首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cell wall is a crucial structural feature in the vast majority of bacteria and comprises a covalently closed network of peptidoglycan (PG) strands. While PG synthesis is important for survival under many conditions, the cell wall is also a dynamic structure, undergoing degradation and remodeling by ‘autolysins’, enzymes that break down PG. Cell division, for example, requires extensive PG remodeling, especially during separation of daughter cells, which depends heavily upon the activity of amidases. However, in Vibrio cholerae, we demonstrate that amidase activity alone is insufficient for daughter cell separation and that lytic transglycosylases RlpA and MltC both contribute to this process. MltC and RlpA both localize to the septum and are functionally redundant under normal laboratory conditions; however, only RlpA can support normal cell separation in low‐salt media. The division‐specific activity of lytic transglycosylases has implications for the local structure of septal PG, suggesting that there may be glycan bridges between daughter cells that cannot be resolved by amidases. We propose that lytic transglycosylases at the septum cleave PG strands that are crosslinked beyond the reach of the highly regulated activity of the amidase and clear PG debris that may block the completion of outer membrane invagination.  相似文献   

2.
A peptidoglycan (PG) cell wall composed of glycans crosslinked by short peptides surrounds most bacteria and protects them against osmotic rupture. In Escherichia coli, cell elongation requires crosslink cleavage by PG endopeptidases to make space for the incorporation of new PG material throughout the cell cylinder. Cell division, on the contrary, requires the localized synthesis and remodeling of new PG at midcell by the divisome. Little is known about the factors that modulate transitions between these two modes of PG biogenesis. In a transposon-insertion sequencing screen to identify mutants synthetically lethal with a defect in the division protein FtsP, we discovered that mutants impaired for cell division are sensitive to elevated activity of the endopeptidases. Increased endopeptidase activity in these cells was shown to interfere with the assembly of mature divisomes, and conversely, inactivation of MepS was found to suppress the lethality of mutations in essential division genes. Overall, our results are consistent with a model in which the cell elongation and division systems are in competition with one another and that control of PG endopeptidase activity represents an important point of regulation influencing the transition from elongation to the division mode of PG biogenesis.  相似文献   

3.
Enzymes that degrade the peptidoglycan (PG) cell wall layer called PG hydrolases or autolysins are often thought of as destructive forces. Phages employ them to lyse their host for the release of virion particles and some bacteria secrete them to eliminate (lyse) their competition. However, bacteria also harness the activity of PG hydrolases for important aspects of growth, division, and development. Of course, using PG hydrolases in this capacity requires that they be tightly regulated. While this has been appreciated for some time, we are only just beginning to understand the mechanisms governing the activities of these 'tailoring' enzymes. This review will focus on recent advances in this area with an emphasis on the regulation of PG hydrolases involved in cell division.  相似文献   

4.
The outer membrane of Gram‐negative bacteria is a crucial permeability barrier allowing the cells to survive a myriad of toxic compounds, including many antibiotics. This innate form of antibiotic resistance is compounded by the evolution of more active mechanisms of resistance such as efflux pumps, reducing the already limited number of clinically relevant treatments for Gram‐negative pathogens. During cell division Gram‐negative bacteria must coordinate constriction of the outer membrane in conjunction with other crucial layers of the cell envelope, the peptidoglycan cell wall and the inner membrane. Coordination is crucial in maintaining structural integrity of the envelope, and represents a highly vulnerable time for the cell as any failure can be fatal, if not least disadvantageous. However, the molecular mechanisms of cell division and how the biogenesis of the three layers is synchronised during constriction remain largely unknown. Perturbations of the outer membrane have been shown to increase the effectiveness of antibiotics in vitro, and so with improved understanding of this process we may be able to exploit this vulnerability and improve the effectiveness of antibiotic treatments. In this review the current knowledge of how Gram‐negative bacteria facilitate constriction of their outer membranes during cell division will be discussed.  相似文献   

