首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Real‐time assessment of excised tissue may help to improve surgical results in breast tumor surgeries. Here, as a step towards this purpose, the potential of second and third harmonic generation (SHG, THG) microscopy is explored. SHG and THG are nonlinear optical microscopic techniques that do not require labeling of tissue to generate 3D images with intrinsic depth‐sectioning at sub‐cellular resolution. Until now, this technique had been applied on fixated breast tissue or to visualize the stroma only, whereas most tumors start in the lobules and ducts. Here, SHG/THG images of freshly excised unprocessed healthy human tissue are shown to reveal key breast components—lobules, ducts, fat tissue, connective tissue and blood vessels, in good agreement with hematoxylin and eosin histology. DNA staining of fresh unprocessed mouse breast tissue was performed to aid in the identification of cell nuclei in label‐free THG images. Furthermore, 2‐ and 3‐photon excited auto‐fluorescence images of mouse and human tissue are collected for comparison. The SHG/THG imaging modalities generate high quality images of freshly excised tissue in less than a minute with an information content comparable to that of the gold standard, histopathology. Therefore, SHG/THG microscopy is a promising tool for real‐time assessment of excised tissue during surgery.   相似文献   

2.
One principal advantage of multiphoton excitation microscopy is that it preserves its three-dimensional micrometer resolution when imaging inside light-scattering samples. For that reason two-photon-excited fluorescence microscopy has become an invaluable tool for cellular imaging in intact tissue, with applications in many fields of physiology. This success has driven increasing interest in other forms of nonlinear microscopy that can provide additional information on cells and tissues, such as second- (SHG) and third- (THG) harmonic generation microscopies. In recent years, significant progress has been made in understanding the contrast mechanisms of these recent methodologies, and high-resolution imaging based on intrinsic sources of signal has been demonstrated in cells and tissues. Harmonic generation exhibits structural rather than chemical specificity and can be obtained from a variety of non-fluorescent samples. SHG is observed specifically in dense, non-centrosymmetric arrangements of polarizable molecules, such as collagen fibrils, myofilaments, and polarized microtubule bundles. SHG imaging is therefore emerging as a novel approach for studying processes such as the physiopathological remodelling of the collagen matrix and myofibrillogenesis in intact tissue. THG does not require a non-centrosymmetric system ; however no signal can be obtained from a homogeneous medium. THG imaging therefore provides maps of sub-micrometer heterogeneities (interfaces, inclusions) in unstained samples, and can be used as a general purpose structural imaging tool. Recent studies showed that this technique can be used to image embryo development in small organisms and to characterize the accumulation of large lipid bodies in specialized cells. SHG and THG microscopy both rely on femtosecond laser technology and are easily combined with two-photon microscopy.  相似文献   

3.
Astrocytes are the most abundant cells in the CNS, but their function remains largely unknown. Characterization of the whole‐cell proteome and secretome in astrocytes would facilitate the study of their functions in various neurodegenerative diseases and astrocyte–neuron communication. To build a reference proteome, we established a C8‐D1A astrocyte proteome to a depth of 7265 unique protein groups using a novel strategy that combined two‐step digestion, filter‐aided sample preparation, StageTip‐based high pH fractionation, and high‐resolution MS. Nearly, 6000 unique protein groups were identified from conditioned media of astrocyte cultures, constituting the largest astrocyte secretome that has been reported. High‐confidence whole‐cell proteomes and secretomes are valuable resources in studying astrocyte function by label‐free quantitation and bioinformatics analysis. All MS data have been deposited in the ProteomeXchange with identifier PXD000501 ( http://proteomecentral.proteomexchange.org/dataset/PXD000501 ).  相似文献   

4.
Intraoperative margin assessment of surgical tissues during cancer surgery is clinically important, especially in the case of tissue conserving surgery like Mohs micrographic surgery in which minimization of the surgical area is considered crucial. Frozen pathology is the gold standard of assessing excised tissues for signs of remaining cancerous lesions. The current protocol, however, is time‐consuming and labor‐intensive. Instead of the complex frozen sectioning, staining, and traditional white light microscopy imaging protocol, optically sectioned histopathological imaging of hematoxylin‐eosin stained whole‐mount skin tissues with a subfemtoliter resolution is demonstrated by using nonlinear microscopy in this study. With our proposed method, the reagents of staining and the contrast of imaging are fully consistent with the current clinical standard of frozen pathology, thus facilitating rapid intraoperative assessment of surgical tissues for future applications. Image: Slide‐free nonlinear microscopy imaging of H&E stained whole‐mount skin tissue showing the morphology of sweat glands.   相似文献   

