaging methods have disadvantages for monitoring of stem cell viability such as cost, penetration depth, and safety. To overcome the limitations, photoacoustic imaging well known for sufficient penetration depth, relatively low cost, and non-ionizing radiation can be a novel alternative assessment method of stem cell viability.

Methods

In this study, indocyanine green was used as exogenous photoacoustic contrast agents to label mesenchymal stem cells. The photoacoustic signals were acquired before and after the cell death and quantified to monitor photoacoustic signal changes related to the cell viability.

Results

The fluorescence intensity changes of ICG labeled MSCs corresponded to decrease of PA intensity after cell death. Furthermore, the PA imaging of MSCs showed similarity between the PA intensity and the cell viability.

Conclusion

The experimental results imply the feasibility of noninvasive detection of stem cell viability during therapeutic procedures.  相似文献   

4.
The migration of immune cells is crucial to the immune response. Visualization of these processes has previously been limited because of the imaging depth. We developed a deep‐penetrating, sensitive and high‐resolution method to use fast photoacoustic tomography (PAT) to image the dynamic changes of T cells in lymph node and diseases at new depth (up to 9.5 mm). T cells labeled with NIR‐797‐isothiocyanate, an excellent near‐infrared photoacoustic and fluorescent agent, were intravenously injected to the mice. We used fluorescence imaging to determine the location of T cells roughly and photoacoustic imaging is used to observe T‐cell responses in diseased sites deeply and carefully. The dynamic changes of T cells in lymph node, acute disease (bacterial infection) and chronic disease (tumor) were observed noninvasively by photoacoustic and fluorescence imaging at different time points. T cells accumulated gradually and reached a maximum at 4 hours and declined afterwards in lymph node and bacterial infection site. At tumor model, T cells immigrated to the tumor with a maximum at 12 hours. Our study can not only provide a new observing method for immune activities tracking, but also enable continuous monitoring for therapeutic interventions.   相似文献   

5.
High‐resolution tracking of stem cells remains a challenging task. An ultra‐bright contrast agent with extended intracellular retention is suitable for in vivo high‐resolution tracking of stem cells following the implantation. Here, a plasmonic‐active nanoplatform was developed for tracking mesenchymal stromal cells (MSCs) in mice. The nanoplatform consisted of TAT peptide‐functionalized gold nanostars (TAT‐GNS) that emit ultra‐bright two‐photon photoluminescence capable of tracking MSCs under high‐resolution optical imaging. In vitro experiment showed TAT‐GNS‐labeled MSCs retained a similar differentiability to that of non‐labeled MSCs controls. Due to their star shape, TAT‐GNS exhibited greater intracellular retention than that of commercial Q‐Tracker. In vivo imaging of TAT‐GNS‐labeled MSCs five days following intra‐arterial injections in mice kidneys showed possible MSCs implantation in juxta‐glomerular (JG) regions, but non‐specifically in glomeruli and afferent arterioles as well. With future design to optimize GNS labeling specificity and clearance, plasmonic‐active nanoplatforms may be a useful intracellular tracking tool for stem cell research.

An ultra‐bright intracellular contrast agent is developed using TAT peptide‐functionalized gold nanostars (TAT‐GNS). It poses minimal influence on the stem cell differentiability. It exhibits stronger two‐photon photoluminescence and superior labeling efficiency than commercial Q‐Tracker. Following renal implantation, some TAT‐GNS‐labeled MSCs permeate blood vessels and migrate to the juxta‐glomerular region.  相似文献   