5.
During division of Gram‐negative bacteria, invagination of the cytoplasmic membrane and inward growth of the peptidoglycan (PG) are followed by the cleavage of connective septal PG to allow cell separation. This PG splitting process requires temporal and spatial regulation of cell wall hydrolases. In Escherichia coli, LytM factors play an important role in PG splitting. Here we identify and characterize a member of this family (DipM) in Caulobacter crescentus. Unlike its E. coli counterparts, DipM is essential for viability under fast‐growth conditions. Under slow‐growth conditions, the ΔdipM mutant displays severe defects in cell division and FtsZ constriction. Consistent with its function in division, DipM colocalizes with the FtsZ ring during the cell cycle. Mutagenesis suggests that the LytM domain of DipM is essential for protein function, despite being non‐canonical. DipM also carries two tandems of the PG‐binding LysM domain that are sufficient for FtsZ ring localization. Localization and fluorescence recovery after photobleaching microscopy experiments suggest that DipM localization is mediated, at least in part, by the ability of the LysM tandems to distinguish septal, multilayered PG from non‐septal, monolayered PG.  相似文献   

6.
Mycobacterium tuberculosis (M. tb) has a complex lifestyle in different environments and involving several developmental stages. The success of M. tb results from its remarkable capacity to survive within the infected host, where it can persist in a non‐replicating state for several decades. The survival strategies developed by M. tb are linked to the presence of an unusual cell envelope. However, little is known regarding its capacity to modulate and adapt production of cell wall components in response to environmental conditions or to changes in cell shape and cell division. Signal sensing leading to cellular responses must be tightly regulated to allow survival under variable conditions. Although prokaryotes generally control their signal transduction processes through two‐component systems, signalling through Ser/Thr phosphorylation has recently emerged as a critical regulatory mechanism in bacteria. The genome of M. tb possesses a large family of eukaryotic‐like Ser/Thr protein kinases (STPKs). The physiological roles of several mycobacterial STPK substrates are connected to cell shape/division and cell envelope biosynthesis. Although these regulatory mechanisms have mostly been studied in Mycobacterium, Ser/Thr phosphorylation appears also to regulate cell division and peptidoglycan synthesis in Corynebacterium and Streptomyces. This review focuses on the proteins which have been identified as STPK substrates and involved in the synthesis of major cell envelope components and cell shape/division in actinomycetes. It is also intended to describe how phosphorylation affects the activity of peptidoglycan biosynthetic enzymes or cell division proteins.  相似文献   

7.
Peptidoglycan (PG), an essential stress‐bearing component of the bacterial cell wall, is synthesised by penicillin binding proteins (PBPs). PG synthesis at the cell division septum is necessary for constructing new poles of progeny cells, and cells cannot elongate without inserting new PG in the side‐wall. The cell division regulator GpsB appears to co‐ordinate PG synthesis at the septum during division and at the side‐wall during elongation in rod‐shaped and ovococcoid Gram‐positive bacteria. How the control over PG synthesis is exerted is unknown. In this issue of Molecular Microbiology, Rued et al. show that in pneumococci GpsB forms complexes with PBP2a and PBP2b, and that deletion or depletion of GpsB prevents closure of the septal ring that in itself is PBP2x‐dependent. Loss of GpsB can be suppressed by spontaneous mutations, including within the gene encoding the only PP2C Ser/Thr phosphatase in Streptococcus pneumoniae, indicating that GpsB plays a key – but unknown – role in protein phosphorylation in pneumococci. Rued et al. combine phenotypic and genotypic analyses of mutant strains that suggest discrepancies in the literature concerning GpsB might have arisen from accumulation of unidentified suppressors, highlighting the importance and power of strain validation and whole genome sequencing in this context.  相似文献   

8.
The Gram-positive bacterium Bacillus subtilis has a thick cell wall. The cell wall contains various proteins, both for secretion and for peptidoglycan (PG) maintenance. Penicillin-binding proteins for PG synthesis, PG hydrolases (autolysins), and regulator proteins for the autolysins are the known components of the PG maintenance system. YqgA was identified as an abundant protein attached to the cell wall of B. subtilis through a proteomics analysis. The YqgA protein was localized at cell division sites during the transition period between the exponential and the stationary phases. YqgA localization was affected by mutations in the dl-endopeptidases (DLEPases), which are the autolysins involved in cell morphogenesis. Furthermore, yqgA mutations on a background of defective DLEPases led to delays in cell growth and cell morphological changes. These results demonstrate that yqgA is genetically related to the genes encoding DLEPases involved in cell morphogenesis.  相似文献   