5.
Osteocytes are the most abundant cells in bone and always the focus of bone research. They are embedded in the highly scattering mineralized bone matrix. Consequently, visualizing osteocytes deep in bone with subcellular resolution poses a major challenge for in vivo bone research. Here we overcome this challenge by demonstrating 3‐photon imaging of osteocytes through the intact mouse skull in vivo. Through broadband transmittance characterization, we establish that the excitation at the 1700‐nm window enables the highest optical transmittance through the skull. Using label‐free third‐harmonic generation (THG) imaging excited at this window, we visualize osteocytes through the whole 140‐μm mouse skull and 155 μm into the brain in vivo. By developing selective labeling technique for the interstitial space, we visualize the “sandwich” structure of osteocytes in their native environment. Our work provides novel imaging methodology for bone research in vivo.   相似文献   

6.
Amyloid‐like peptides are an ideal model for the mechanistic study of amyloidosis, which may lead to many human diseases, such as Alzheimer disease. This study reports a strong second harmonic generation (SHG) effect of amyloid‐like peptides, having a signal equivalent to or even higher than those of endogenous collagen fibers. Several amyloid‐like peptides (both synthetic and natural) were examined under SHG microscopy and shown they are SHG‐active. These peptides can also be observed inside cells (in vitro). This interesting property can make these amyloid‐like peptides second harmonic probes for bioimaging applications. Furthermore, SHG microscopy can provide a simple and label‐free approach to detect amyloidosis. Lattice corneal dystrophy was chosen as a model disease of amyloidosis. Morphological difference between normal and diseased human corneal biopsy samples can be easily recognized, proving that SHG can be a useful tool for disease diagnosis.  相似文献   

7.
The authors demonstrate Raman‐resonant imaging based on the simultaneous generation of several nonlinear frequency mixing processes resulting from a 3‐color coherent anti‐Stokes Raman scattering (CARS) experiment. The interaction of three coincident short‐pulsed laser beams simultaneously generates both 2‐color (degenerate) CARS and 3‐color (non‐degenerate) CARS signals, which are collected and characterized spectroscopically – allowing for resonant, doubly‐resonant, and non‐resonant contrast mechanisms. Images obtained from both 2‐color and 3‐color CARS signals are compared and found to provide complementary information. The 3‐color CARS microscopy scheme provides a versatile multiplexed modality for biological imaging, which may extend the capabilities of label‐free non‐linear microscopy, e.g. by probing multiple Raman resonances. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Nonlinear optical imaging techniques have been widely used to reveal biological structures for accurate diagnosis at the cellular as well as the tissue level. In the present study, polarization‐dependent second‐harmonic generation (PSHG) was used to determine collagen orientation in breast cancer biopsy tissues (grades 0, I, II and III). The obtained data were processed using fast Fourier transform (FFT) analysis, while second‐harmonic generation (SHG) anisotropy and the “ratio parameter” values were also calculated. Such measurements were shown to be able to distinguish collagen structure modifications in different cancer grades tested. The analysis presented herein suggests that PSHG imaging could provide a quantitative evaluation of the tumor state and the distinction of malignant from benign breast tissues. The obtained results also allowed the development of a biophysical model, which can explain the aforementioned differentiations and is in agreement with the simulations relating the SHG anisotropy values with the mechanical tension applied to the collagen during cancer progression. The current approach could be a step forward for the development of new, nondestructive, label free optical diagnostic tools for cancer reducing the need of recalls and unnecessary biopsies, while potentially improving cancer detection rates.  相似文献   

