共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ke Shi Michael A. Carpenter Kayo Kurahashi Reuben S. Harris Hideki Aihara 《The Journal of biological chemistry》2015,290(47):28120-28130
Functional and deep sequencing studies have combined to demonstrate the involvement of APOBEC3B in cancer mutagenesis. APOBEC3B is a single-stranded DNA cytosine deaminase that functions normally as a nuclear-localized restriction factor of DNA-based pathogens. However, it is overexpressed in cancer cells and elicits an intrinsic preference for 5′-TC motifs in single-stranded DNA, which is the most frequently mutated dinucleotide in breast, head/neck, lung, bladder, cervical, and several other tumor types. In many cases, APOBEC3B mutagenesis accounts for the majority of both dispersed and clustered (kataegis) cytosine mutations. Here, we report the first structures of the APOBEC3B catalytic domain in multiple crystal forms. These structures reveal a tightly closed active site conformation and suggest that substrate accessibility is regulated by adjacent flexible loops. Residues important for catalysis are identified by mutation analyses, and the results provide insights into the mechanism of target site selection. We also report a nucleotide (dCMP)-bound crystal structure that informs a multistep model for binding single-stranded DNA. Overall, these high resolution crystal structures provide a framework for further mechanistic studies and the development of novel anti-cancer drugs to inhibit this enzyme, dampen tumor evolution, and minimize adverse outcomes such as drug resistance and metastasis. 相似文献
3.
Human apolipoprotein-B mRNA-editing catalytic polypeptide-like 3 (APOBEC3) proteins constitute a family of cytidine deaminases that mediate restriction of retroviruses, endogenous retro-elements and DNA viruses. It is well established that these enzymes are potent mutators of viral DNA, but it is unclear whether their editing activity is a threat to the integrity of the cellular genome. We show that expression of APOBEC3A can lead to induction of DNA breaks and activation of damage responses in a deaminase-dependent manner. Consistent with these observations, APOBEC3A expression induces cell-cycle arrest. These results indicate that cellular DNA is vulnerable to APOBEC3 activity and deregulated expression of APOBEC3A could threaten genomic integrity. 相似文献
4.
Ayako Furukawa Takashi Nagata Akimasa Matsugami Yuichirou Habu Ryuichi Sugiyama Fumiaki Hayashi Naohiro Kobayashi Shigeyuki Yokoyama Hiroshi Takaku Masato Katahira 《The EMBO journal》2009,28(4):440-451
Human APOBEC3G exhibits anti‐human immunodeficiency virus‐1 (HIV‐1) activity by deaminating cytidines of the minus strand of HIV‐1. Here, we report a solution structure of the C‐terminal deaminase domain of wild‐type APOBEC3G. The interaction with DNA was examined. Many differences in the interaction were found between the wild type and recently studied mutant APOBEC3Gs. The position of the substrate cytidine, together with that of a DNA chain, in the complex, was deduced. Interestingly, the deamination reaction of APOBEC3G was successfully monitored using NMR signals in real time. Real‐time monitoring has revealed that the third cytidine of the d(CCCA) segment is deaminated at an early stage and that then the second one is deaminated at a late stage, the first one not being deaminated at all. This indicates that the deamination is carried out in a strict 3′ → 5′ order. Virus infectivity factor (Vif) of HIV‐1 counteracts the anti‐HIV‐1 activity of APOBEC3G. The structure of the N‐terminal domain of APOBEC3G, with which Vif interacts, was constructed with homology modelling. The structure implies the mechanism of species‐specific sensitivity of APOBEC3G to Vif action. 相似文献
5.
6.
Abby M Green Rachel A DeWeerd David R OLeary Ava R Hansen Katharina E Hayer Katarzyna Kulej Ariel S Dineen Julia H Szeto Benjamin A Garcia Matthew D Weitzman 《EMBO reports》2021,22(9)
The APOBEC3 cytidine deaminases are implicated as the cause of a prevalent somatic mutation pattern found in cancer genomes. The APOBEC3 enzymes act as viral restriction factors by mutating viral genomes. Mutation of the cellular genome is presumed to be an off‐target activity of the enzymes, although the regulatory measures for APOBEC3 expression and activity remain undefined. It is therefore difficult to predict circumstances that enable APOBEC3 interaction with cellular DNA that leads to mutagenesis. The APOBEC3A (A3A) enzyme is the most potent deaminase of the family. Using proteomics, we evaluate protein interactors of A3A to identify potential regulators. We find that A3A interacts with the chaperonin‐containing TCP‐1 (CCT) complex, a cellular machine that assists in protein folding and function. Importantly, depletion of CCT results in A3A‐induced DNA damage and cytotoxicity. Evaluation of cancer genomes demonstrates an enrichment of A3A mutational signatures in cancers with silencing mutations in CCT subunit genes. Together, these data suggest that the CCT complex interacts with A3A, and that disruption of CCT function results in increased A3A mutational activity. 相似文献
7.
