首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Near infrared spectroscopy (NIRS) neuroimaging sensors use light source and detector pairs placed over scalp to measure underlying neurophysiology. Source detector separation (SDS) is a critical design parameter and should aim a balanced trade‐off for detected light intensity and sensitivity to brain tissue. In this study, we used multi‐layer digital head models to systematically evaluate the role of SDS on NIRS spatial sensitivity profiles within both healthy and clinical conditions. Further details can be found in the article by Lei Wang, Hasan Ayaz, and Meltem Izzetoglu ( e201900175 ).

  相似文献   


2.
A numerical simulation of the transport of light energy in the near infrared region of the spectrum through human brain tissue is presented. This simulation models the use of near infrared spectroscopic techniques to quantify the levels of oxygen present in brain tissue. Successful application of the technique requires knowledge of the optical pathlength in the tissue, and it is the goal of this simulation to quantify the relationship of the optical pathlength and the oxygenation state of the tissue. Both implicit and explicit finite element schemes for unstructured grids are implemented and discussed. Several application simulations using three tissue grids of varying degrees of physiological accuracy are then conducted, and figures for the optical pathlength of light through the tissue at varying levels of oxygenation are computed. These results are then used to develop a quantitative relationship between the pathlength and the absorption parameter for the three tissue models which we explore.  相似文献   

3.
The goal of this study is to prove that the light propagation in the head by used the 3‐D optical model from in vivo MRI data set can also provide significant characteristics on the spatial sensitivity of cerebral cortex folding geometry based on Monte Carlo simulation. Thus, we proposed a MRI based approach for 3‐D brain modeling of near‐infrared spectroscopy (NIRS). In the results, the spatial sensitivity profile of the cerebral cortex folding geometry and the arrangement of source‐detector separation have being necessarily considered for applications of functional NIRS. The optimal choice of source‐detector separation is suggested within 3–3.5 cm by the received intensity with different source‐detector separations and the ratio of received light from the gray and white matter layer is greater than 50%. Additionally, this study has demonstrated the capability of NIRS in not only assessing the functional but also detecting the structural change of the brain by taking advantage of the low scattering and absorption coefficients observed in CSF of sagittal view. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
A numerical simulation of the transport of light energy in the near infrared region of the spectrum through human brain tissue is presented. This simulation models the use of near infrared spectroscopic techniques to quantify the levels of oxygen present in brain tissue. Successful application of the technique requires knowledge of the optical pathlength in the tissue, and it is the goal of this simulation to quantify the relationship of the optical pathlength and the oxygenation state of the tissue. Both implicit and explicit finite element schemes for unstructured grids are implemented and discussed. Several application simulations using three tissue grids of varying degrees of physiological accuracy are then conducted, and figures for the optical pathlength of light through the tissue at varying levels of oxygenation are computed. These results are then used to develop a quantitative relationship between the pathlength and the absorption parameter for the three tissue models which we explore.  相似文献   

5.
Despite considerable advances in guidance of radiofrequency ablation (RFA) therapy for the treatment of cardiac arrhythmias, success rates have been hampered by a lack of tools for precise intraoperative evaluation of lesion extent. Near‐infrared spectroscopic (NIRS) techniques are sensitive to tissue structural and biomolecular properties, characteristics that are directly altered by radiofrequency (RF) treatment. In this work, a combined NIRS‐RFA catheter is developed for real‐time monitoring of tissue reflectance during RF energy delivery. An algorithm is proposed for processing NIR spectra to approximate nonirrigated lesion depth in both atrial and ventricular tissues. The probe optical geometry was designed to bias measurement influence toward absorption enabling enhanced sensitivity to changes in tissue composition. A set of parameters termed “lesion optical indices” are defined encapsulating spectral differences between ablated and unablated tissue. Utilizing these features, a model for real‐time tissue spectra classification and lesion size estimation is presented. Experimental validation conducted within freshly excised porcine cardiac specimens showed strong concordance between algorithm estimates and post‐hoc tissue assessment.   相似文献   

6.
Clinicians need a way to rapidly and reliably test the correct functioning of near‐infrared spectroscopy (NIRS)–based oximeters. Therefore, optical phantoms for quality assessment of NIRS oximeters are needed. The fabrication of such phantoms that mimic the optical properties of biological tissue in the NIR range represents a challenge. To enable their development, the aim was to characterize the absorption and scattering spectra of different dyes. The optical properties of silicone SILPURAN 2420 with 11 color pastes of type ELASTOSIL were measured in the 500 to 1000 nm range by a spectrometer with an integrating sphere. In addition, two commercial frequency‐domain NIRS devices, the ISS OxiplexTS and the ISS Imagent, were used to assess the optical properties at specific wavelengths. The evaluated colors present mostly features in the visible range below 650 nm, but two colors include peaks in the near‐infrared region, simulating low tissue oxygenation values. These colors were used to create an optical phantom, which matched the designed StO2 value within an error of only 4%. This set of dyes already enables simulating many different spectra, thus achieving a first step on the way to a long‐term stable comparison and validation method.   相似文献   

