首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclophosphamide (CP), one of the most widely prescribed antineoplastic drugs could cause a lethal cardiotoxicity. The present study is aimed at evaluating the role of DL-alpha-lipoic acid (LA) in oxidative cardiac damage induced by CP. Adult male Wistar rats were divided into four treatment groups. Two groups received single intraperitoneal injection of CP (200 mg/kg BW) to induce cardiotoxicity, one of these groups received LA treatment (25 mg/kg BW for 10 days). A vehicle treated control group and a LA drug control were also included. Cardiotoxicity, evident from increased activities of serum creatine phosphokinase, lactate dehydrogenase, aspartate transaminase and alanine transaminase in CP administered rats, was reversed by LA treatment. CP administered rats showed abnormal levels of enzymic (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase) and non-enzymic antioxidants (glutathione, vitamin C and vitamin E) along with high malondialdehyde levels. However, normalized lipid peroxidation and antioxidant defenses were reported in the LA treated rats. These findings highlight the efficacy of LA as a cytoprotectant in CP induced cardiotoxicity.  相似文献   

2.
Grape seed proanthocyanidins (GSPE) and ginkgo biloba extract (EGb761) are considered to have protective effects against several diseases. The cardiotoxicity of doxorubicin (DOX) has been reported to be associated with oxidative damage. This study was conducted to evaluate the cardioprotective effects of GSPE and EGb761 against DOX‐induced heart injury in rats. DOX was administered as a single i.p. dose (20 mg kg–1) to adult male rats. DOX‐intoxicated rats were orally administered GSPE (200 mg kg–1 day–1) or EGb761 (100 mg kg–1 day–1) for 15 consecutive days, starting 10 days prior DOX injection. DOX‐induced cardiotoxicity was evidenced by a significant increase in serum aspartate transaminase (AST), creatine phosphokinase isoenzyme (CK‐MB), lactate dehydrogenase (LDH), total cholesterol (TC) and triglyceride (TG) activities and levels. Increased oxidative damage was expressed by the depletion of cardiac reduced glutathione (GSH), elevation of cardiac total antioxidant (TAO) level and accumulation of the lipid peroxidation product, malondialdehyde (MDA). Significant rises in cardiac tumour necrosis factor‐alpha (TNF‐α) and caspase‐3 levels were noticed in DOX‐intoxicated rats. These changes were ameliorated in the GSPE and EGb761‐treated groups. Histopathological analysis confirmed the cardioprotective effects of GSPE and EGb761. In conclusion, GSPE and EGb761 mediate their protective effect against DOX‐induced cardiac injury through antioxidant, anti‐inflammatory and antiapoptotic mechanisms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The clinical application of doxorubicin (Dox) is limited by its adverse effect of cardiotoxicity. Previous studies have suggested the cardioprotective effect of brain‐derived neurotrophic factor (BDNF). We hypothesize that BDNF could protect against Dox‐induced cardiotoxicity. Sprague Dawley rats were injected with Dox (2.5 mg/kg, 3 times/week, i.p.), in the presence or absence of recombinant BDNF (0.4 μg/kg, i.v.) for 2 weeks. H9c2 cells were treated with Dox (1 μM) and/or BDNF (400 ng/ml) for 24 hrs. Functional roles of BDNF against Dox‐induced cardiac injury were examined both in vivo and in vitro. Protein level of BDNF was reduced in Dox‐treated rat ventricles, whereas BDNF and its receptor tropomyosin‐related kinase B (TrkB) were markedly up‐regulated after BDNF administration. Brain‐derived neurotrophic factor significantly inhibited Dox‐induced cardiomyocyte apoptosis, oxidative stress and cardiac dysfunction in rats. Meanwhile, BDNF increased cell viability, inhibited apoptosis and DNA damage of Dox‐treated H9c2 cells. Investigations of the underlying mechanisms revealed that BDNF activated Akt and preserved phosphorylation of mammalian target of rapamycin and Bad without affecting p38 mitogen‐activated protein kinase and extracellular regulated protein kinase pathways. Furthermore, the beneficial effect of BDNF was abolished by BDNF scavenger TrkB‐Fc or Akt inhibitor. In conclusion, our findings reveal a potent protective role of BDNF against Dox‐induced cardiotoxicity by activating Akt signalling, which may facilitate the safe use of Dox in cancer treatment.  相似文献   