In recent years, tremendous progress has been made in the elucidation of the biological roles and molecular mechanisms of the apolioprotein B mRNA-editing enzyme catalytic polypeptide (APOBEC) family of enzymes. The APOBEC family of cytidine deaminases has important functional roles within the adaptive and innate immune system. Activation induced cytidine deaminase (AID) plays a central role in the biochemical steps of somatic hypermutation and class switch recombination during antibody maturation, and the APOBEC 3 enzymes are able to inhibit the mobility of retroelements and the replication of retroviruses and DNA viruses, such as the human immunodeficiency virus type-1 and hepatitis B virus. Recent advances in structural and functional studies of the APOBEC enzymes provide new biochemical insights for how these enzymes carry out their biological roles. In this review, we provide an overview of these recent advances in the APOBEC field with a special emphasis on AID and APOBEC3G. 相似文献
8.
碱基编辑技术结合了CRISPR/Cas系统的靶向特异性与碱基脱氨酶的催化活性,因其不产生双链DNA断裂、不需要外源DNA模板、不依赖同源重组修复,自开发以来,便受到研究者的追捧,在哺乳动物细胞、植物、微生物等领域相继得到开发与应用。为了进一步丰富碱基编辑系统在谷氨酸棒杆菌中的应用,将鼠源胞嘧啶脱氨酶(rAPOBEC1)与nCas9蛋白融合,实现了在谷氨酸棒杆菌中C到T的编辑,编辑比例较低(0-20%);在上述融合蛋白C端添加UGI蛋白,构建BE3型胞嘧啶碱基编辑器,抑制体内的DNA碱基切除修复机制,显著的提高了碱基编辑效率,使得C到T的碱基编辑效率高达90%;为了简化操作,将双质粒碱基编辑系统优化为单质粒碱基编辑系统,并显著提高转化效率;最后通过单质粒碱基编辑系统对基因组中其他位点的编辑测试,进一步证明了BE3型碱基编辑器在谷氨酸棒杆菌中的高效性,同时发现该碱基编辑器具有较宽的编辑窗口(PAM上游-11到-19位),有助于覆盖更多的基因组靶标位点,为谷氨酸棒杆菌的基因组改造提供了更多的工具选择。 相似文献
9.
10.
Cell-specific regulation of APOBEC3F by interferons 总被引:2,自引:0,他引:2
Human cytidine deaminase APOBEC3F(A3F)has broad anti-viral activity against hepatitis Bvirus and retroviruses including human immunodeficiency virus type 1.However,its regulation in viralnatural target cells such CD4~ T lymphocytes,macrophages,and primary liver cells has not been wellstudied.Here we showed that A3F was up-regulated by interferon(IFN)-α in primary hepatocytes andmultiple liver cell lines as well as macrophages.Although the IFN-α signaling pathway was active in Tlymphoid cells and induction of other IFN stimulated genes such as PKR was detected,A3F and APOBEC3G(A3G)were not induced by IFN-α in these cells.Thus,additional factors other than known IFN-stimulatedgenes also regulated IFN-α-induced A3F expression distinctly.A3F and A3G expression levels in primaryhepatocytes,especially after IFN-α stimulation,were comparable to those in CD4~ T lymphocytes in someindividuals.Significant variations of A3F and A3G expression in primary hepatocytes from various subjectswere observed.Individual variations in A3F and/or A3G regulation and expression might influence the clinicaloutcomes of hepatitis B infection. 相似文献
11.