6.
Optical imaging (OI) is an easy, fast and inexpensive tool for in vivo monitoring of new stem cell based therapies. The technique is based on ex vivo labeling of stem cells with a fluorescent dye, subsequent intravenous injection of the labeled cells and visualization of their accumulation in specific target organs or pathologies. The presented technique demonstrates how we label human mesenchymal stem cells (hMSC) by simple incubation with the lipophilic fluorescent dye DiD (C67H103CIN2O3S) and how we label human embryonic stem cells (hESC) with the FDA approved fluorescent dye Indocyanine Green (ICG). The uptake mechanism is via adherence and diffusion of the lypophilic dye across the phospholipid cell membrane bilayer. The labeling efficiency is usually improved if the cells are incubated with the dye in serum-free media as opposed to incubation in serum-containing media. Furthermore, the addition of the transfection agent Protamine Sulfate significantly improves contrast agent uptake.Download video file.(45M, mov)  相似文献   

7.
Translating photoacoustic imaging (PAI) into clinical setup is a challenge. Handheld clinical real‐time PAI systems are not common. In this work, we report an integrated photoacoustic (PA) and clinical ultrasound imaging system by combining light delivery with the ultrasound probe for sentinel lymph node imaging and needle guidance in small animal. The open access clinical ultrasound platform allows seamless integration of PAI resulting in the development of handheld real‐time PAI probe. Both methylene blue and indocyanine green were used for mapping the sentinel lymph node using 675 and 690 nm wavelength illuminations, respectively. Additionally, needle guidance with combined ultrasound and PAI was demonstrated using this imaging system. Up to 1.5 cm imaging depth was observed with a 10 Hz laser at an imaging frame rate of 5 frames per second, which is sufficient for future translation into human sentinel lymph node imaging and needle guidance for fine needle aspiration biopsy.   相似文献   

8.
Background aimsAssessing mesenchymal stromal cells (MSCs) after grafting is essential for understanding their migration and differentiation processes. The present study sought to evaluate via cellular magnetic resonance imaging (MRI) if transplantation route may have an effect on MSCs engrafting to fibrotic liver of rats.MethodsRat MSCs were prepared, labeled with superparamagnetic iron oxide and scanned with MRI. Labeled MSCs were transplanted via the portal vein or vena caudalis to rats with hepatic fibrosis. MRI was performed in vitro before and after transplantation. Histologic examination was performed. MRI scan and imaging parameter optimization in vitro and migration under in vivo conditions were demonstrated.ResultsStrong MRI susceptibility effects could be found on gradient echo-weighted, or T21-weighted, imaging sequences from 24 h after labeling to passage 4 of labeled MSCs in vitro. In vivo, MRI findings of the portal vein group indicated lower signal in liver on single shot fast spin echo-weighted, or T2-weighted, imaging and T21-weighted imaging sequences. The low liver MRI signal increased gradually from 0–3 h and decreased gradually from 3 h to 14 days post-transplantation. The distribution pattern of labeled MSCs in liver histologic sections was identical to that of MRI signal. It was difficult to find MSCs in tissues near the portal area on day 14 after transplantation; labeled MSCs appeared in fibrous tuberculum at the edge of the liver. No MRI signal change and a positive histologic examination were observed in the vena caudalis group.ConclusionsThe portal vein route seemed to be more beneficial than the vena caudalis on MSC migration to fibrotic liver of rats via MRI.  相似文献   

9.
Inaccuracies in intraoperative tumor localization and evaluation of surgical margin status result in suboptimal outcome of breast-conserving surgery (BCS). Optical imaging, in particular near-infrared fluorescence (NIRF) imaging, might reduce the frequency of positive surgical margins following BCS by providing the surgeon with a tool for pre- and intraoperative tumor localization in real-time. In the current study, the potential of NIRF-guided BCS is evaluated using tissue-simulating breast phantoms for reasons of standardization and training purposes.Breast phantoms with optical characteristics comparable to those of normal breast tissue were used to simulate breast conserving surgery. Tumor-simulating inclusions containing the fluorescent dye indocyanine green (ICG) were incorporated in the phantoms at predefined locations and imaged for pre- and intraoperative tumor localization, real-time NIRF-guided tumor resection, NIRF-guided evaluation on the extent of surgery, and postoperative assessment of surgical margins. A customized NIRF camera was used as a clinical prototype for imaging purposes.Breast phantoms containing tumor-simulating inclusions offer a simple, inexpensive, and versatile tool to simulate and evaluate intraoperative tumor imaging. The gelatinous phantoms have elastic properties similar to human tissue and can be cut using conventional surgical instruments. Moreover, the phantoms contain hemoglobin and intralipid for mimicking absorption and scattering of photons, respectively, creating uniform optical properties similar to human breast tissue. The main drawback of NIRF imaging is the limited penetration depth of photons when propagating through tissue, which hinders (noninvasive) imaging of deep-seated tumors with epi-illumination strategies.  相似文献   