4.
Doxorubicin (DXR) is a highly effective drug for chemotherapy. However, cardiotoxicity reduces its clinical utility in humans. The present study aimed to assess the ameliorative effect of curcumin against DXR‐induced cardiotoxicity in rats. Rats were subjected to oral treatment of curcumin (100 and 200 mg/kg body weight) for 7 days. Cardiotoxicity was induced by single intraperitoneal injection of DXR (40 mg/kg body weight) on the 5th day and the rats sacrificed on 8th day. Curcumin ameliorated DXR‐induced lipid peroxidation, glutathione depletion, decrease in antioxidant (superoxide dismutase, catalase, and glutathione peroxidase) enzyme activities, and cardiac toxicity markers (CK‐MB, LDH, and cTn‐I). Curcumin also attenuated activities of Caspase‐3, cyclooxygenase‐2, inducible nitric oxide synthase, and levels of nuclear factor kappa‐B, tumor necrosis factor‐α, and interleukin‐1β, and cardiac tissue damages that were induced by DXR. Moreover, curcumin decreased the expression of 8‐OHdG and 3,3′‐dityrosine. This study demonstrated that curcumin has a multi‐cardioprotective effect due to its antioxidant, anti‐inflammatory, and antiapoptotic properties.  相似文献   

5.
This study aimed to investigate the effect of curcumin (CUR) on doxorubicin (DOX)‐induced testicular damage in male rats. Thirty‐five adult male Wistar rats were used. Control group was received saline for 7 days. CUR group received CUR for 7 days. DOX group received single dose DOX on the 5th day. DOX+ CUR‐100 group received 100 mg/kg/day CUR for 7 days and DOX injection on the 5th day. DOX + CUR‐200 group received 200 mg/kg/day CUR for 7 days and DOX injection on the 5th day. DOX treatment decreased in sperm motility rate, live sperm percentages, cellular antioxidants, and increased malondialdehyde (MDA) levels, necrosis, degenerations, and slimming in seminiferous tubules, and DNA damages in testes by inducing oxidative stress. CUR treatment mitigated significantly these side effects when compared with DOX group in a dose‐dependent manner. In conclusion, CUR treatment can be used in the mitigation of DOX‐induced testicular toxicity.  相似文献   

6.
The aim of this study was to assess the possible protective effects of thymol and carvacrol (CAR) against doxorubicin (DOX)‐induced cardiotoxicity. A single dose of DOX (10 mg/kg i.v.) injected to male rats revealed significant increases in serum lactate dehydrogenase, creatine kinase, creatine kinase isoenzyme‐MB, aspartate transaminase, tumor necrosis factor‐alpha, and cardiac troponin levels. It also increased heart contents of malondialdehyde and caspase‐3 accompanied by a significant reduction in heart content of reduced glutathione as well as catalase and superoxide dismutase activity as compared with the control group. In contrast, administration of thymol (20 mg/kg p.o.) and/or CAR (25 mg/kg p.o.) for 14 days before DOX administration and for 2 days after DOX injection ameliorated the heart function and oxidative stress parameters. Summarily, thymol was more cardioprotective than CAR. Moreover, a combination of thymol and CAR had a synergistic cardioprotective effect that might be attributed to antioxidant, anti‐inflammatory, and antiapoptotic activities.  相似文献   

7.
《Free radical research》2013,47(11):1369-1377
Abstract

The aim was to evaluate the role of the combination of olmesartan, an angiotensin II (Ang II) receptor blocker (ARB), with daunorubicin (DNR) in reducing cardiac toxicity in rats. DNR was administered at a dose of 3 mg/kg/day every other day for 12 days. Olmesartan was administered orally every day for 12 days. Rats treated with DNR alone showed cardiac toxicity as evidenced by worsening cardiac function, elevation of malondialdehyde level in heart tissue and decreased in the level of total glutathione peroxidase activity; treatment with ARB reversed these changes. Furthermore, ARB treatment down-regulated matrix metalloproteinase-2 expression, myocardial expression of Ang II, attenuated the increased protein expressions of p67phox and Nox4 and reduced oxidative stress-induced DNA damage evaluated by expression of 8-hydroxydeoxyguanosine. In conclusion, the result demonstrated that Ang II and oxidative stress play a key role in anthracycline-induced cardiotoxicity and that treatment with ARB will be beneficial against DNR-induced cardiotoxicity.  相似文献   

