首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a compact, cost‐effective tuned amplifier for frequency‐selective amplification of the modulated signal in heterodyne detected nonlinear optical microscopy. Our method improved the signal to noise ratio by an order of magnitude compared to conventional lock‐in detection, as demonstrated through stimulated Raman scattering imaging of live cells and tissues at the speed of 2 μsec/pixel. Application of the tuned amplifier to transient absorption microscopy is also demonstrated. The increased signal to noise ratio allowed epi‐detected in vivo imaging of myelin and blood in rat spinal cord with high spatial resolution. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The morphology and the function of cellular and non‐cellular structures in the living human cornea can be determined with modern correlative linear and nonlinear optical microscopic techniques and histology. Correlative microscopy is based on the use of different optical techniques to study the same specimen, ideally at the same location within the specimen, in order to increase the functional and/or morphological understanding of the specimen. A case study to assess the effect of overnight lid‐closure on in vivo human corneal morphology is presented to illustrate correlative linear microscopy and optical low‐coherence reflectometry. Nonlinear multiphoton excitation microscopy provides functional information on cellular metabolism based on the intrinsic fluorescence from the reduced pyridine nucleotides and the oxidized flavoproteins. Second‐harmonic generation microscopy, a scattering process that does not deposit net energy into the tissue, provides structural information on corneal collagen organization. Molecular third‐harmonic generation microscopy generates a signal in all materials and it an emerging technique. Coherent anti‐Stokes Raman scattering microscopy provides chemical imaging for biology and medicine. The comparison and limitations of these microscopic modalities, linear and nonlinear microscopy applied to the cornea, and a review of some key findings is analyzed. A correlative integration and correlation of linear and nonlinear microscopies to study corneal function and structure is proposed to validate the clinical interpretation of microscopic images of the cornea. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Coherent anti‐Stokes Raman scattering (CARS) microscopy is an emerging technique for identification of brain tumors. However, tumor identification by CARS microscopy on bulk samples and in vivo has been so far verified retrospectively on histological sections, which only provide a gross reference for the interpretation of CARS images without matching at cellular level. Therefore, fluorescent labels were exploited for direct assessment of the interpretation of CARS images of solid and infiltrative tumors. Glioblastoma cells expressing green fluorescent protein (GFP) were used for induction of tumors in mice (n = 7). The neoplastic nature of cells imaged by CARS microscopy was unequivocally verified by addressing two‐photon fluorescence of GFP on fresh brain slices and in vivo. In fresh unfixed biopsies of human glioblastoma (n = 10), the fluorescence of 5‐aminolevulinic acid‐induced protoporphyrin IX was used for identification of tumorous tissue. Distinctive morphological features of glioblastoma cells, i.e. larger nuclei, evident nuclear membrane and nucleolus, were identified in the CARS images of both mouse and human brain tumors. This approach demonstrates that the chemical contrast provided by CARS allows the localization of infiltrating tumor cells in fresh tissue and that the cell morphology in CARS images is useful for tumor recognition.

Experimental glioblastoma expressing green fluorescent protein.  相似文献   


4.
5.
Label‐free quantitative imaging is highly desirable for studying live cells by extracting pathophysiological information without perturbing cell functions. Here, we demonstrate a novel label‐free multimodal optical imaging system with the capability of providing comprehensive morphological and molecular attributes of live cells. Our morpho‐molecular microscopy (3M) system draws on the combined strength of quantitative phase microscopy (QPM) and Raman microscopy to probe the morphological features and molecular fingerprinting characteristics of each cell under observation. While the commonr‐path geometry of our QPM system allows for highly sensitive phase measurement, the Raman microscopy is equipped with dual excitation wavelengths and utilizes the same detection and dispersion system, making it a distinctive multi‐wavelength system with a small footprint. We demonstrate the applicability of the 3M system by investigating nucleated and nonnucleated cells. This integrated label‐free platform has a promising potential in preclinical research, as well as in clinical diagnosis in the near future.   相似文献   