Takeshi Hiromoto Eijiro Honjo Naonobu Noda Taro Tamada Kohei Kazuma Masahiko Suzuki Michael Blaber Ryota Kuroki 《Protein science : a publication of the Protein Society》2015,24(3):395-407
UDP‐glucose: anthocyanidin 3‐O‐glucosyltransferase (UGT78K6) from Clitoria ternatea catalyzes the transfer of glucose from UDP‐glucose to anthocyanidins such as delphinidin. After the acylation of the 3‐O‐glucosyl residue, the 3′‐ and 5′‐hydroxyl groups of the product are further glucosylated by a glucosyltransferase in the biosynthesis of ternatins, which are anthocyanin pigments. To understand the acceptor‐recognition scheme of UGT78K6, the crystal structure of UGT78K6 and its complex forms with anthocyanidin delphinidin and petunidin, and flavonol kaempferol were determined to resolutions of 1.85 Å, 2.55 Å, 2.70 Å, and 1.75 Å, respectively. The enzyme recognition of unstable anthocyanidin aglycones was initially observed in this structural determination. The anthocyanidin‐ and flavonol‐acceptor binding details are almost identical in each complex structure, although the glucosylation activities against each acceptor were significantly different. The 3‐hydroxyl groups of the acceptor substrates were located at hydrogen‐bonding distances to the Nε2 atom of the His17 catalytic residue, supporting a role for glucosyl transfer to the 3‐hydroxyl groups of anthocyanidins and flavonols. However, the molecular orientations of these three acceptors are different from those of the known flavonoid glycosyltransferases, VvGT1 and UGT78G1. The acceptor substrates in UGT78K6 are reversely bound to its binding site by a 180° rotation about the O1–O3 axis of the flavonoid backbones observed in VvGT1 and UGT78G1; consequently, the 5‐ and 7‐hydroxyl groups are protected from glucosylation. These substrate recognition schemes are useful to understand the unique reaction mechanism of UGT78K6 for the ternatin biosynthesis, and suggest the potential for controlled synthesis of natural pigments. 相似文献
12.
糖基转移酶(Glycosyltransferases,GTs)催化的糖基化反应几乎是植物中最为重要的反应。GTs家族1中的植物UGTs(UDP-dependent glycosyltransferases)成员主要运用尿苷二磷酸活化的糖作为糖基供体,因其成员众多、生物功能多样,仅仅通过序列比较和进化分析不能够精确预测其复杂的底物专一性和特有的催化机制,需要后续生化实验的进一步验证。文中主要总结了目前在蛋白结构数据库(Protein Data Bank,PDB)中报道的5种植物UGTs的晶体三维结构和定点突变功能研究进展。详细介绍了植物UGTs整体结构的特点以及蛋白与底物相互作用的细节,为更有效地生化定性UGTs以便深入理解底物专一性提供了有力的工具,从而为植物UGTs在酶工程和基因工程中的应用奠定基础。 相似文献
13.
Mullins EA Starks CM Francois JA Sael L Kihara D Kappock TJ 《Protein science : a publication of the Protein Society》2012,21(5):686-696
Bacterial formyl-CoA:oxalate CoA-transferase (FCOCT) and oxalyl-CoA decarboxylase work in tandem to perform a proton-consuming decarboxylation that has been suggested to have a role in generalized acid resistance. FCOCT is the product of uctB in the acidophilic acetic acid bacterium Acetobacter aceti. As expected for an acid-resistance factor, UctB remains folded at the low pH values encountered in the A. aceti cytoplasm. A comparison of crystal structures of FCOCTs and related proteins revealed few features in UctB that would distinguish it from nonacidophilic proteins and thereby account for its acid stability properties, other than a strikingly featureless electrostatic surface. The apparently neutral surface is a result of a \"speckled\" charge decoration, in which charged surface residues are surrounded by compensating charges but do not form salt bridges. A quantitative comparison among orthologs identified a pattern of residue substitution in UctB that may be a consequence of selection for protein stability by constant exposure to acetic acid. We suggest that this surface charge pattern, which is a distinctive feature of A. aceti proteins, creates a stabilizing electrostatic network without stiffening the protein or compromising protein-solvent interactions. 相似文献
14.