8.
The present study was undertaken to evaluate the cardioprotective role of (−)-epigallocatechin-gallate (EGCG) against Fluoride (F) induced oxidative stress mediated cardiotoxicity in rats. The animals exposed to F as sodium Fluoride (NaF) (25 mg/kg BW) for 4 weeks exhibited a significant increase in the levels of cardiac troponins T and I (cTnT & I), cardiac serum markers, lipid peroxidative markers and plasma total cholesterol (TC), triglycerides (TG), phospholipids (PL), free fatty acids (FFA), low density lipoprotein cholesterol, very low density lipoprotein cholesterol as well as cardiac lipids profile (TC, TG and FFA) with the significant decrease of high density lipoprotein cholesterol and cardiac phospholipids. F intoxication also decreased the levels of mitochondrial enzymes such as ICDH, SDH, MDH, α-KGDH and NADH in the cardiac tissue of rats. The mitochondrial Ca2+ ion level was also significantly reduced along with the significant decrease in the levels of enzymatic and non enzymatic antioxidants. Furthermore, F treatment significantly increased the DNA fragmentation, up regulate cardiac pro-apoptotic markers, inflammatory markers and down-regulate the anti-apoptotic markers in the cardiac tissue. Pre administration of EGCG (40 mg/kg/bw) in F intoxicated rats remarkably recovered all these altered parameters to near normalcy through its antioxidant nature. Thus, results of the present study clearly demonstrated that treatment with EGCG prior to F intoxication has a significant role in protecting F-induced cardiotoxicity and dyslipidemia in rats.  相似文献   

9.
Doxorubicin (DOX) is an efficient chemotherapeutic agent used against several types of tumors; however, its use is limited due to severe cardiotoxicity. Since it is accepted that reactive oxygen species are involved in DOX-induced cardiotoxicity, antioxidant agents have been used to attenuate its side effects. To determine tomato-oleoresin protection against cardiac oxidative DNA damage induced by DOX, we distributed Wistar male rats in control (C), lycopene (L), DOX (D) and DOX+lycopene (DL) groups. They received corn oil (C, D) or tomato-oleoresin (5mg/kg body wt. day) (L, DL) by gavage for a 7-week period. They also received saline (C, L) or DOX (4mg/kg body wt.) (D, DL) intraperitoneally at the 3rd, 4th, 5th, and at 6th week. Lycopene absorption was checked by HPLC. Cardiac oxidative DNA damage was evaluated by the alkaline Comet assay using formamidopyrimidine-DNA glycosylase (FPG) and endonuclease III (endo III). Cardiomyocyte levels of SBs, SBs FPG and SBs Endo III were higher in rats from D when compared to other groups. DNA damage levels in cardiomyocytes from DL were not different when compared to C and L groups. The viability of cardiomyocytes from D or DL was lower than C or L groups (p<0.01). Lycopene levels (mean+/-S.D.nmol/kg) in saponified hearts were similar between L (47.43+/-11.78) and DL (49.85+/-16.24) groups. Our results showed: (1) lycopene absorption was confirmed by its cardiac levels; (2) DOX-induced oxidative DNA damage in cardiomyocyte; (3) tomato-oleoresin supplementation protected against cardiomyocyte oxidative DNA damage.  相似文献   

10.
This study examined the value of blood marker S100A1 in detecting cardiotoxicity induced by chemotherapy agents; trastuzumab and lapatinib, in normal rat heart. The rats were divided into three groups: control (n = 8, no treatment), T (n = 8, one time ip treatment with 10 mg/kg trastuzumab) and L (n = 8, oral treatment with 100 mg/kg/day lapatinib for 7 days). The activities of oxidative stress parameters Malondialdehyde (MDA), Superoxide dismutase (SOD), Catalase (CAT) and Glutathione (GSH) were measured from the extracted cardiac tissues. The levels of troponinI and S100A1 expressions were measured from blood samples. All biomarkers responded to the treatments as they exhibited alterations from their normative values, validating the chemically induced cardiotoxicity. S100A1 expression attenuated significantly (75%), which made the sensitive detection of cardiotoxicity feasible. Assessment of cardiotoxicity with S100A1 may be a valuable alternative in clinical oncology of cancers in some organs such as breast and prostate, as they do not overexpress it to compete against.  相似文献   