6.
Photoacoustic microscopy (PAM) is an imaging modality well suited to mapping vasculature and other strong absorbers in tissue. However, one of the primary drawbacks to PAM when used for high‐resolution imaging is the relatively poor axial resolution due to the inverse dependence on the transducer bandwidth. While submicron lateral resolution PAM can be achieved by tightly focusing the excitation light, the axial resolution is fundamentally limited to 10s of microns for typical transducer frequencies. Here we present a multiphoton PAM technique called transient absorption ultrasonic microscopy (TAUM), which results in a completely optically resolved voxel with an experimentally measured axial resolution of 1.5 microns. This technique is demonstrated by imaging individual red blood cells in three dimensions in blood smear and ex vivo tissues. To the best of our knowledge, this is the first demonstration of fully resolved, volumetric photoacoustic imaging of erythrocytes. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Stroke is a significant cause of morbidity and long‐term disability globally. Detection of injured neuron is a prerequisite for defining the degree of focal ischemic brain injury, which can be used to guide further therapy. Here, we demonstrate the capability of two‐photon microscopy (TPM) to label‐freely identify injured neurons on unstained thin section and fresh tissue of rat cerebral ischemia‐reperfusion model, revealing definite diagnostic features compared with conventional staining images. Moreover, a deep learning model based on convolutional neural network is developed to automatically detect the location of injured neurons on TPM images. We then apply deep learning‐assisted TPM to evaluate the ischemic regions based on tissue edema, two‐photon excited fluorescence signal intensity, as well as neuronal injury, presenting a novel manner for identifying the infarct core, peri‐infarct area, and remote area. These results propose an automated and label‐free method that could provide supplementary information to augment the diagnostic accuracy, as well as hold the potential to be used as an intravital diagnostic tool for evaluating the effectiveness of drug interventions and predicting potential therapeutics.  相似文献   

8.
Stem cells have received much attention recently for their potential utility in regenerative medicine. The identification of their differentiated progeny often requires complex staining procedures, and is challenging for intermediary stages which are a priori unknown. In this work, the ability of label‐free quantitative coherent anti‐Stokes Raman scattering (CARS) micro‐spectroscopy to identify populations of intermediate cell states during the differentiation of murine embryonic stem cells into adipocytes is assessed. Cells were imaged at different days of differentiation by hyperspectral CARS, and images were analysed with an unsupervised factorization algorithm providing Raman‐like spectra and spatially resolved maps of chemical components. Chemical decomposition combined with a statistical analysis of their spatial distributions provided a set of parameters that were used for classification analysis. The first 2 principal components of these parameters indicated 3 main groups, attributed to undifferentiated cells, cells differentiated into committed white pre‐adipocytes, and differentiating cells exhibiting a distinct protein globular structure with adjacent lipid droplets. An unsupervised classification methodology was developed, separating undifferentiated cell from cells in other stages, using a novel method to estimate the optimal number of clusters. The proposed unsupervised classification pipeline of hyperspectral CARS data offers a promising new tool for automated cell sorting in lineage analysis.   相似文献   

9.
Methods of nonlinear optics provide a vast arsenal of tools for label‐free brain imaging, offering a unique combination of chemical specificity, the ability to detect fine morphological features, and an unprecedentedly high, subdiffraction spatial resolution. While these techniques provide a rapidly growing platform for the microscopy of neurons and fine intraneural structures, optical imaging of astroglia still largely relies on filament‐protein‐antibody staining, subject to limitations and difficulties especially severe in live‐brain studies. Once viewed as an ancillary, inert brain scaffold, astroglia are being promoted, as a part of an ongoing paradigm shift in neurosciences, into the role of a key active agent of intercellular communication and information processing, playing a significant role in brain functioning under normal and pathological conditions. Here, we show that methods of nonlinear optics provide a unique resource to address long‐standing challenges in label‐free astroglia imaging. We demonstrate that, with a suitable beam‐focusing geometry and careful driver‐pulse compression, microscopy of second‐harmonic generation (SHG) can enable a high‐resolution label‐free imaging of fibrillar structures of astrocytes, most notably astrocyte processes and their endfeet. SHG microscopy of astrocytes is integrated in our approach with nonlinear‐optical imaging of red blood cells based on third‐harmonic generation (THG) enhanced by a three‐photon resonance with the Soret band of hemoglobin. With astroglia and red blood cells providing two physically distinct imaging contrasts in SHG and THG channels, a parallel detection of the second and third harmonics enables a high‐contrast, high‐resolution, stain‐free stereoimaging of gliovascular interfaces in the central nervous system. Transverse scans of the second and third harmonics are shown to resolve an ultrafine texture of blood‐vessel walls and astrocyte‐process endfeet on gliovascular interfaces with a spatial resolution within 1 μm at focusing depths up to 20 μm inside a brain.  相似文献   