7.
Penetration depth of near‐infrared laser radiation to costal cartilage is controlled by the tissue absorption and scattering, and it is the critical parameter to provide the relaxation of mechanical stress throughout the whole thickness of cartilage implant. To enhance the penetration for the laser radiation on 1.56 μm, the optical clearing solutions of glycerol and fructose of various concentrations are tested. The effective and reversible tissue clearance was achieved. However, the increasing absorption of radiation should be concerned: 5°C‐8°C increase of tissue temperature was detected. Laser parameters used for stress relaxation in cartilage should be optimized when applying optical clearing agents. To concentrate the absorption in the superficial tissue layers, magnetite nanoparticle (NP) dispersions with the mean size 95 ± 5 nm and concentration 3.9 ± 1.1 × 1011 particles/mL are applied. The significant increase in the tissue heating rate was observed along with the decrease in its transparency. Using NPs the respective laser power can be decreased, allowing us to obtain the working temperature locally with reduced thermal effect on the surrounding tissue.   相似文献   

8.
Functional Near‐Infrared Spectroscopy (fNIRS) aims to recover changes in tissue optical parameters relating to tissue hemodynamics, to infer functional information in biological tissue. A widely‐used application of fNIRS relies on continuous wave (CW) methodology that utilizes multiple distance measurements on human head for study of brain health. The typical method used is spatially resolved spectroscopy (SRS), which is shown to recover tissue oxygenation index (TOI) based on gradient of light intensity measured between two detectors. However, this methodology does not account for tissue scattering which is often assumed. A new parameter recovery algorithm is developed, which directly recovers both the scattering parameter and scaled chromophore concentrations and hence TOI from the measured gradient of light‐attenuation at multiple wavelengths. It is shown through simulations that in comparison to conventional SRS which estimates cerebral TOI values with an error of ±12.3%, the proposed method provides more accurate estimate of TOI exhibiting an error of ±5.7% without any prior assumptions of tissue scatter, and can be easily implemented within CW fNIRS systems. Using an arm‐cuff experiment, the obtained TOI using the proposed method is shown to provide a higher and more realistic value as compared to utilizing any prior assumptions of tissue scatter.  相似文献   

9.
Gender differences in psychological processes have been of great interest in a variety of fields including verbal fluency, emotion processing and working memory. Previous studies suggested that women outperform men in verbal working memory (VWM). However, the inherent mechanisms are still unclear. To obtain a deeper insight into the gender differences in brain networks in VWM, this study used near‐infrared spectroscopy (NIRS) and electro‐encephalography (EEG) simultaneously to investigate gender‐related brain networks during verbal Sternberg tasks. NIRS results confirmed that women surpass men in VWM from the perspective of both brain activation and connectivity. Results of EEG (effective connectivity and event‐related spectral power) showed that men tend to use a more visuospatial strategy to encode memory. In addition, novel analysis methods of brain networks can provide useful information about the gender specifics of brain functions. Gender‐related pseudo‐color maps constructed from all channels of average HbO2 activity during low‐ and high‐load tasks (from 0 to 6 seconds after beginning).   相似文献   

10.
In this paper, near‐infrared spectroscopy (NIRS) and jumping optical tweezers were used to measure the tissue oxygenation and the elasticity of erythrocytes, respectively. The correlation between tissue oxygenation induced by arterial occlusion test (AOT) and the mechanical properties of individual erythrocytes from a blood sample obtained after AOT was studied. The experimental results show a linear correlation between the oxygenation signal caused by AOT and the elasticity of erythrocytes. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Acquiring information of the neural structures in the whole‐brain level is vital for systematically exploring mechanisms and principles of brain function and dysfunction. Most methods for whole brain imaging, while capable of capturing the complete morphology of neurons, usually involve complex sample preparation and several days of image acquisition. The whole process including optical clearing or resin embedding is time consuming for a quick survey of the distribution of specific neural circuits in the whole brain. Here, we develop a high‐throughput light‐sheet tomography platform (HLTP), which requires minimum sample preparation. This method does not require optical clearing for block face light sheet imaging. After fixation using paraformaldehyde, an aligned 3 dimensional image dataset of a whole mouse brain can be obtained within 5 hours at a voxel size of 1.30 × 1.30 × 0.92 μm. HLTP could be a very efficient tool for quick exploration and visualization of brain‐wide distribution of specific neurons or neural circuits.   相似文献   

