首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundOsteosarcoma (OS) is the most common malignant bone cancer with more metastasis and increased occurrence in children and teen-agers and being responsible for more number of morbidity and mortality worldwide.ObjectiveThe current exploration was planned study the in vitro anticancer actions of dieckol against human OS MG-63 cells via PI3K/AKT/mTOR signaling inhibition.MethodologyThe cytotoxicity of dieckol was scrutinized by MTT assay. Effects of dieckol on the ROS accumulation, apoptotic cell death, and MMP level in the MG-63 cells were studied by respective fluorescence staining assays. The levels of proliferative, inflammatory, and apoptotic markers in the dieckol treated MG-63 cells were scrutinized by marker specific kits. The expressions of PI3K, AKT, and mTOR was assayed by RT-PCR.ResultsThe MTT assay revealed that the dieckol dose dependently prevented MG-63 cells viability and the IC50 was found at 15 µM. Dieckol treatment effectively reduced the MMP level and improved the ROS generation and apoptosis in MG-63 cells. Dieckol also regulated the proliferative (cyclin D1), inflammatory (COX-2, IL-6, TNF-α, and NF-κB), and apoptotic (caspase-3, Bax, Bcl-2) markers in the MG-63 cells. The PI3K/AKT/mTOR signaling in the MG-63 cells were effectively inhibited by the dieckol treatment.ConclusionIn conclusion, our findings from this study recommends that the dieckol could be a talented anticancer candidate for the OS management in the future.  相似文献   

2.
Polysaccharides isolated from Inonotus obliquus (PLIO) have been known to have various pharmacological activities including antioxidant, immunostimulating and anti-tumor activity. However, the anti-metastatic effect of PLIO in human non-small cell lung carcinoma (NSCLC) has not been elucidated. In this study, we investigated the effects of PLIO on the metastatic potential of human NSCLC A549 cells and its underlying mechanisms. PLIO suppressed the invasive potential of A549 cells throughout reducing matrix metalloproteinase (MMP) expression. PLIO treatment inhibited NF-κB nuclear translocation in A549 cells. In addition, PLIO treatment inhibited the phosphorylation of JNK/AKT in A549 cells. These results suggest that PLIO could inhibit human NSCLC invasion via suppression of AKT/NF-κB signaling pathway.  相似文献   

3.
Prostate cancer (PCa) is both the foremost and second cause of cancer death in the male population. Patients with hormone‐dependent PCa are initially sensitive to androgen‐deprivation therapy, later the cancer progress to a hormone‐independent state and fails to respond and progress to the metastatic stage, where the cells gain the ability to escape cell death and develop resistance to current therapies, thereby leading to migration, invasion, and metastasis of cancer. Many clinical trials using nutraceuticals on cancer using human subjects have also been extensively studied, these studies confirm the efficacy of drugs tested in in vitro and in vivo preclinical models. Among various dietary phytochemicals, ginger is commonly used in the diet and possesses many active principles that act against cancer. Among various active principles, zingerone is a key active phenolic compound present in Zingiber officinale (Ginger), it has potent antioxidant property and it acts against carcinogens. The present study evaluated the efficacy of zingerone at different doses on the PCa cell line regarding apoptosis, upstream signing molecules such as Akt/mTOR, and migration metastasis. A cell viability assay using MTT was performed to estimate the percentage of viability of zingerone‐treated PC‐3 cells. The mitochondrial membrane potential, intracellular reactive oxygen species, and apoptosis induction in the zingerone‐treated PC‐3 cells were studied by using different fluorescence staining techniques. The expression patterns of PI3K, AKT, p‐AKT, mTOR, and p‐mTOR were investigated through the Western blot analysis assay. Zingerone induces apoptosis and alters Akt/mTOR molecules; it also inhibits cell adhesion and migration of PCa cells. From the present study, it is concluded that zingerone effectively induces apoptosis and inhibits cancer signaling, thereby acting as a potent drug against PCa.  相似文献   