11.
Trastuzumab has an impressive level of efficacy as regards antineoplasticity, however it can cause serious cardiotoxic side effects manifested by impaired cardiac contractile function. Although several pharmacological interventions, including melatonin and metformin, have been reported to protect against various cardiovascular diseases, their potential roles in trastuzumab-induced cardiotoxicity remain elusive. We hypothesized that either melatonin or metformin co-treatment effectively attenuates trastuzumab-mediated cardiotoxicity through attenuating the impaired mitochondrial function and mitochondrial dynamics. Male Wistar rats were divided into control (normal saline, n = 8) and trastuzumab group (4 mg/kg/day for 7 days, n = 24). Rats in the trastuzumab group were subdivided into 3 interventional groups (n = 8/group), and normal saline, or melatonin (10 mg/kg/day), or metformin (250 mg/kg/day) were orally administered for 7 consecutive days. Cardiac parameters were determined, and biochemical investigations were carried out on blood and heart tissues. Trastuzumab induced left ventricular (LV) dysfunction by increasing oxidative stress, inflammation, and apoptosis. It also impaired cardiac mitochondrial function, dynamics, and autophagy. Treatment with either melatonin or metformin equally attenuated trastuzumab-induced cardiac injury, indicated by a marked reduction in inflammation, oxidative damage, cardiac mitochondrial injury, mitochondrial dynamic imbalance, autophagy dysregulation, and apoptosis, leading to improved LV function, as demonstrated by increased LV ejection fraction. Melatonin and metformin conferred equal levels of cardioprotection against trastuzumab-induced cardiotoxicity, which may provide novel and promising approaches for management of cardiotoxicity induced by trastuzumab.  相似文献   

12.
Cyclophosphamide (CP), an alkylating agent widely used in cancer chemotherapy causes cardiac membrane damage. Lupeol, a pentacyclic triterpene, isolated from Crataeva nurvala stem bark and its ester, lupeol linoleate possess a wide range of medicinal properties. The effect of lupeol and its ester was evaluated in CP induced alterations in cardiac electrolytes in rats. Male albino rats of Wistar strain were categorized into 6 groups. Group I served as control. Rats in groups II, V and VI were injected intraperitoneally with a single dose of CP (200 mg/kg body weight) dissolved in saline. CP treated groups V and VI received lupeol and lupeol linoleate (50 mg/kg body weight) respectively, dissolved in olive oil for 10 days by oral gavage. At the end of the experimental period, urinary risk factors, activities of ATPases and electrolytes were measured using standard procedures. CP administered rats showed a significant decrease (P < 0.001) in the activities of ATPases. It was associated with significant alterations (P < 0.001) of electrolytes both in serum and cardiac tissue. The levels of urea, uric acid and creatinine were also significantly (P < 0.001) altered in the serum and urine. Lupeol and its ester showed reversal of the above alterations induced by CP. These findings demonstrate that the supplementation with lupeol and its ester could preserve membrane permeability, highlighting their protective effect against CP induced cardiotoxicity.  相似文献   

13.
Cyclophosphamide (CP), one of the widely prescribed antineoplastic drugs can cause fatal cardiotoxicity. The present study is aimed at evaluating the cardioprotective role of lipoic acid in CP induced toxicity. Male albino rats of Wistar strain were divided into four groups and treated as follows: Group I served as control, Group II received a single dose of CP (200 mg/kg b.wt., i.p.), Group III received lipoic acid (25 mg/kg b.wt., orally) for 10 days, and Group IV received CP immediately followed by lipoic acid for 10 days. In CP administered rats, the levels of protein carbonyl and 8-hydroxy-2-deoxyguanosine were increased significantly (P<0.001) indicating oxidative changes in the heart tissue. The activities of lysosomal acid hydrolases, beta-Glu, beta-Gal, NAG, Cat-D and ACP increased significantly (P<0.001) in the serum as well as in the heart tissue after CP administration. An increase in hydroxyproline was observed in CP induced rats. Lipoic acid effectively reverted these abnormal biochemical changes to near normalcy. These observations highlight the protective role of lipoic acid in CP induced cardiotoxicity.  相似文献   