12.
Methods for measuring cerebral blood volume (CBV) have traditionally used radioisotopes. More recently, near-infrared spectroscopy (NIRS) has been used to measure CBV by using a technique involving O(2) desaturation of cerebral tissue, where the observed change in the concentration of oxygenated hemoglobin is a marker of the volume of blood contained within the brain. A new integration method employing NIRS is described by using indocyanine green (ICG) as the intravascular marker. After bolus injection, concentration-time integrals of cerebral tissue ICG concentration ([ICG](tissue)) measured by NIRS are compared with corresponding integrals of the cerebral blood ICG concentrations ([ICG](blood)) estimated by high-performance liquid chromatography of peripheral blood samples with allowance for cerebral-to-large-vessel hematocrit ratio. It is shown that CBV = integral [ICG]tissue/[ICG]blood. Measurements in 10 adult volunteers gave a mean value of 1.1 +/- 0.39 (SD) ml/100 g illuminated tissue. This result, although lower than previous NIRS estimations, is consistent with the long extracerebral path of light in the adult head. Scaling of results is required to take into account this component of the optical pathlength.  相似文献   

13.
Brain death is an irreversible loss of all brain functions, and the assessment is crucial for organ supply for transplantation. The noninvasive, sensitive, universally available and timely ancillary method to assess brain death has not been established. Here, we attempted to explore a noninvasive way in brain death assessment. Eighteen brain‐dead patients and 20 healthy subjects were measured by near‐infrared spectroscopy (NIRS), with a multiple‐phase protocol at varied fraction of inspired O2 (FIO2). We found that the concentration changes ratios of oxyhemoglobin to deoxyhemoglobin (Δ[HbO2]/Δ[Hb]) in the cerebral cortex of brain‐dead patients were significantly higher than those of healthy subjects. And, the Δ[HbO2]/Δ[Hb] in low‐to‐high FIO2 phase was most sensitive to distinguish brain‐dead patients from healthy subjects, with a recommended threshold ranged in 1.40~1.50. The innovative incorporation of NIRS and a varied FIO2 protocol was shown to be a noninvasive and reliable way in assessing brain death. This successful attempt of NIRS application is a help for fast and accurate evaluation of brain death, promptly offering quality‐assured donor organs and indicate us a protocol‐aided way to expand the use of NIRS.   相似文献   

14.
Near‐infrared (NIR) radiation has been employed using one‐ and two‐photon excitation of fluorescence imaging at wavelengths 650–950 nm (optical window I) for deep brain imaging; however, longer wavelengths in NIR have been overlooked due to a lack of suitable NIR‐low band gap semiconductor imaging detectors and/or femtosecond laser sources. This research introduces three new optical windows in NIR and demonstrates their potential for deep brain tissue imaging. The transmittances are measured in rat brain tissue in the second (II, 1,100–1,350 nm), third (III, 1,600–1,870 nm), and fourth (IV, centered at 2,200 nm) NIR optical tissue windows. The relationship between transmission and tissue thickness is measured and compared with the theory. Due to a reduction in scattering and minimal absorption, window III is shown to be the best for deep brain imaging, and windows II and IV show similar but better potential for deep imaging than window I.

  相似文献   


15.
Near‐infrared spectroscopy (NIRS) is a noninvasive method for measuring the oxygenation in muscle and other tissues in vivo. For quantitative NIRS measurement of oxygenation dynamics, the vessel‐occlusion test was usually applied as physiological intervention. There are several drawbacks of the vessel‐occlusion method that include skin contact, uncomfortable and microcirculation block of patients. Thus, we propose the far‐infrared (FIR) illumination as a new physiological intervention method in this paper. Our preliminary result shows a linear correlation of oxygenation dynamic signals between FIR illumination and arterial‐occlusion test (AOT) that implies the FIR illumination could be applied for hemodynamic response measurement in clinical diagnosis. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Near‐infrared (NIR) spectroscopy offers a promising technological platform for continuous glucose monitoring in the human body. Moreover, these measurements could be performed in vivo with an implantable single‐chip based optical sensor. However, a thin tissue layer may grow in the optical path of the sensor. As most biological tissues are highly scattering, they only allow a small fraction of the collimated light to pass, significantly reducing the light throughput. To quantify the effect of a thin tissue layer in the optical path, the bulk optical properties of serum and tissue samples grown on implanted dummy sensors were characterized using double integrating sphere and unscattered transmittance measurements. The estimated bulk optical properties were then used to calculate the light attenuation through a thin tissue layer. The combination band of glucose was found to be the better option, relative to the first overtone band, as the absorptivity of glucose molecules is higher, while the reduction in unscattered transmittance due to tissue growth is less. Additionally, as the wound tissue was found to be highly scattering, the unscattered transmittance of the tissue layer is expected to be very low. Therefore, a sensor configuration which measures the diffuse transmittance and/or reflectance instead was recommended.