4.
The mammalian target of rapamycin (mTOR) pathway is dysregulated in more than 50% of all human malignancies and is a major target in cancer treatment. In this study, we explored the underlying mechanism involving microRNA‐145‐3p (miR‐145‐3p) in the development and progression of non‐small cell lung cancer (NSCLC) by targeting PDK1 via the mTOR signaling pathway. NSCLC tissues and adjacent normal tissues were obtained from 83 NSCLC patients. miR‐145‐3p, PDK1, and mTOR levels were determined by quantitative real‐time polymerase chain reaction (qRT‐PCR) and immunohistochemistry. Human NSCLC cell lines A549 and H1299 were transfected with miR‐145‐3p and siPDK1 to confirm the effect of miR‐145‐3p and PDK1 on NSCLC cells in vitro. Cell growth was evaluated by a CCK8 assay. Cell motility and chemotaxis analysis were determined by the scratch test and chemotaxis assay, respectively. The protein levels of PDK1 and mTOR were measured using the western blotting. Results showed lower level of miR‐145‐3p and higher levels of PDK1 and mTOR in NSCLC tissues compared to the adjacent normal tissues. In vitro results showed that cell growth, cell motility, and chemotaxis were all inhibited in cells transfected with miR‐145‐3p and those transfected with siPDK. Additionally, dual luciferase reporter gene assay helped confirmed that PDK1 is a target of miR‐145. Finally, levels of PDK1, mTOR, and phosphorylated‐mTOR were lower in cells transfected with miR‐145‐3p as well as those with siPDK1. These findings indicate that miR‐145‐3p may inhibit cell growth, motility, and chemotaxis in NSCLC by targeting PDK1 through suppressing the mTOR pathway.  相似文献   

5.
Novel drugs are required for non-small cell lung cancer (NSCLC) treatment urgently. Repurposing old drugs as new treatments is a practicable approach with time and cost savings. Some studies have shown that carrimycin, a Chinese Food and Drug Administration (CFDA)-approved macrolide antibiotic, possesses potent anti-tumor effects against oral squamous cell carcinoma. However, its detailed component and underlying mechanisms in anti-NSCLC remain unknown. In our study, isovalerylspiramycin I (ISP-I) was isolated from carrimycin and demonstrated a remarkable anti-NSCLC efficacy in vitro and in vivo with a favorable safety profile. It has been proven that in NSCLC cell lines H460 and A549, ISP-I could induce G2/M arrest and apoptosis, which was mainly attributed to ROS accumulation and subsequently PI3K/AKT signaling pathway inhibition. Numerous downstream genes including mTOR and FOXOs were also changed correspondingly. An observation of NAC-induced reverse effect on ISP-I-leading cell death and PI3K/AKT pathway inhibition, emphasized the necessity of ROS signaling in this event. Moreover, we identified ROS accumulation and PI3K/AKT pathway inhibition in tumor xenograft models in vivo as well. Taken together, our study firstly reveals that ISP-I is a novel ROS inducer and may act as a promising candidate with multi-target and low biological toxicity for anti-NSCLC treatment.  相似文献   

6.
为了探讨Rh type C glycoprotein (RHCG)对非小细胞肺癌(non-small cell lung cancer,NSCLC)细胞增殖的影响及可能的作用机制,本研究使用荧光定量PCR法检测12对NSCLC及癌旁组织样本中RHCG mRNA的表达水平及pcDNA3.1-RHCG质粒对A549细胞RHCG m RNA的表达;采用CCK-8法检测细胞增殖能力;运用PI染色法检测细胞周期;使用免疫印迹法检p-PI3K、PI3K、p-AKT以及AKT蛋白表达水平。本研究发现,与癌旁组织比较,NSCLC中RHCG m RNA表达水平明显降低。RHCG过表达能抑制NSCLC细胞系A549细胞增殖能力。此外,RHCG过表达使A549细胞周期G1/S期转化发生阻滞。本研究还发现,RHCG过表达可下调A549细胞p-PI3K/PI3K和p-AKT/AKT水平。本研究表明,RHCG抑制NSCLC细胞增殖的作用与其抑制PI3K/AKT信号通路有关。  相似文献   

7.

Objectives

Our previous in vitro study showed that 5‐(3, 4, 5‐trimethoxybenzoyl)‐4‐methyl‐2‐(p‐tolyl) imidazol (BZML) is a novel colchicine binding site inhibitor with potent anti‐cancer activity against apoptosis resistance in A549/Taxol cells through mitotic catastrophe (MC). However, the mechanisms underlying apoptosis resistance in A549/Taxol cells remain unknown. To clarify these mechanisms, in the present study, we investigated the molecular mechanisms of apoptosis and autophagy, which are closely associated with MC in BZML‐treated A549 and A549/Taxol cells.