10.
We are evaluating PCT imaging in conjunction with NIR dye labeled Herceptin antibody for noninvasive assessment of HER2 expression in tumors. Herceptin was labeled with Alexa Fluor-750 amine reactive dye for characterization of photoacoustic and fluorescence signals. Measurements were performed in solution and after incubation in cultured cell lines that were positive or negative in expression of HER2. The dye to antibody ratio was controlled to achieve a broad range of degree of labeling (DOL = 2 to 15). Photoacoustic signal intensity of Herceptin-dye conjugates in solution increased with increases over the entire DOL range studied. In contrast, fluorescence exhibited significant quenching for higher DOL. In vitro PCT imaging of the labeled HER2 (+) and HER2 (-) cells revealed the targeting specificity of the NIR dye labeled Herceptin. In HER2 (+) cells lines, photoacoustic signal intensity gradually increased with increasing DOL and with increasing number of cells. These results demonstrate that PCT-based measurement of HER2 receptor binding using NIR dye labeled Herceptin is feasible. The absence of a quenching effect with increased DOL advantages this method over traditional methods based on fluorescence measurement.  相似文献   

11.
Chronic in vivo imaging studies of the brain require a labeling method that is fast, long‐lasting, efficient, nontoxic, and cell‐type specific. Over the last decade, adeno‐associated virus (AAV) has been used to stably express fluorescent proteins in neurons invivo. However, AAV's main limitation for many studies (such as those of neuronal development) is the necessity of second‐strand DNA synthesis, which delays peak transgene expression. The development of double‐stranded AAV (dsAAV) vectors has overcome this limitation, allowing rapid transgene expression. Here, we have injected different serotypes (1, 2, 6, 7, 8, and 9) of a dsAAV vector carrying the green fluorescent protein (GFP) gene into the developing and adult mouse visual cortex and characterized its expression. We observed labeling of both neurons and astrocytes with serotype‐specific tropism. dsAAV‐GFP labeling showed high levels of neuronal GFP expression as early as 2 days postinjection and as long as a month, surpassing conventional AAV's onset of expression and matching its longevity. Neurons labeled with dsAAV‐GFP appeared structurally and electrophysiologically identical to nonlabeled neurons, suggesting that dsAAV‐GFP is neither cytotoxic nor alters normal neuronal function. We also demonstrated that dsAAV‐labeled cells can be imaged with subcellular resolution in vivo over multiple days. We conclude that dsAAV is an excellent vector for rapid labeling and long‐term in vivo imaging studies of astrocytes and neurons on the single cell level within the developing and adult visual cortex. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

12.
Longitudinal monitoring of cells is required in order to understand the role of delivered stem cells in therapeutic neovascularization. However, there is not an imaging technique that is capable of quantitative, longitudinal assessment of stem cell behaviors with high spatial resolution and sufficient penetration depth. In this study, in vivo and in vitro experiments were performed to demonstrate the efficacy of ultrasound-guided photoacoustic (US/PA) imaging to monitor mesenchymal stem cells (MSCs) labeled with gold nanotracers (Au NTs). The Au NT labeled MSCs, injected intramuscularly in the lower limb of the Lewis rat, were detected and spatially resolved. Furthermore, our quantitative in vitro cell studies indicate that US/PA imaging is capable of high detection sensitivity (1×10? cells/mL) of the Au NT labeled MSCs. Finally, Au NT labeled MSCs captured in the PEGylated fibrin gel system were imaged in vivo, as well as in vitro, over a one week time period, suggesting that longitudinal cell tracking using US/PA imaging is possible. Overall, Au NT labeling of MSCs and US/PA imaging can be an alternative approach in stem cell imaging capable of noninvasive, sensitive, quantitative, longitudinal assessment of stem cell behaviors with high spatial and temporal resolutions at sufficient depths.  相似文献   