9.
The peptidoglycan (PG) sacculus, a meshwork of polysaccharide strands cross‐linked by short peptides, protects bacterial cells against osmotic lysis. To enlarge this covalently closed macromolecule, PG hydrolases must break peptide cross‐links in the meshwork to allow insertion of new glycan strands between the existing ones. In the rod‐shaped bacterium Bacillus subtilis, cell wall elongation requires two redundant endopeptidases, CwlO and LytE. However, it is not known how these potentially autolytic enzymes are regulated to prevent lethal breaches in the cell wall. Here, we show that the ATP‐binding cassette transporter‐like FtsEX complex is required for CwlO activity. In Escherichia coli, FtsEX is thought to harness ATP hydrolysis to activate unrelated PG hydrolases during cell division. Consistent with this regulatory scheme, B. subtilis FtsE mutants that are unable to bind or hydrolyse ATP cannot activate CwlO. Finally, we show that in cells depleted of both CwlO and LytE, the PG synthetic machinery continues moving circumferentially until cell lysis, suggesting that cross‐link cleavage is not required for glycan strand polymerization. Overall, our data support a model in which the FtsEX complex is a remarkably flexible regulatory module capable of controlling a diverse set of PG hydrolases during growth and division in different organisms.  相似文献   

10.
Proteins with LytM (Peptidase_M23) domains are broadly distributed in bacteria and have been implicated in a variety of important processes, including cell division and cell‐shape determination. Most LytM‐like proteins that have been structurally and/or biochemically characterized are metallo‐endopeptidases that cleave cross‐links in the peptidoglycan (PG) cell wall matrix. Notable exceptions are the Escherichia coli cell division proteins EnvC and NlpD. These LytM factors are not hydrolases themselves, but instead serve as activators that stimulate PG cleavage by target enzymes called amidases to promote cell separation. Here we report the structure of the LytM domain from EnvC, the first structure of a LytM factor implicated in the regulation of PG hydrolysis. As expected, the fold is highly similar to that of other LytM proteins. However, consistent with its role as a regulator, the active‐site region is degenerate and lacks a catalytic metal ion. Importantly, genetic analysis indicates that residues in and around this degenerate active site are critical for amidase activation in vivo and in vitro. Thus, in the regulatory LytM factors, the apparent substrate binding pocket conserved in active metallo‐endopeptidases has been adapted to control PG hydrolysis by another set of enzymes.  相似文献   

11.
Cell division in Gram‐negative organisms requires coordinated invagination of the multilayered cell envelope such that each daughter receives an intact inner membrane, peptidoglycan (PG) layer and outer membrane (OM). Here, we identify DipM, a putative LytM endopeptidase in Caulobacter crescentus, and show that it plays a critical role in maintaining cell envelope architecture during growth and division. DipM localized to the division site in an FtsZ‐dependent manner via its PG‐binding LysM domains. Although not essential for viability, ΔdipM cells exhibited gross morphological defects, including cell widening and filamentation, indicating a role in cell shape maintenance and division that we show requires its LytM domain. Strikingly, cells lacking DipM also showed OM blebbing at the division site, at cell poles and along the cell body. Cryo electron tomography of sacculi isolated from cells depleted of DipM revealed marked thickening of the PG as compared to wild type, which we hypothesize leads to loss of trans‐envelope contacts between components of the Tol–Pal complex. We conclude that DipM is required for normal envelope invagination during division and to maintain a sacculus of constant thickness that allows for maintenance of OM connections throughout the cell envelope.  相似文献   