Methods

Xenograft NSCLC models induced by A549 and A549/Taxol cells were used to evaluate the efficacy of BZML in vivo. The activation of the mitochondrial apoptotic pathway was assessed using JC‐1 staining, Annexin V‐FITC/PI double‐staining, a caspase‐9 fluorescence metric assay kit and western blot. The different functional forms of autophagy were distinguished by determining the impact of autophagy inhibition on drug sensitivity.

Results

Our data showed that BZML also exhibited desirable anti‐cancer activity against drug‐resistant NSCLC in vivo. Moreover, BZML caused ROS generation and MMP loss followed by the release of cytochrome c from mitochondria to cytosol in both A549 and A549/Taxol cells. However, the ROS‐mediated apoptotic pathway involving the mitochondria that is induced by BZML was only fully activated in A549 cells but not in A549/Taxol cells. Importantly, we found that autophagy acted as a non‐protective type of autophagy during BZML‐induced apoptosis in A549 cells, whereas it acted as a type of cytoprotective autophagy against BZML‐induced MC in A549/Taxol cells.

Conclusions

Our data suggest that the anti‐apoptosis property of A549/Taxol cells originates from a defect in activation of the mitochondrial apoptotic pathway, and autophagy inhibitors can potentiate BZML‐induced MC to overcome resistance to mitochondrial apoptosis.
  相似文献   

8.

The present study was initiated to examine the anticancer effects of Anhuienoside C (AC) against ovarian cancer and postulates the possible molecular mechanism of its action. 3-[4,5-Dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay was implemented for determination of the effects of AC on cell viability of the ovarian cancer OVACAR-3 cell line. To study cellular morphology, phase contrast microscopy was performed. Apoptosis was examined via acridine orange/ethidium bromide used staining assays. Flow cytometry was used to check the different phases of the cell cycle. Cell migration and invasion assays were performed via transwell chamber assay. The effects of AC on expression of phosphoinositide 3-kinases (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) protein in ovarian cell were assessed using western blotting assay. The results indicated that the cell proliferation rate lowered in AC-treated OVACAR-3 cells as compared to the untreated controls in a dose-dependent manner. Cell morphology changed substantially by the exposure to AC and remained dose dependent. These morphological changes were indicative of apoptotic cell death. Apoptosis analysis showed dose-dependent increase of apoptosis. The cell migration and invasion of OVACAR-3 cells was reduced to a minimum by AC in a dose-dependent manner. Finally, western blotting assay showed blocking of PI3K/AKT/mTOR signaling pathway with increasing AC doses. Taking all together, AC is a potential ovarian cancer inhibitor. It induces its anti-ovarian cancer effects via induction of apoptosis, delaying cell migration and invasion, and blocking PI3K/AKT/mTOR signaling pathway.

  相似文献   

9.
The regimen of afatinib and vinorelbine has been used to treat breast or lung cancer cells with some limitations. Aspirin alone or in combination with other agents has shown unique efficacy in the treatment of cancer. We designed a preclinical study to investigate whether the triple therapy of aspirin, afatinib, and vinorelbine could synergistically inhibit the growth of p53 wild-type nonsmall cell lung cancer (NSCLC) cells. Three NSCLC cells A549, H460, and H1975 were selected to study the effect of triple therapy on cell proliferation and apoptosis. Compared to single agents, triple therapy synergistically inhibited the proliferation of lung cancer cells with combination index <1. Meanwhile, the therapeutic index of triple therapy was superior to that of single agents, indicating a balance between efficacy and safety in the combination of three agents. Mechanistic studies showed that triple therapy significantly induced apoptosis by decreasing mitochondrial membrane potential, increasing reactive oxygen species, and regulating mitochondria-related proteins. Moreover, epidermal growth factor receptor (EGFR) downstream signaling proteins including JNK, AKT, and mTOR were dramatically suppressed and p53 was substantially increased after NSCLC cells were exposed to the triple therapy. We provided evidence that the triple therapy of aspirin, afatinib and vinorelbine synergistically inhibited lung cancer cell growth through inactivation of the EGFR/AKT/mTOR pathway and accumulation of p53, providing a new treatment strategy for patients with p53 wild-type NSCLC.  相似文献   