13.
Translational studies have explored the therapeutic effects of stem cells, raising hopes for the treatment of numerous diseases. Here, we evaluated the therapeutic effect of chorionic plate‐derived mesenchymal stem cells (CP‐MSCs) isolated from human placenta and transplanted into rats with carbon tetrachloride (CCl4)‐injured livers. CP‐MSCs were analyzed for hepatocyte‐specific gene expression, indocyanine green (ICG) uptake, glycogen storage, and urea production following hepatogenic differentiation. PKH26‐labeled CP‐MSCs were directly transplanted into the livers of rats that had been exposed to CCl4 (1.6 g/kg, twice per week for 9 weeks). Blood and liver tissue were analyzed at 1, 2, and 3 weeks post‐transplantation. The expression of type I collagen (Col I) and matrix metalloproteinases (MMPs) was analyzed in rat T‐HSC/Cl‐6 hepatic stellate cells co‐cultured with CP‐MSCs following exposure to TGF‐β. The expression levels of α‐smooth muscle actin (α‐SMA) and Col I were lower in transplanted (TP) rats than in non‐transplanted (Non‐TP) animals (P < 0.05), whereas the expression levels of albumin and MMP‐9 were increased. TP rats exhibited significantly higher uptake/excretion of ICG than non‐TP rats (P < 0.005). In addition, collagen synthesis in T‐HSC/Cl‐6 cells exposed to TGF‐β was decreased by co‐culture with CP‐MSCs, which triggered the activation of MMP‐2 and MMP‐9. These results contribute to our understanding of the potential pathophysiological roles of CP‐MSCs, including anti‐fibrotic effects in liver disease, and provide a foundation for the development of new cell therapy‐based strategies for the treatment of difficult‐to‐treat liver diseases. J. Cell. Biochem. 111: 1453–1463, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
《Cytotherapy》2014,16(5):699-710
Background aimsThe effect of cellular-based immunotherapy is highly correlated with the success of dendritic cells (DCs) homing to the draining lymph nodes (LNs) and interacting with antigen-specific CD4+ T cells. In this study, a novel magneto-fluorescent nano-probe was used to track the in vivo migration of DCs to the draining LNs.MethodsA dual-modality nano-probe composed of superparamagnetic iron oxide (SPIO) and near-infrared fluorescent (NIRF) dye (NIR797) was developed, and its magnetic and optical contrasting properties were characterized. DCs generated from mouse bone marrow were co-cultured with the probe at a lower concentration of 10 μg/mL. The cell phenotype and function of DCs were also investigated by fluorescence-activated cell sorting analysis and mixed leukocyte reactivity assay. Labeled DCs were injected into the footpad of C57BL/6 mice. Afterward, magnetic resonance imaging, NIRF imaging, Perls staining and CD11c immunofluorescence were used to observe the migration of the labeled DCs into draining LNs.ResultsThe synthetic SPIO-NIR797 nano-probe had a desirable superparamagnetic and near-infrared behavior. Perls staining showed perfect labeling efficiency. The cell phenotypes, including CD11c, CD80, CD86 and major histocompatibility complex class II, as well as the T-cell activation potential of the mature DCs were insignificantly affected after incubation (P > 0.05). Labeled DCs migrating into LNs could be detected by both magnetic resonance imaging and NIRF imaging simultaneously, which was further confirmed by Perls staining and immunofluorescence.ConclusionsThe novel dual-modality SPIO-NIR797 nano-probe has highly biocompatible characteristics for labeling and tracking DCs, which can be used to evaluate cancer immunotherapy in clinical applications.  相似文献   