9.
In this work, we present a non‐invasive approach to determine azimuth and elevation angles of collagen fibers capable of generating second harmonic signal. The azimuth angle was determined using the minimum of second harmonic generation (SHG) signal while rotating the plane of polarization of excitation light. The elevation angle was estimated from the ratio of the minimal SHG intensity to the intensity when laser polarization and fiber directions were parallel to each other using experimentally determined calibration curve. Pixel‐resolution images of collagen fiber spatial orientation in tendon from bovine leg, chicken leg, and chicken skin were acquired using our approach of SHG polarization‐resolved microscopy. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We report multimodal nonlinear optical imaging of fascia, a rich collagen type I sheath around internal organs and muscle. We show that second harmonic generation (SHG), third harmonic generation (THG) and Coherent anti-Stokes Raman scattering (CARS) microscopy techniques provide complementary information about the sub-micron architecture of collagen arrays. Forward direction SHG microscopy reveals the fibrillar arrangement of collagen type I structures as the main matrix component of fascia. SHG images detected in the backward direction as well as images of forward direction CARS microscopy show that the longitudinal collagen fiber bundles are further arranged in sheet-like bands. Forward-THG microscopy reveals the optically homogeneous content of the collagen sheet on a spatial scale of the optical wavelength. This is supported by the fact that the third harmonic signal is observed only at the boundaries between the sheets as well as by the CARS data obtained in both directions. The observations made with THG and CARS microscopy are explained using atomic force microscopy images.  相似文献   

11.
Polarization‐resolved second‐harmonic generation (P‐SHG) microscopy is a technique capable of characterizing nonlinear optical properties of noncentrosymmetric biomaterials by extracting the nonlinear susceptibility tensor components ratio , with z‐axis parallel and x‐axis perpendicular to the C6 symmetry axis of molecular fiber, such as a myofibril or a collagen fiber. In this paper, we present two P‐SHG techniques based on incoming and outgoing circular polarization states for a fast extraction of : A dual‐shot configuration where the SHG circular anisotropy generated using incident right‐ and left‐handed circularly‐polarized light is measured; and a single‐shot configuration for which the SHG circular anisotropy is measured using only one incident circular polarization state. These techniques are used to extract the of myosin fibrils in the body wall muscles of Drosophila melanogaster larva. The results are in good agreement with values obtained from the double Stokes‐Mueller polarimetry. The dual‐ and single‐shot circular anisotropy measurements can be used for fast imaging that is independent of the in‐plane orientation of the sample. They can be used for imaging of contracting muscles, or for high throughput imaging of large sample areas.  相似文献   

12.
Rehberg M  Krombach F  Pohl U  Dietzel S 《PloS one》2011,6(11):e28237
Second and Third Harmonic Generation (SHG and THG) microscopy is based on optical effects which are induced by specific inherent physical properties of a specimen. As a multi-photon laser scanning approach which is not based on fluorescence it combines the advantages of a label-free technique with restriction of signal generation to the focal plane, thus allowing high resolution 3D reconstruction of image volumes without out-of-focus background several hundred micrometers deep into the tissue. While in mammalian soft tissues SHG is mostly restricted to collagen fibers and striated muscle myosin, THG is induced at a large variety of structures, since it is generated at interfaces such as refraction index changes within the focal volume of the excitation laser. Besides, colorants such as hemoglobin can cause resonance enhancement, leading to intense THG signals. We applied SHG and THG microscopy to murine (Mus musculus) muscles, an established model system for physiological research, to investigate their potential for label-free tissue imaging. In addition to collagen fibers and muscle fiber substructure, THG allowed us to visualize blood vessel walls and erythrocytes as well as white blood cells adhering to vessel walls, residing in or moving through the extravascular tissue. Moreover peripheral nerve fibers could be clearly identified. Structure down to the nuclear chromatin distribution was visualized in 3D and with more detail than obtainable by bright field microscopy. To our knowledge, most of these objects have not been visualized previously by THG or any label-free 3D approach. THG allows label-free microscopy with inherent optical sectioning and therefore may offer similar improvements compared to bright field microscopy as does confocal laser scanning microscopy compared to conventional fluorescence microscopy.  相似文献   