10.
Src and the mammalian target of rapamycin (mTOR) signaling are commonly activated in non-small cell lung cancer (NSCLC) and hence potential targets for chemotherapy. Although the combined use of Src inhibitor Dasatinib with other chemotherapeutic agents has shown superior efficacy for cancer treatment, the mechanisms that lead to enhanced sensitivity of Dasatinib are not completely understood. In this study, we found that Rapamycin dramatically enhanced Dasatinib-induced cell growth inhibition and cell cycle G1 arrest in human lung adenocarcinoma A549 cells without affecting apoptosis. The synergistic effects were consistently correlated with the up-regulation of cyclin-dependent kinases inhibitor proteins, including p16, p19, p21, and p27, as well as the repression of Cdk4 expression and nuclear translocation. Mechanistic investigations demonstrated that FoxO1/FoxO3a and p70S6K/4E-BP1, the molecules at downstream of Src-PI3K-Akt and mTOR signaling, were significantly suppressed by the combined use of Dasatinib and Rapamycin. Restraining Src and mTOR with small interfering RNA in A549 cells further confirmed that the Src/PI3K/mTOR Pathway played a crucial role in enhancing the anticancer effect of Dasatinib. In addition, this finding was also validated by a series of assays using another two NSCLC cell lines, NCI-H1706 and NCI-H460. Conclusively, our results suggested that the combinatory application of Src and mTOR inhibitors might be a promising therapeutic strategy for NSCLC treatment.  相似文献   

11.
The epidermal growth factor receptor (EGFR) is frequently activated in a wide range of solid tumours and represents an important therapeutic target. MicroRNAs (miRNAs) have recently been recognized as a rational and potential modality for anti‐EGFR therapies. However, more EGFR‐targeting miRNAs need to be explored. In this study, we identified a novel EGFR‐targeting miRNA, miRNA‐134 (miR‐134), in non‐small‐cell lung cancer (NSCLC) cell lines. Luciferase assays confirmed that EGFR is a direct target of miR‐134. In addition, the overexpression of miR‐134 inhibited EGFR‐related signaling and suppressed NSCLC cells proliferation by inducing cell cycle arrest and/or apoptosis, suggesting that miR‐134 functions as a tumour suppressor in NSCLC. Further mechanistic investigation including RNAi and rescue experiments suggested that the down‐regulation of EGFR by miR‐134 partially contributes to the antiproliferative role of miR‐134. Last, in vivo experiments demonstrated that miR‐134 suppressed tumour growth of A549 xenograft in nude mice. Taken together, our findings suggest that miR‐134 inhibits non‐small cell lung cancer growth by targeting the EGFR.  相似文献   

12.
13.
Prostate cancer (PCa) is a common cancer worldwide, which mostly occurs in males over the age of 50. Accumulating evidence have determined that long non‐coding RNA/microRNA (lncRNA/miRNA) axis plays a critical role in cell progression of cancers, including PCa. However, the pathogenesis of PCa has not been fully indicated. In this study, quantitative real‐time polymerase chain reaction was used to detect the expression of HCG11 and miR‐543. Western blot was applied to measure the protein expression of proliferating cell nuclear antigen, cleavage‐caspase 3 (cle‐caspase 3), N‐cadherin, E‐cadherin, GAPDH, P‐AKT, AKT, p‐mTOR, and mTOR. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT), transwell invasion, and transwell migration assay were used to detect cell proliferation, invasion, and migration, respectively. The function and mechanism of lncRNA HCG11 were confirmed in PCa cell and xenograft mice models. Luciferase assay indicated that miR‐543 was a target miRNA of HCG11. Further investigation revealed that overexpression of HCG11 inhibited cell proliferation, invasion, and migration, whereas induced cell apoptosis by regulating miR‐543 expression in vitro and in vivo. More than that, lncRNA HCG11 inhibited phosphoinositide‐3 kinase/protein kinaseB (PI3K/AKT) signaling pathway to suppress PCa progression. Our data showed the overexpression of HGC11‐inhibited PI3K/AKT signaling pathway by downregulating miR‐543 expression, resulting in the suppression of cell growth in PCa. This finding proved a new regulatory network in PCa and provided a novel therapeutic target of PCa.  相似文献   