( a ) Dummy sensor; ( b ) explanted dummy sensor in tissue lump; ( c ) removal of dummy sensor from tissue lump; and ( d ) 900 µm slices of tissue lump.  相似文献   


17.
The rate of complete resection of glioma has improved with the introduction of 5‐aminolevulinic acid‐induced protoporphyrin IX (PpIX) fluorescence image guidance. Surgical outcomes are further enhanced when the fluorescence signal is decoupled from the intrinsic tissue optical absorption and scattering obtained from diffuse reflectance measurements, yielding the absolute PpIX concentration, [PpIX]. Spatial frequency domain imaging was used previously to measure [PpIX] in near‐surface tumors under blue fluorescence excitation. Here, we extend this to subsurface [PpIX] fluorescence under red‐light excitation. The decay rate of the modulation amplitude of the fluorescence signal was used to calculate the PpIX depth, which was then applied in a forward diffusion model to estimate [PpIX] at depth. For brain‐like optical properties in phantoms with PpIX fluorescent inclusions, the depth can be recovered up to depths of 9.5 mm ± 0.4 mm, with [PpIX] ranging from 5 to 15 μg/mL within an average deviation of 15% from the true [PpIX] value.   相似文献   

18.
The autocorrelation of laser speckles from coherent near infrared light is used for noninvasive estimates of relative changes in blood perfusion in techniques such as laser Doppler flowmetry (LDF) and diffuse correlation spectroscopy (DCS). In this study, a 2D array of single photon avalanche diodes (SPADs) was used to combine the strengths of multiple detectors in LDF with high light sensitivity in DCS. The system was tested on milk phantoms with varying detector fiber diameter (200 and 600 μm), source‐detector fiber separation (4.6‐10.2 mm), fiber‐SPAD distance (2.5‐36.5 mm), contiguous measurement time per repetition for the autocorrelation (1‐33 ms) and temperature (15.6‐46.7°C). An in vivo blood occlusion test was also performed. The multipixel approach improved signal‐to‐noise ratio (SNR) and, in our setup, the use of a multimode detector fiber was beneficial for SNR. In conclusion, the multipixel system works, but improvements and further studies regarding, for example, the data acquisition and optimal settings are still needed.   相似文献   

19.
In recent years, two‐photon fluorescence microscopy has gained significant interest in bioimaging. It allows the visualization of deeply buried inhomogeneities in tissues. The near‐infrared (NIR) dyes are also used for deep tissue imaging. Indocyanine green (ICG) is the only U.S. Food and Drug Administration (FDA) approved exogenous contrast agent in the NIR region for clinical applications. However, despite its potential candidature, it had never been used as a two‐photon contrast agent for biomedical imaging applications. This letter provides an insight into the scope and application of the two‐photon excitation property of ICG to the second excited singlet (S2) state in aqueous solution. Furthermore, in this work, we demonstrate the two‐photon cellular imaging application of ICG using direct fluorescence emission from S2 state for the first time. Our results show that two‐photon excitation to S2 state of ICG could be achieved with approximately 790 nm wavelength of femtosecond laser, which lies in well‐known “tissue‐optical window.” This property would enable light to penetrate much deeper in the turbid medium such as biological tissues. Thus, ICG could be used as the first FDA approved NIR exogenous contrast agent for two‐photon imaging. These findings can make remarkable influence on preclinical and clinical cell imaging.   相似文献   

20.
The depth of two‐photon fluorescence imaging in turbid media can be significantly enhanced by the use of the here described fluorescence detection method that allows to efficiently collect scattered fluorescence photons from a wide area of the turbid sample. By using this detector we were able to perform imaging of turbid samples, simulating brain tissue, at depths up to 3 mm, where the two‐photon induced fluorescence signal is too weak to be detected by means used in conventional two‐photon microscopy. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号