13.
α‐Syntrophin is a component of the dystrophin scaffold‐protein complex that serves as an adaptor for recruitment of key proteins to the cytoplasmic side of plasma membranes. α‐Syntrophin knockout (KO) causes loss of the polarized localization of aquaporin4 (AQP4) at astrocytic endfeet and interferes with water and K+ homeostasis. During brain activation, release of ions and metabolites from endfeet is anticipated to increase perivascular fluid osmolarity, AQP4‐mediated osmotic water flow from endfeet, and metabolite washout from brain. This study tests the hypothesis that reduced levels of endfoot AQP4 increase retention of [14C]metabolites during sensory stimulation. Conscious KO and wild‐type mice were pulse‐labeled with [6‐14C] glucose during unilateral acoustic stimulation or bilateral acoustic plus whisker stimulation, and label retention was assayed by computer‐assisted brain imaging or analysis of [14C]metabolites in extracts, respectively. High‐resolution autoradiographic assays detected a 17% side‐to‐side difference (p < 0.05) in inferior colliculus of KO mice, not wild‐type mice. However, there were no labeling differences between KO and wild‐type mice for five major HPLC fractions from four dissected regions, presumably because of insufficient anatomical resolution. The results suggest a role for AQP4‐mediated water flow in support of washout of metabolites, and underscore the need for greater understanding of astrocytic water and metabolite fluxes.  相似文献   

14.
Label‐free quantitative imaging is highly desirable for studying live cells by extracting pathophysiological information without perturbing cell functions. Here, we demonstrate a novel label‐free multimodal optical imaging system with the capability of providing comprehensive morphological and molecular attributes of live cells. Our morpho‐molecular microscopy (3M) system draws on the combined strength of quantitative phase microscopy (QPM) and Raman microscopy to probe the morphological features and molecular fingerprinting characteristics of each cell under observation. While the commonr‐path geometry of our QPM system allows for highly sensitive phase measurement, the Raman microscopy is equipped with dual excitation wavelengths and utilizes the same detection and dispersion system, making it a distinctive multi‐wavelength system with a small footprint. We demonstrate the applicability of the 3M system by investigating nucleated and nonnucleated cells. This integrated label‐free platform has a promising potential in preclinical research, as well as in clinical diagnosis in the near future.   相似文献   

15.
Third harmonic generation (THG) microscopy is a label‐free imaging technique that shows great potential for rapid pathology of brain tissue during brain tumor surgery. However, the interpretation of THG brain images should be quantitatively linked to images of more standard imaging techniques, which so far has been done qualitatively only. We establish here such a quantitative link between THG images of mouse brain tissue and all‐nuclei‐highlighted fluorescence images, acquired simultaneously from the same tissue area. For quantitative comparison of a substantial pair of images, we present here a segmentation workflow that is applicable for both THG and fluorescence images, with a precision of 91.3 % and 95.8 % achieved respectively. We find that the correspondence between the main features of the two imaging modalities amounts to 88.9 %, providing quantitative evidence of the interpretation of dark holes as brain cells. Moreover, 80 % bright objects in THG images overlap with nuclei highlighted in the fluorescence images, and they are 2 times smaller than the dark holes, showing that cells of different morphologies can be recognized in THG images. We expect that the described quantitative comparison is applicable to other types of brain tissue and with more specific staining experiments for cell type identification.

  相似文献   


16.
Visualizing fine neuronal structures deep inside strongly light‐scattering brain tissue remains a challenge in neuroscience. Recent nanoscopy techniques have reached the necessary resolution but often suffer from limited imaging depth, long imaging time or high light fluence requirements. Here, we present two‐photon super‐resolution patterned excitation reconstruction (2P‐SuPER) microscopy for 3‐dimensional imaging of dendritic spine dynamics at a maximum demonstrated imaging depth of 130 μm in living brain tissue with approximately 100 nm spatial resolution. We confirmed 2P‐SuPER resolution using fluorescence nanoparticle and quantum dot phantoms and imaged spiny neurons in acute brain slices. We induced hippocampal plasticity and showed that 2P‐SuPER can resolve increases in dendritic spine head sizes on CA1 pyramidal neurons following theta‐burst stimulation of Schaffer collateral axons. 2P‐SuPER further revealed nanoscopic increases in dendritic spine neck widths, a feature of synaptic plasticity that has not been thoroughly investigated due to the combined limit of resolution and penetration depth in existing imaging technologies.   相似文献   