10.
The authors demonstrate Raman‐resonant imaging based on the simultaneous generation of several nonlinear frequency mixing processes resulting from a 3‐color coherent anti‐Stokes Raman scattering (CARS) experiment. The interaction of three coincident short‐pulsed laser beams simultaneously generates both 2‐color (degenerate) CARS and 3‐color (non‐degenerate) CARS signals, which are collected and characterized spectroscopically – allowing for resonant, doubly‐resonant, and non‐resonant contrast mechanisms. Images obtained from both 2‐color and 3‐color CARS signals are compared and found to provide complementary information. The 3‐color CARS microscopy scheme provides a versatile multiplexed modality for biological imaging, which may extend the capabilities of label‐free non‐linear microscopy, e.g. by probing multiple Raman resonances. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Currently, the targeted treatment of tumor based on the tumor microenvironment is newly developed. Blood vessels are the key parts in the tumor microenvironment, which is taken as a new visible target for tumor therapy. Multiphoton microscopy (MPM), based on the second harmonic generation and two‐photon excited fluorescence, is available to make the label‐free analysis on the blood vessels in human gliomas. MPM can reveal the vascular morphological characteristics in gliomas, including vascular malformation, intense vascular proliferation, perivascular collagen deposition, perivascular lymphocytes aggregation and microvascular proliferation. In addition, the image analysis algorithms were developed to automatically calculate the perivascular collagen content, vascular cavity area, lumen area, wall area and vessel number. Thus, the vascular morphology, the perivascular collagen deposition and intense vascular proliferation degree can be further quantitatively characterized. Compared with the pathological analysis, the combination of MPM and image analysis has potential advantages in making a quantitative and qualitative analyzing on vascular morphology in glioma microenvironment. As micro‐endoscope and two‐photon fiberscope are technologically improved, this combined method will be a useful imaging way to make the real‐time research on the targeting tumor microenvironment in gliomas.  相似文献   

12.
The accumulation of lipids, including cholesterol, in the arterial wall plays a key role in the pathogenesis of atherosclerosis. Although several advances have been made in the detection and imaging of these lipid structures in plaque lesions, their morphology and composition have yet to be fully elucidated, particularly in different animal models of disease. To address this issue, we analyzed lipid morphology and composition in the atherosclerotic plaques of two animal models of disease, the low density lipoprotein receptor-deficient (LDLR(-/-)) mouse and the ApoE lipoprotein-deficient (ApoE(-/-)) mouse, utilizing hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy in combination with principal component analysis (PCA). Hyperspectral CARS imaging revealed lipid-rich macrophage cells and condensed needle-shaped and plate-shaped lipid crystal structures in both mice. Spectral analysis with PCA and comparison to spectra of pure cholesterol and cholesteryl ester derivatives further revealed these lipid structures to be pure cholesterol crystals, which were predominantly observed in the ApoE(-/-) mouse model. These results illustrate the ability of hyperspectral CARS imaging in combination with multivariate analysis to characterize atherosclerotic lipid morphology and composition with chemical specificity, and consequently, provide new insight into the formation of cholesterol crystal structures in atherosclerotic plaque lesions.  相似文献   