14.
Hepatocarcinoma‐intestine‐pancreas/pancreatitis‐associated protein (HIP/PAP), a C‐type lectin, exerts anti‐oxidative, anti‐inflammatory, bactericidal, anti‐apoptotic, and mitogenic functions in several cell types and tissues. In this study, we explored the role of HIP/PAP in pulmonary fibrosis (PF). Expression of HIP/PAP and its murine counterpart, Reg3B, was markedly increased in fibrotic human and mouse lung tissues. Adenovirus‐mediated HIP/PAP expression markedly alleviated bleomycin (BLM)‐induced lung injury, inflammation, and fibrosis in mice. Adenovirus‐mediated HIP/PAP expression alleviated oxidative injury and lessened the decrease in pulmonary superoxide dismutase (SOD) activity in BLM‐treated mice, increased pulmonary SOD expression in normal mice, and HIP/PAP upregulated SOD expression in cultured human alveolar epithelial cells (A549) and human lung fibroblasts (HLF‐1). Moreover, in vitro experiments showed that HIP/PAP suppressed the growth of HLF‐1 and ameliorated the H2O2‐induced apoptosis of human alveolar epithelial cells (A549 and HPAEpiC) and human pulmonary microvascular endothelial cells (HPMVEC). In HLF‐1, A549, HPAEpiC, and HPMVEC cells, HIP/PAP did not affect the basal levels, but alleviated the TGF‐β1‐induced down‐regulation of the epithelial/endothelial markers E‐cadherin and vE‐cadherin and the over‐expression of mesenchymal markers, such as α‐SMA and vimentin. In conclusion, HIP/PAP was found to serve as a potent protective factor in lung injury, inflammation, and fibrosis by attenuating oxidative injury, promoting the regeneration of alveolar epithelial cells, and antagonizing the pro‐fibrotic actions of the TGF‐β1/Smad signaling pathway.  相似文献   

15.
The fragment of 2-substituted-3-sulfonylaminobenzamide has been proposed to replace the fragment of 2-substituted-3-sulfonylaminopyridine in PI3K and mTOR dual inhibitors to design novel anticancer agents based on bioisostere. The combination of the fragment of 2-substituted-3-sulfonylaminobenzamide with the fragment of 2-aminobenzothiazole or 2-aminothiazolo[5,4-b]pyridine, or 2-amino[1,2,4]triazolo[1,5-a]pyridine produced the novel structures of anticancer agents. As a result, nineteen target compounds were synthesized and characterized. Their antiproliferative activities in vitro were evaluated via MTT assay against four human cancer cell lines including HCT-116, A549, MCF-7 and U-87 MG. The SAR of target compounds was preliminarily discussed. Compound 1g with potent antiproliferative activity was examined for its effect on the AKT and p-AKT473. The anticancer effect of 1g was evaluated in established nude mice HCT-116 xenograft model. The results suggested that compound 1g can block PI3K/AKT/mTOR pathway and significantly inhibit tumor growth. These findings strongly support our assumption that the fragment of benzamide can replace the pyridine ring in some PI3K and mTOR dual inhibitor to design novel anticancer agents.  相似文献   

16.
目的:探讨成纤维细胞生长因子受体1(FGFR1)诱导非小细胞肺癌(NSCLC)吉非替尼获得性耐药的机制。方法:用吉非替尼诱导PC9细胞构建耐药细胞株PC9/GR,用CCK-8、平板克隆形成、transwell技术检测细胞的增殖和迁移能力,用流式细胞术检测细胞的凋亡状况,qRT-PCR、免疫荧光和蛋白免疫印迹技术检测基因表达水平。进一步采用FGFR1抑制剂PD173074或si RNA-FGFR1处理PC9/GR细胞,检测细胞的增殖、迁移、克隆形成能力的变化及Akt、p-Akt、m TOR和p-mTOR表达的变化。结果:PC9/GR细胞的增殖、迁移及对吉非替尼的耐受能力显著增强;FGFR1在PC9/GR细胞中的表达水平显著升高;用PD173074处理PC9细胞后,其增殖、迁移能力及对吉非替尼的耐受能力显著下降;敲低FGFR1后Akt和m TOR的磷酸化水平显著下降。结论:FGFR1通过PI3K/AKT/mTOR信号通路介导非小细胞肺癌对吉非替尼的耐药。  相似文献   