17.
Polarization‐dependent second‐harmonic generation (P‐SHG) microscopy is used to characterize molecular nonlinear optical properties of collagen and determine a three‐dimensional (3D) orientation map of collagen fibers within a pig tendon. C6 symmetry is used to determine the nonlinear susceptibility tensor components ratios in the molecular frame of reference and , where the latter is a newly extracted parameter from the P‐SHG images and is related to the chiral structure of collagen. The is observed for collagen fibers tilted out of the image plane, and can have positive or negative values, revealing the relative polarity of collagen fibers within the tissue. The P‐SHG imaging was performed using a linear polarization‐in polarization‐out (PIPO) method on thin sections of pig tendon cut at different angles. The nonlinear chiral properties of collagen can be used to construct the 3D organization of collagen in the tissue and determine the orientation‐independent molecular susceptibility ratios of collagen fibers in the molecular frame of reference.   相似文献   

18.
Optical imaging is a key modality for observing biological specimen with higher spatial resolution. However, scattering and absorption of light in tissues are inherent barriers in maximizing imaging depth in biological tissues. To achieve this goal, use of light at near‐infrared spectrum can improve the present situation. Here, the capability of saturated two‐photon saturated excitation (TP‐SAX) fluorescence microscopy to image at depths of >2.0 mm, with submicron resolution in transparent mouse brain imaging, is demonstrated. At such depths with scattering‐enlarged point spread function (PSF), we find that TP‐SAX is capable to provide spatial resolution improvement compared to its corresponding TPFM, which is on the other hand already providing a much improved resolution compared with single‐photon confocal fluorescence microscopy. With the capability to further improve spatial resolution at such deep depth with scattering‐enlarged PSF, TP‐SAX can be used for exquisite visualization of delicate cerebral neural structure in the scattering regime with a submicron spatial resolution inside intact mouse brain.   相似文献   

19.
One‐photon absorption based traditional laser treatment may not necessarily be selective at the microscopic level, thus could result in un‐intended tissue damage. Our objective is to test whether two‐photon absorption (TPA) could provide highly targeted tissue alteration of specific region of interest without damaging surrounding tissues. TPA based laser treatments (785 nm, 140 fs pulse width, 90 MHz) were performed on ex vivo mouse skin using different average power levels and irradiation times. Reflectance confocal microscopy (RCM) and combined second‐harmonic‐generation (SHG) and two‐photon fluorescence (TPF) imaging channels were used to image before, during, and after each laser treatment. The skin was fixed, sectioned and H & E stained after each experiment for histological assessment of tissue alterations and for comparison with the non‐invasive imaging assessments. Localized destruction of dermal fibers was observed without discernible epidermal damage on both RCM and SHG + TPF images for all the experiments. RCM and SHG + TPF images correlated well with conventional histological examination. This work demonstrated that TPA‐based light treatment provides highly localized intradermal tissue alteration. With further studies on optimizing laser treatment parameters, this two‐photon absorption photothermolysis method could potentially be applied in clinical dermatology. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Triple‐negative breast cancer (TNBC) is an aggressive subset of breast cancer that is more common in African‐American and Hispanic women. Early detection followed by intensive treatment is critical to improving poor survival rates. The current standard to diagnose TNBC from histopathology of biopsy samples is invasive and time‐consuming. Imaging methods such as mammography and magnetic resonance (MR) imaging, while covering the entire breast, lack the spatial resolution and specificity to capture the molecular features that identify TNBC. Two nonlinear optical modalities of second harmonic generation (SHG) imaging of collagen, and resonance Raman spectroscopy (RRS) potentially offer novel rapid, label‐free detection of molecular and morphological features that characterize cancerous breast tissue at subcellular resolution. In this study, we first applied MR methods to measure the whole‐tumor characteristics of metastatic TNBC (4T1) and nonmetastatic estrogen receptor positive breast cancer (67NR) models, including tumor lactate concentration and vascularity. Subsequently, we employed for the first time in vivo SHG imaging of collagen and ex vivo RRS of biomolecules to detect different microenvironmental features of these two tumor models. We achieved high sensitivity and accuracy for discrimination between these two cancer types by quantitative morphometric analysis and nonnegative matrix factorization along with support vector machine. Our study proposes a new method to combine SHG and RRS together as a promising novel photonic and optical method for early detection of TNBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号