Valerie Blanc Yan Xie Jianyang Luo Susan Kennedy Nicholas O. Davidson 《Journal of lipid research》2012,53(12):2643-2655
Intestinal apolipoprotein B (apoB) mRNA undergoes C-to-U editing, mediated by the catalytic deaminase apobec-1, which results in translation of apoB48. Apobec1−/− mice produce only apoB100 and secrete larger chylomicron particles than those observed in wild-type (WT) mice. Here we show that transgenic rescue of intestinal apobec-1 expression (Apobec1Int/O) restores C-to-U RNA editing of apoB mRNA in vivo, including the canonical site at position 6666 and also at approximately 20 other newly identified downstream sites present in WT mice. The small intestine of Apobec1Int/O mice produces only apoB48, and the liver produces only apoB100. Serum chylomicron particles were smaller in Apobec1Int/O mice compared with those from Apobec1−/− mice, and the predominant fraction of serum apoB48 in Apobec1Int/O mice migrated in lipoproteins smaller than chylomicrons, even when these mice were fed a high-fat diet. Because apoB48 arises exclusively from the intestine in Apobec1Int/O mice and intestinal apoB48 synthesis and secretion rates were comparable to WT mice, we were able to infer the major sites of origin of serum apoB48 in WT mice. Our findings imply that less than 25% of serum apoB48 in WT mice arises from the intestine, with the majority originating from the liver. 相似文献
15.
Conticello SG Thomas CJ Petersen-Mahrt SK Neuberger MS 《Molecular biology and evolution》2005,22(2):367-377
The AID/APOBEC family (comprising AID, APOBEC1, APOBEC2, and APOBEC3 subgroups) contains members that can deaminate cytidine in RNA and/or DNA and exhibit diverse physiological functions (AID and APOBEC3 deaminating DNA to trigger pathways in adaptive and innate immunity; APOBEC1 mediating apolipoprotein B RNA editing). The founder member APOBEC1, which has been used as a paradigm, is an RNA-editing enzyme with proposed antecedents in yeast. Here, we have undertaken phylogenetic analysis to glean insight into the primary physiological function of the AID/APOBEC family. We find that although the family forms part of a larger superfamily of deaminases distributed throughout the biological world, the AID/APOBEC family itself is restricted to vertebrates with homologs of AID (a DNA deaminase that triggers antibody gene diversification) and of APOBEC2 (unknown function) identifiable in sequence databases from bony fish, birds, amphibians, and mammals. The cloning of an AID homolog from dogfish reveals that AID extends at least as far back as cartilaginous fish. Like mammalian AID, the pufferfish AID homolog can trigger deoxycytidine deamination in DNA but, consistent with its cold-blooded origin, is thermolabile. The fine specificity of its mutator activity and the biased codon usage in pufferfish IgV genes appear broadly similar to that of their mammalian counterparts, consistent with a coevolution of the antibody mutator and its substrate for the optimal targeting of somatic mutation during antibody maturation. By contrast, APOBEC1 and APOBEC3 are later evolutionary arrivals with orthologs not found in pufferfish (although synteny with mammals is maintained in respect of the flanking loci). We conclude that AID and APOBEC2 are likely to be the ancestral members of the AID/APOBEC family (going back to the beginning of vertebrate speciation) with both APOBEC1 and APOBEC3 being mammal-specific derivatives of AID and a complex set of domain shuffling underpinning the expansion and evolution of the primate APOBEC3s. 相似文献
16.
Yao Fang Xiao Xiao Shu-Xing Li Aaron Wolfe Xiaojiang S. Chen 《Journal of molecular biology》2018,430(1):87-101
The single-stranded DNA (ssDNA) cytidine deaminase APOBEC3F (A3F) deaminates cytosine (C) to uracil (U) and is a known restriction factor of HIV-1. Its C-terminal catalytic domain (CD2) alone is capable of binding single-stranded nucleic acids and is important for deamination. However, little is known about how the CD2 interacts with ssDNA. Here we report a crystal structure of A3F-CD2 in complex with a 10-nucleotide ssDNA composed of poly-thymine, which reveals a novel positively charged nucleic acid binding site distal to the active center that plays a key role in substrate DNA binding and catalytic activity. Lysine and tyrosine residues within this binding site interact with the ssDNA, and mutating these residues dramatically impairs both ssDNA binding and catalytic activity. This binding site is not conserved in APOBEC3G (A3G), which may explain differences in ssDNA-binding characteristics between A3F-CD2 and A3G-CD2. In addition, we observed an alternative Zn-coordination conformation around the active center. These findings reveal the structural relationships between nucleic acid interactions and catalytic activity of A3F. 相似文献
17.