12.
In order to maintain shape and withstand intracellular pressure, most bacteria are surrounded by a cell wall that consists mainly of the cross-linked polymer peptidoglycan (PG). The importance of PG for the maintenance of bacterial cell shape is underscored by the fact that, for various bacteria, several mutations affecting PG synthesis are associated with cell shape defects. In recent years, the application of fluorescence microscopy to the field of PG synthesis has led to an enormous increase in data on the relationship between cell wall synthesis and bacterial cell shape. First, a novel staining method enabled the visualization of PG precursor incorporation in live cells. Second, penicillin-binding proteins (PBPs), which mediate the final stages of PG synthesis, have been localized in various model organisms by means of immunofluorescence microscopy or green fluorescent protein fusions. In this review, we integrate the knowledge on the last stages of PG synthesis obtained in previous studies with the new data available on localization of PG synthesis and PBPs, in both rod-shaped and coccoid cells. We discuss a model in which, at least for a subset of PBPs, the presence of substrate is a major factor in determining PBP localization.  相似文献   

13.
How bacteria coordinate cell growth with division is not well understood. Bacterial cell elongation is controlled by actin–MreB while cell division is governed by tubulin–FtsZ. A ring‐like structure containing FtsZ (the Z ring) at mid‐cell attracts other cell division proteins to form the divisome, an essential protein assembly required for septum synthesis and cell separation. The Z ring exists at mid‐cell during a major part of the cell cycle without contracting. Here, we show that MreB and FtsZ of Escherichia coli interact directly and that this interaction is required for Z ring contraction. We further show that the MreB–FtsZ interaction is required for transfer of cell‐wall biosynthetic enzymes from the lateral to the mature divisome, allowing cells to synthesise the septum. Our observations show that bacterial cell division is coupled to cell elongation via a direct and essential interaction between FtsZ and MreB.  相似文献   

14.
Cell division and cell wall synthesis are tightly linked cellular processes for bacterial growth. A protoplast-type L-form Escherichia coli, strain LW1655F+, indicated that bacteria can divide without assembling a cell wall. However, the molecular basis of its phenotype remained unknown. To establish a first phenotype-genotype correlation, we analyzed its dcw locus, and other genes involved in division of E. coli. The analysis revealed defective ftsQ and mraY genes, truncated by a nonsense and a frame-shift mutation, respectively. Missense mutations were determined in the ftsA and ftsW products yielding amino-acid replacements at conserved positions. FtsQ and MraY, obviously nonfunctional in the L-form, are essential for cell division and cell wall synthesis, respectively, in all bacteria with a peptidoglycan-based cell wall. LW1655F+ is able to survive their loss-of-functions. This points to compensatory mechanisms for cell division in the absence of murein sacculus formation. Hence, this L-form represents an interesting model to investigate the plasticity of cell division in E. coli, and to demonstrate how concepts fundamental for bacterial life can be bypassed.  相似文献   

15.
Bacterial cell growth and cell division are highly complicated and diversified biological processes. In most rod-shaped bacteria, actin-like MreB homologues produce helicoidal structures along the cell that support elongation of the lateral cell wall. An exception to this rule is peptidoglycan synthesis in the rod-shaped actinomycete Corynebacterium glutamicum, which is MreB-independent. Instead, during cell elongation this bacterium synthesizes new cell-wall material at the cell poles whereas the lateral wall remains inert. Thus, the strategy employed by C. glutamicum to acquire a rod-shaped morphology is completely different from that of Escherichia coli or Bacillus subtilis. Cell division in C. glutamicum also differs profoundly by the apparent absence in its genome of homologues of spatial or temporal regulators of cell division, and its cell division apparatus seems to be simpler than those of other bacteria. Here we review recent advances in our knowledge of the C. glutamicum cell cycle in order to further understand this very different model of rod-shape acquisition.  相似文献   

16.
The role of the cell division protein FtsZ in bacterial cell wall (CW) synthesis is believed to be restricted to localizing proteins involved in the synthesis of the septal wall. In this issue of Molecular Microbiology, the groups of Christine Jacobs-Wagner and Waldemar Vollmer provide compelling evidence that in Caulobacter crescentus, FtsZ plays an additional role in CW synthesis in non-dividing cells. During elongation (cell growth) FtsZ is responsible for the incorporation of CW material in a zone at the midcell by recruiting MurG, a protein involved in peptidoglycan (PG) precursor synthesis. This resembles earlier findings of FtsZ mediated PG synthesis activity in Escherichia coli. A role of FtsZ in PG synthesis during elongation forces a rethink of the current model of CW synthesis in rod-shaped bacteria.  相似文献   