15.
Our objective was to study the properties of the carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) and the methodology of cell labeling using CFDA-SE fluorescent dye. First, we analyzed the kinetics of CFDA-SE fluorescent dye intensity over time. Second, we determined the optimal concentration of CFDA-SE fluorescent dye for cell labeling. Third, we tested the toxicity of CFDA-SE fluorescent dye on labeled cells. Finally, we determined the optimal staining time of CFDA-SE fluorescent dye for cell labeling.The results show that the optimal concentration of CFDA-SE fluorescent dye for cell labeling varies according to different cell types. CFDA-SE fluorescent dye is non-toxic to cells as the cell death rate caused by CFDASE labeling is below 5%. The optimal cell labeling time was determined to be 8 min of incubation with CFDA-SE fluorescent dye. We concluded that the advantages of using CFDA-SE fluorescent dye for cell labeling are as follows: (1) the binding of CFDA-SE fluorescent dye to cells is stable; (2) CFDA-SE fluorescent dye is not toxic and does not modify the viability of labeled cells; and (3) CFDA-SE fluorescent dye is a suitable fluorochrome for cell labeling.  相似文献   

16.
Stem cell therapy has a potential for regenerating damaged myocardium. However, a key obstacle to cell therapy’s success is the loss of engrafted cells due to apoptosis or necrosis in the ischemic myocardium. While many strategies have been developed to improve engrafted cell survival, tools to evaluate cell efficacy within the body are limited. Traditional genetic labeling tools, such as GFP-like fluorescent proteins (eGFP, DsRed, mCherry), have limited penetration depths in vivo due to tissue scattering and absorption. To circumvent these limitations, a near-infrared fluorescent mutant of the DrBphP bacteriophytochrome from Deinococcus radiodurans, IFP1.4, was developed for in vivo imaging, but it has yet to be used for in vivo stem/progenitor cell tracking. In this study, we incorporated IFP1.4 into mouse cardiac progenitor cells (CPCs) by a lentiviral vector. Live IFP1.4-labeled CPCs were imaged by their near-infrared fluorescence (NIRF) using an Odyssey scanner following overnight incubation with biliverdin. A significant linear correlation was observed between the amount of cells and NIRF signal intensity in in vitro studies. Lentiviral mediated IFP1.4 gene labeling is stable, and does not impact the apoptosis and cardiac differentiation of CPC. To assess efficacy of our model for engrafted cells in vivo, IFP1.4-labeled CPCs were intramyocardially injected into infarcted hearts. NIRF signals were collected at 1-day, 7-days, and 14-days post-injection using the Kodak in vivo multispectral imaging system. Strong NIRF signals from engrafted cells were imaged 1 day after injection. At 1 week after injection, 70% of the NIRF signal was lost when compared to the intensity of the day 1 signal. The data collected 2 weeks following transplantation showed an 88% decrease when compared to day 1. Our studies have shown that IFP1.4 gene labeling can be used to track the viability of transplanted cells in vivo.  相似文献   