13.
In this work, we report the use of refractive index (RI) tomography for quantitative analysis of unstained DH82 cell line infected with Leishmania infantum. The cell RI is reconstructed by using a modality of optical diffraction tomography technique that employs partially coherent illumination, thus enabling inherent compatibility with conventional wide‐field microscopes. The experimental results demonstrate that the cell dry mass concentration (DMC) obtained from the RI allows for reliable detection and quantitative characterization of the infection and its temporal evolution. The RI provides important insight for studying morphological changes, particularly membrane blebbing linked to an apoptosis (cell death) process induced by the disease. Moreover, the results evidence that infected DH82 cells exhibit a higher DMC than healthy samples. These findings open up promising perspectives for clinical diagnosis of Leishmania.  相似文献   

14.
Polarization‐resolved second‐harmonic generation (P‐SHG) microscopy is a technique capable of characterizing nonlinear optical properties of noncentrosymmetric biomaterials by extracting the nonlinear susceptibility tensor components ratio , with z‐axis parallel and x‐axis perpendicular to the C6 symmetry axis of molecular fiber, such as a myofibril or a collagen fiber. In this paper, we present two P‐SHG techniques based on incoming and outgoing circular polarization states for a fast extraction of : A dual‐shot configuration where the SHG circular anisotropy generated using incident right‐ and left‐handed circularly‐polarized light is measured; and a single‐shot configuration for which the SHG circular anisotropy is measured using only one incident circular polarization state. These techniques are used to extract the of myosin fibrils in the body wall muscles of Drosophila melanogaster larva. The results are in good agreement with values obtained from the double Stokes‐Mueller polarimetry. The dual‐ and single‐shot circular anisotropy measurements can be used for fast imaging that is independent of the in‐plane orientation of the sample. They can be used for imaging of contracting muscles, or for high throughput imaging of large sample areas.  相似文献   

15.
Scanning near‐field optical microscopy (SNOM) represents a potential candidate for investigation of ultrastructure in human spermatozoa. It is a noninvasive optical technique that offers two main advantages: minimal sample preparation and simultaneous topographical and optical images acquisition with a spatial resolution beyond the diffraction limit. This enables the combination of surface characterization and information from the inner cellular organization in a single acquisition providing an immediate and comprehensive analysis of the cellular portions. In this work spermatozoa are immobilized on poly‐L‐lysine coated coverslips, fixed according to a standard protocol and imaged by aperture‐SNOM in air. In the SNOM images, all peculiar sperm portions show well‐resolved optical features, which exhibit good similarities with the structures revealed in transmission electron microscopy images, as compared with literature data. The optical features of anomalous spermatozoa are clearly different as respect with those observed for healthy ones. This analysis reveals the potentialities of SNOM and opens to its application to high‐resolution analysis of sperm morphological alterations, which might be relevant in reproductive medicine.  相似文献   

16.
Monitoring living cells in real‐time is important in order to unravel complex dynamic processes in life sciences. In particular the dynamics of initiation and progression of degenerative diseases is intensely studied. In atherosclerosis the thickening of arterial walls is related to high lipid levels in the blood stream, which trigger the lipid uptake and formation of droplets as neutral lipid reservoirs in macrophages in the arterial wall. Unregulated lipid uptake finally results in foam cell formation, which is a hallmark of atherosclerosis. In previous studies, the uptake and storage of different fatty acids was monitored by measuring fixed cells. Commonly employed fluorescence staining protocols are often error prone because of cytotoxicity and unspecific fluorescence backgrounds. By following living cells with Raman spectroscopic imaging, lipid uptake of macrophages was studied with real‐time data acquisition. Isotopic labeling using deuterated palmitic acid has been combined with spontaneous and stimulated Raman imaging to investigate the dynamic process of fatty acid storage in human macrophages for incubation times from 45 min to 37 h. Striking heterogeneity in the uptake rate and the total concentration of deuterated palmitic acid covering two orders of magnitude is detected in single as well as ensembles of cultured human macrophages.