Yu‐Jui Chang Chun‐Hsiang Huang Chih‐Yung Hu Shwu‐Huey Liaw 《Acta Crystallographica. Section D, Structural Biology》2004,60(6):1152-1154
Guanine deaminase, a key enzyme in nucleotide metabolism, catalyzes the hydrolytic deamination of guanine to xanthine. The first guanine deaminase crystal from Bacillus subtilis was grown in the absence or presence of the inhibitor hypoxanthine in 30% polyethylene glycol 4000, 0.2 M ammonium acetate and 0.1 M sodium citrate pH 6.5. The crystals belong to space group C2221, with unit‐cell parameters a = 84.91, b = 90.90, c = 80.19 Å, with one dimer per asymmetric unit. The crystals diffract X‐rays to beyond 1.2 Å resolution and an initial atomic model has been built based on selenomethionyl multiwavelength anomalous data at 2 Å resolution. Unexpectedly, this is the first domain‐swapped structure in the cytidine deaminase superfamily. 相似文献
18.
Kanai R Haga K Akiba T Yamane K Harata K 《Protein science : a publication of the Protein Society》2004,13(2):457-465
Cyclodextrin glycosyltransferase (CGTase) belonging to the alpha-amylase family mainly catalyzes transglycosylation and produces cyclodextrins from starch and related alpha-1,4-glucans. The catalytic site of CGTase specifically conserves four aromatic residues, Phe183, Tyr195, Phe259, and Phe283, which are not found in alpha-amylase. To elucidate the structural role of Phe283, we determined the crystal structures of native and acarbose-complexed mutant CGTases in which Phe283 was replaced with leucine (F283L) or tyrosine (F283Y). The temperature factors of the region 259-269 in native F283L increased >10 A(2) compared with the wild type. The complex formation with acarbose not only increased the temperature factors (>10 A(2)) but also changed the structure of the region 257-267. This region is stabilized by interactions of Phe283 with Phe259 and Leu260 and plays an important role in the cyclodextrin binding. The conformation of the side-chains of Glu257, Phe259, His327, and Asp328 in the catalytic site was altered by the mutation of Phe283 with leucine, and this indicates that Phe283 partly arranges the structure of the catalytic site through contacts with Glu257 and Phe259. The replacement of Phe283 with tyrosine decreased the enzymatic activity in the basic pH range. The hydroxyl group of Tyr283 forms hydrogen bonds with the carboxyl group of Glu257, and the pK(a) of Glu257 in F283Y may be lower than that in the wild type. 相似文献
19.
Terzyan S Wang CS Downs D Hunter B Zhang XC 《Protein science : a publication of the Protein Society》2000,9(9):1783-1790
Bile-salt activated lipase (BAL) is a pancreatic enzyme that digests a variety of lipids in the small intestine. A distinct property of BAL is its dependency on bile salts in hydrolyzing substrates of long acyl chains or bulky alcoholic motifs. A crystal structure of the catalytic domain of human BAL (residues 1-538) with two surface mutations (N186D and A298D), which were introduced in attempting to facilitate crystallization, has been determined at 2.3 A resolution. The crystal form belongs to space group P2(1)2(1)2(1) with one monomer per asymmetric unit, and the protein shows an alpha/beta hydrolase fold. In the absence of bound bile salt molecules, the protein possesses a preformed catalytic triad and a functional oxyanion hole. Several surface loops around the active site are mobile, including two loops potentially involved in substrate binding (residues 115-125 and 270-285). 相似文献
20.
枯草芽孢杆菌cdd基因敲除及对胞苷发酵的影响 总被引:3,自引:0,他引:3
目的:通过敲除出发菌株上的胞苷脱氨酶基因,阻断嘧啶代谢通量由胞苷流向尿苷和尿嘧啶,选育胞苷产生菌。方法:采用同源重组的方法敲除枯草芽孢杆菌TS8的胞苷脱氨酶基因cdd,并通过遗传稳定性实验验证其缺失标记和胞苷产量,通过摇瓶发酵实验对比出发菌株和缺失株的产苷水平。结果:cdd基因缺失菌株TSb发酵72h,发酵液中胞苷产量达到1.72g/L,与原始菌株相比提高了44.19%,且遗传性状稳定。结论:cdd基因的缺失可有效阻断嘧啶代谢通量由胞苷流向尿苷和尿嘧啶,提高胞苷产量。 相似文献