14.
The therapeutic value of doxorubicin as an effective antineoplastic agent is limited by its cardiotoxic side-effects. The administration of doxorubicin (10 mg/kg) to male Wistar rats induced necrosis and apoptosis in heart tissues. It also caused oxidative stress damage as evidenced by the elevation of malondialdehyde and protein carbonyl levels and catalase activity, accompanied by the concurrent depletion of total antioxidant capacity and of superoxide dismutase level in cardiac tissues. The doxorubicin-induced cardiotoxicity and oxidative stress damage were also accompanied by increases of myeloperoxidase activity, total calcium content, and the expression of Bcl-2 protein in heart tissues. Most of these doxorubicin-induced biochemical and histological alterations were effectively attenuated by prior administration of purified standardized extract (1.5% withanolides; manufactured by Idea Sphere Inc., American Fork, UT, USA) of Withania somnifera (300 mg/kg). Thus, Withania may play a role in the protection against cardiotoxicity and thus might be a useful adjuvant therapy where doxorubicin is the cancer-treating drug.  相似文献   

15.
The use of doxorubicin (DOXO) as a chemotherapeutic drug has been hampered by cardiotoxicity leading to cardiomyopathy and heart failure. Folic acid (FA) is a modulator of endothelial nitric oxide (NO) synthase (eNOS), which in turn is an important player in diseases associated with NO insufficiency or NOS dysregulation, such as pressure overload and myocardial infarction. However, the role of FA in DOXO‐induced cardiomyopathy is poorly understood. The aim of this study was to test the hypothesis that FA prevents DOXO‐induced cardiomyopathy by modulating eNOS and mitochondrial structure and function. Male C57BL/6 mice were randomized to a single dose of DOXO (20 mg/kg intraperitoneal) or sham. FA supplementation (10 mg/day per oral) was started 7 days before DOXO injection and continued thereafter. DOXO resulted in 70% mortality after 10 days, with the surviving mice demonstrating a 30% reduction in stroke volume compared with sham groups. Pre‐treatment with FA reduced mortality to 45% and improved stroke volume (both < 0.05 versus DOXO). These effects of FA were underlain by blunting of DOXO‐induced cardiomyocyte atrophy, apoptosis, interstitial fibrosis and impairment of mitochondrial function. Mechanistically, pre‐treatment with FA prevented DOXO‐induced increases in superoxide anion production by reducing the eNOS monomer:dimer ratio and eNOS S‐glutathionylation, and attenuated DOXO‐induced decreases in superoxide dismutase, eNOS phosphorylation and NO production. Enhancing eNOS function by restoring its coupling and subsequently reducing oxidative stress with FA may be a novel therapeutic approach to attenuate DOXO‐induced cardiomyopathy.  相似文献   

16.
The present study designed to investigate the protective effect of curcumin nanoparticles (CUR-NPs) on the cardiotoxicity induced by doxorubicin. Rats were divided into four groups; control, rats treated daily with CUR-NPs (50 mg/kg) for 14 days, rats treated with an acute dose of doxorubicin (20 mg/kg) and rats treated daily with CUR-NPs for 14 days injected with doxorubicin on the 10th day. After electrocardiogram (ECG) recording from rats at different groups, rat decapitation was carried out and the heart of each rat was excised out to measure the oxidative stress parameters; lipid peroxidation (MDA), nitric oxide (NO) and reduced glutathione (GSH) and the activities of Na,K,ATPase and acetylcholinesterase (AchE). In addition, the levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) were determined in the cardiac tissues. Lactate dehydrogenase (LDH) activity was measured in the serum. The ECG recordings indicated that daily pretreatment with CUR- NPs has prevented the tachycardia (i.e. increase in heart rate) and ameliorated the changes in ST wave and QRS complex induced by doxorubicin. In addition, CUR-NPs prevented doxorubicin induced significant increase in MDA, NO, DA, AchE and LDH and doxorubicin induced significant decrease in GSH, NE, 5-HT and Na,K,ATPase. According to the present findings, it could be concluded that CUR-NPs have a protective effect against cardiotoxicity induced by doxorubicin. This may shed more light on the importance of CUR-NPs pretreatment before the application of doxorubicin therapy.  相似文献   