17.
In this report, we present a breast imaging technique combining high‐resolution near‐infrared (NIR) light induced photoacoustic tomography (PAT) with NIR dye‐labeled amino‐terminal fragments of urokinase plasminogen activator receptor (uPAR) targeted magnetic iron oxide nanoparticles (NIR830‐ATF‐IONP) for breast cancer imaging using an orthotopic mouse mammary tumor model. We show that accumulation of the targeted nanoparticles in the tumor led to photoacoustic contrast enhancement due to the high absorption of iron oxide nanoparticles (IONP). NIR fluorescence images were used to validate specific delivery of NIR830‐ATF‐IONP to mouse mammary tumors. We found that systemic delivery of the targeted IONP produced 4‐ and 10‐fold enhancement in photoacoustic signals in the tumor, compared to the tumor of the mice that received non‐targeted IONP or control mice. The use of targeted nanoparticles allowed imaging of tumors located as deep as 3.1 cm beneath the normal tissues. Our study indicates the potential of the combination of photoacoustic tomography and receptor‐targeted NIR830‐ATF‐IONP as a clinical tool that can provide improved specificity and sensitivity for breast cancer detection. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Recently, transplantation of allogeneic and autologous cells has been used for regenerative medicine. A critical issue is monitoring migration and homing of transplanted cells, as well as engraftment efficiency and functional capability in vivo. Monitoring of superparamagnetic iron oxide (SPIO) particles by magnetic resonance imaging (MRI) has been used in animal models and clinical settings to track labeled cells. A major limitation of MRI is that the signals do not show biological characteristics of transplanted cells in vivo. Bone marrow mesenchymal stem cells (MSCs) have been extensively investigated for their various therapeutic properties, and exhibit the potential to differentiate into cells of diverse lineages. In this study, cynomolgus monkey MSCs (cMSCs) were labeled with Molday ION Rhodamine-B™ (MIRB), a new SPIO agent, to investigate and characterize the biophysical and MRI properties of labeled cMSCs in vitro and in vivo. The results indicate that MIRB is biocompatible and useful for cMSCs labeling and cell tracking by multimodality imaging. Our method is helpful for detection of transplanted stem cells in vivo, which is required for understanding mechanisms of cell therapy.  相似文献   

19.
Near-infrared fluorescence (NIRF) imaging has great potential for studying physiological and pathophysiological processes noninvasively in several locations of the body. In this study, we evaluated the feasibility of NIRF imaging to visualize fluorescent compounds within the brains of live mice commonly used in brain research. To simulate the presence of a molecular NIRF reporter agent at the site of a lesion, we developed a new in vivo phantom model wherein capsules containing different amounts of an NIRF dye (Cy5.5) were stereotactically implanted deep into the left hemispheres of living mice. To precisely locate the implanted capsules, magnetic resonance imaging (MRI) was performed. Fluorescence reflectance imaging (FRI) and transillumination fluorescence imaging (TFI) were conducted to analyze and compare sensitivity and target-to-background ratios of the two methods. The sensitivities of FRI and TFI to background fluorescence from circulating dye was tested by imaging fluorescent capsules in mice intravenously injected with increasing amounts of long-circulating Cy5.5-dextran. The results show that capsules containing dye amounts as low as 10(-12) mol can be detected. TFI yielded significantly higher target-to-background ratios than FRI at 10(-11) mol (p < .05). Comparatively low amounts of fluorescence in the blood vessels can extinguish the signal. We conclude that keeping the signal from circulating NIRF dye low, NIRF imaging offers high sensitivity in detecting fluorochromes noninvasively within brains of mice, especially by using TFI. This encourages the application of NIRF for molecular imaging in the mouse brain using NIRF reporters.  相似文献   

20.
Mitochondria contribute to redox and calcium balance, and apoptosis thus regulating cellular fate. In the present study, mitochondrial staining applying a novel dye, V07‐07059, was performed in human embryonic kidney cells, a human vascular endothelial cell line and primary human mononuclear cells. The new fluorescent mega Stokes dye (peak excitation: 488 nm, peak emission: 554 nm) showed superior fluorescent properties and stability. V07‐07059 stains mitochondria dependent on their membrane potential and is safe to use in vitro and in vivo. Unlike other dyes applied in this context (e.g. Tetramethylrhodamine methyl ester), V07‐07059 only marginally inhibits mitochondrial respiration and function. V07‐07059 enables real time imaging of mitochondrial trafficking and remodeling. Prolonged staining with V07‐07059 demonstrated the dyes suitability as a novel probe to track cells. In comparison to the widely used standard for cell proliferation and tracking studies 5(6)‐diacetate N‐succinimidyl ester, V07‐07059 proved superior regarding toxicity and photostability.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号