17.
Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer. Ubiquitination is closely related to the development of lung cancer. However, the biological importance of newly discovered ubiquitin-specific peptidase (USP) 52 (USP52) in NSCLC remained unclear. Here, our findings identify USP52 as a novel tumor suppressor of NSCLC, the low expression of USP52 predicts a poor prognosis for NSCLC patients. The present study demonstrates that USP52 inhibits cancer cell proliferation through down-regulation of cyclin D1 (CCND1) as well as AKT/mTOR signaling pathway inhibition. Meanwhile, USP25 also suppresses NSCLC progression via enhancing phosphatase and tensin homolog (PTEN) stability in cancer cells, which further indicates the significance/importance of USP52 in NSCLC suppression.  相似文献   

18.
Protosappanin‐A (PrA) and oleanolic acid (OA), which are important effective ingredients isolated from Caesalpinia sappan L., exhibit therapeutic potential in multiple diseases. This study focused on exploring the mechanisms of PrA and OA function in podocyte injury. An in vitro model of podocyte injury was induced by the sC5b‐9 complex and assays such as cell viability, apoptosis, immunofluorescence, quantitative real‐time polymerase chain reaction, and western blot were performed to further investigate the effects and mechanisms of PrA and OA in podocyte injury. The models of podocyte injury were verified to be successful as seen through significantly decreased levels of nephrin, podocin, and CD2AP and increased level of desmin. The sC5b‐9‐induced podocyte apoptosis was inhibited in injured podocytes treated with PrA and OA, accompanied by increased protein levels of nephrin, podocin, CD2AP, and Bcl2 and decreased levels of desmin and Bax. The p‐AKT/p‐mTOR levels were also reduced by treatment of PrA and OA while AKT/mTOR was unaltered. Further, the effects of PrA and OA on injured podocytes were similar to that of LY294002 (a PI3K‐AKT inhibitor). PrA and OA were also seen to inhibit podocyte apoptosis and p‐AKT/p‐mTOR levels induced by IGF‐1 (a PI3K‐AKT activator). Our data demonstrate that PrA and OA can protect podocytes from injury or apoptosis, which may occur through inhibition of the abnormal activation of AKT‐mTOR signaling.  相似文献   

19.
Clinical resistance to gefitinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), in patients with lung cancer has been linked to acquisition of the T790M resistance mutation in activated EGFR or amplification of MET. Phosphatase and tensin homolog (PTEN) loss has been recently reported as a gefitinib resistance mechanism in lung cancer. The aim of this study was to evaluate the efficacy of radiotherapy in non‐small‐cell lung cancer (NSCLC) with acquired gefitinib resistance caused by PTEN deficiency to suggest radiotherapy as an alternative to EGFR TKIs. PTEN deficient‐mediated gefitinib resistance was generated in HCC827 cells, an EGFR TKI sensitive NSCLC cell line, by PTEN knockdown with a lentiviral vector expressing short hairpin RNA‐targeting PTEN. The impact of PTEN knockdown on sensitivity to radiation in the presence or absence of PTEN downstream signaling inhibitors was investigated. PTEN knockdown conferred acquired resistance not only to gefitinib but also to radiation on HCC827 cells. mTOR inhibitors alone failed to reduce HCC827 cell viability, regardless of PTEN expression, but ameliorated PTEN knockdown‐induced radioresistance. PTEN knockdown‐mediated radioresistance was accompanied by repression of radiation‐induced cytotoxic autophagy, and treatment with mTOR inhibitors released the repression of cytotoxic autophagy to overcome PTEN knockdown‐induced radioresistance in HCC827 cells. These results suggest that inhibiting mTOR signaling could be an effective strategy to radiosensitize NSCLC harboring the EGFR activating mutation that acquires resistance to both TKIs and radiotherapy due to PTEN loss or inactivation mutations. J. Cell. Biochem. 114: 1248–1256, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Hepatocellular carcinoma (HCC) is one of the common malignant human tumors with high morbidity worldwide. Aberrant activation of the oncogenic phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling is related to clinicopathological features of HCC. Emerging data revealed that microRNAs (miRNAs) have prominent implications for regulating cellular proliferation, differentiation, apoptosis, and metabolism through targeting the PI3K/AKT/mTOR signaling axis. The recognition of the crucial role of miRNAs in hepatocarcinogenesis represents a promising area to identify novel anticancer therapeutics for HCC. The present study summarizes the major findings about the regulatory role of miRNAs in the PI3K/AKT/mTOR pathway in the pathogenesis of HCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号