17.
The effects of Nomega-nitro-L-arginine methylester (L-NAME) and L-arginine on cardiotoxicity that is induced by doxorubicin (Dox) were investigated. A single dose of Dox 15 mg/kg i.p. induced cardiotoxicity, manifested biochemically by a significant elevation of serum creatine phosphokinase (CPK) activity [EC 2.7.3.2]. Moreover, cardiotoxicity was further confirmed by a significant increase in lipid peroxides, measured as malon-di-aldehyde (MDA) in cardiac tissue homogenates. The administration of L-NAME 4 mg/kg/d p.o. in drinking water 5 days before and 3 days after the Dox injection significantly ameliorated the cardiotoxic effects of Dox, judged by the improvement in both serum CPK activity and lipid peroxides in the cardiac tissue homogenates. On the other hand, the administration of L-arginine 70 mg/kg/d p.o. did not protect the cardiac tissues against the toxicity that was induced by the Dox treatment. The findings of this study suggest that L-NAME can attenuate the cardiac dysfunction that is produced by the Dox treatment via the mechanism(s), which may involve the inhibition of the nitric oxide (NO) formation. L-NAME may, therefore, be a beneficial remedy for cardiotoxicity that is induced by Dox and can then be used to improve the therapeutic index of Dox.  相似文献   

18.
19.
Cyclophosphamide (CP), a potent antitumor drug is known to cause severe cardiotoxicity. The present study is aimed at evaluating the cardioprotective role of lipoic acid in CP induced toxicity. Male albino rats of Wistar strain were divided into four groups and treated as follows: Group I served as control, Group II received a single dose of CP (200 mg/kg b.wt., i.p.), Group III received lipoic acid (25 mg/kg b.wt., orally) for 10 days, Group IV received CP immediately followed by lipoic acid for 10 days. In CP administered rats, the activities of tissue marker enzymes (creatine phosphokinase, lactate dehydrogenase, aspartate transaminase and alanine transaminase) were significantly (p<0.001) reduced, ATPases suffered loss in enzyme activity and thiols were depleted. Histopathological observations were also in agreement with the above abnormal changes. Lipoic acid effectively reverted these abnormal biochemical changes and minimized the histopathological lesions in heart. These observations highlight the protective role of lipoic acid in CP induced cardiac injury. (Mol Cell Biochem 276: 39–44, 2005)  相似文献   

20.
Doxorubicin (DOX) is considered as the major culprit in chemotherapy‐induced cardiotoxicity. Yellow wine polyphenolic compounds (YWPC), which are full of polyphenols, have beneficial effects on cardiovascular disease. However, their role in DOX‐induced cardiotoxicity is poorly understood. Due to their antioxidant property, we have been suggested that YWPC could prevent DOX‐induced cardiotoxicity. In this study, we found that YWPC treatment (30 mg/kg/day) significantly improved DOX‐induced cardiac hypertrophy and cardiac dysfunction. YWPC alleviated DOX‐induced increase in oxidative stress levels, reduction in endogenous antioxidant enzyme activities and inflammatory response. Besides, administration of YWPC could prevent DOX‐induced mitochondria‐mediated cardiac apoptosis. Mechanistically, we found that YWPC attenuated DOX‐induced reactive oxygen species (ROS) and down‐regulation of transforming growth factor beta 1 (TGF‐β1)/smad3 pathway by promoting nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2) nucleus translocation in cultured H9C2 cardiomyocytes. Additionally, YWPC against DOX‐induced TGF‐β1 up‐regulation were abolished by Nrf2 knockdown. Further studies revealed that YWPC could inhibit DOX‐induced cardiac fibrosis through inhibiting TGF‐β/smad3‐mediated ECM synthesis. Collectively, our results revealed that YWPC might be effective in mitigating DOX‐induced cardiotoxicity by Nrf2‐dependent down‐regulation of the TGF‐β/smad3 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号