SRS signal of deuterated palmitic acid measured at the CD vibration band after incorporation into living macrophages.  相似文献   


17.
Optical imaging is a key modality for observing biological specimen with higher spatial resolution. However, scattering and absorption of light in tissues are inherent barriers in maximizing imaging depth in biological tissues. To achieve this goal, use of light at near‐infrared spectrum can improve the present situation. Here, the capability of saturated two‐photon saturated excitation (TP‐SAX) fluorescence microscopy to image at depths of >2.0 mm, with submicron resolution in transparent mouse brain imaging, is demonstrated. At such depths with scattering‐enlarged point spread function (PSF), we find that TP‐SAX is capable to provide spatial resolution improvement compared to its corresponding TPFM, which is on the other hand already providing a much improved resolution compared with single‐photon confocal fluorescence microscopy. With the capability to further improve spatial resolution at such deep depth with scattering‐enlarged PSF, TP‐SAX can be used for exquisite visualization of delicate cerebral neural structure in the scattering regime with a submicron spatial resolution inside intact mouse brain.   相似文献   

18.
Carbonaceous particle exposure and air pollution in general lead to a multitude of adverse human health effects and pose multiple challenges in terms of exposure, risk and safety assessment. Highly desirable for fast screening are label‐free approaches for detecting these particle types in biological or medical context. We report a powerful approach for detecting carbonaceous particles using photothermal pump‐probe microscopy, which directly probes their strong light absorption. The principle and reliability of this approach is demonstrated by examining 4 different carbon black (CB) species modeling soot with diameters ranging from 13 to 500 nm. Our results show that the proposed approach is applicable to a large number of CB types as well as black carbon. As the particles show a strong absorption over a wide spectral range as compared to other absorbing species, we can image CB particles almost background free. Our pump‐probe approach allows label‐free optical detection and unambiguous localization of CB particles in (bio)fluids and 3D cellular environments. In combination with fluorescence microscopy, this method allows for simultaneous colocalization of CB with different cellular components using fluorophores as shown here for human lung fibroblasts. We further demonstrate the versatility of pump‐probe detection in a flow cell.   相似文献   

19.
Impaired skin wound healing is a significant comorbid condition of diabetes that is caused by poor microcirculation, among other factors. Studies have shown that angiogenesis, a critical step in the wound healing process in diabetic wounds, can be promoted under hypoxia. In this study, an angiogenesis‐promoting topical treatment for diabetic wounds, which promotes angiogenesis by mimicking a hypoxic environment via inhibition of prolyl hydroxylase resulting in elevation or maintenance of hypoxia‐inducible factor, was investigated utilizing a custom‐built multimodal microscopy system equipped with phase‐variance optical coherence tomography (PV‐OCT) and fluorescence lifetime imaging microscopy (FLIM). PV‐OCT was used to track the regeneration of the microvasculature network, and FLIM was used to assess the in vivo metabolic response of mouse epidermal keratinocytes to the treatment during healing. Results show a significant decrease in the fluorescence lifetime of intracellular reduced nicotinamide adenine dinucleotide, suggesting a hypoxic‐like environment in the wounded skin, followed by a quantitative increase in blood vessel density assessed by PV‐OCT. Insights gained in these studies could lead to new endpoints for evaluation of the efficacy and healing mechanisms of wound‐healing drugs in a setting where delayed healing does not permit available methods for evaluation to take place.   相似文献   

20.
Exposure of glioblastoma U87MG cells to a cAMP analog leads to a decrease in proliferation, invasion, and angiogenic potential. Here, we apply a label‐free MS‐based approach to identify formerly N‐linked glycopeptides that change in abundance upon cAMP treatment. Over 150 unique glycopeptides in three biological repetitions were quantified, leading to the identification of 14 upregulated proteins and 21 downregulated proteins due to cAMP treatment. Of these, eight have been validated, either through comparison with microarray data or by Western blot. We estimate our ability to identify differentially expressed peptides at greater than 85% in a single biological repetition, while the analysis of multiple biological repetitions lowers the false positive rate to ~2%. Many of the proteins identified in this study are involved in cell signaling and some, such as Tenascin C, Cathepsin L, Neuroblastoma suppressor of tumorigenicity, and AXL/UFO tyrosine–protein kinase receptor, have been previously shown to be involved in glioblastoma progression. We also identify several semitryptic peptides that increase in abundance upon cAMP treatment, suggesting that cAMP regulates protease activity in these cells. Overall, these results demonstrate the benefits of using a highly specific enrichment method for quantitative proteomic experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号