17.
The cell wall plays a central role in protecting bacteria from some environmental stresses, but not against all. In fact, in some cases, an elaborate cell envelope may even render the cell more vulnerable. For example, it contains molecules or complexes that bacteriophages recognize as the first step of host invasion, such as proteins and sugars, or cell appendages such as pili or flagella. In order to counteract phages, bacteria have evolved multiple escape mechanisms, such as restriction-modification, abortive infection, CRISPR/Cas systems or phage inhibitors. In this perspective review, we present the hypothesis that bacteria may have additional means to escape phage attack. Some bacteria are known to be able to shed their cell wall in response to environmental stresses, yielding cells that transiently lack a cell wall. In this wall-less state, the bacteria may be temporarily protected against phages, since they lack the essential entities that are necessary for phage binding and infection. Given that cell wall deficiency can be triggered by clinically administered antibiotics, phage escape could be an unwanted consequence that limits the use of phage therapy for treating stubborn infections.  相似文献   

18.
It is generally believed that plants "evolved a strategy of defending themselves from a phytopathogen attack" during evolution. This metaphor is used frequently, but it does not facilitate understanding of the mechanisms providing plant resistance to the invasion of foreign organisms and to other unfavorable external factors, as well as the role of these mechanisms in plant growth and development. Information on processes involving one of the plant resistance factors--polygalacturonase-inhibiting protein (PGIP)--is considered in this review. The data presented here indicate that PGIP, being an extracellular leucine-rich repeat-containing protein, performs important functions in the structure of plant cell wall. Amino acid residues participating in PGIP binding to homogalacturonan in the cell wall have been determined. The degree of methylation and the mode of distribution of homogalacturonan methyl groups are responsible for the formation of a complex structure, which perhaps determines the specificity of PGIP binding to pectin. PGIP is apparently one of the components of plant cell wall determining some of its mechanical properties; it is involved in biochemical processes related to growth, expansion, and maceration, and it influences plant morphology. Polygalacturonase (PG) is present within practically all plant tissues, but the manifestation of its activity varies significantly depending on physiological conditions in the tissue. Apparently, the regulation of PG functioning in apoplast significantly affects the development of processes associated with the modification of the structure of plant cell wall. PGIP can regulate PG activity through binding to homogalacturonan. The genetically determined structure of PGIP in plants determines the mode of its interaction with an invader and perhaps is one of the factors responsible for the set of pathogens causing diseases in a given plant species.  相似文献   

19.
Cell division in Gram‐negative bacteria involves the co‐ordinated invagination of the three cell envelope layers to form two new daughter cell poles. This complex process starts with the polymerization of the tubulin‐like protein FtsZ into a Z‐ring at mid‐cell, which drives cytokinesis and recruits numerous other proteins to the division site. These proteins are involved in Z‐ring constriction, inner‐ and outer‐membrane invagination, peptidoglycan remodelling and daughter cell separation. Three papers in this issue of Molecular Microbiology, from the teams of Lucy Shapiro, Martin Thanbichler and Christine Jacobs‐Wagner, describe a novel protein, called DipM for Division Involved Protein with LysM domains, that is required for cell division in Caulobacter crescentus. DipM localizes to the mid‐cell during cell division, where it is necessary for the hydrolysis of the septal peptidoglycan to remodel the cell wall. Loss of DipM results in severe defects in cell envelope constriction, which is deleterious under fast‐growth conditions. State‐of‐the‐art microscopy experiments reveal that the peptidoglycan is thicker and that the cell wall is incorrectly organized in DipM‐depleted cells compared with wild‐type cells, demonstrating that DipM is essential for reorganizing the cell wall at the division site, for envelope invagination and cell separation in Caulobacter.  相似文献   

20.
The bacterial dcw cluster is a group of genes involved in cell division and peptidoglycan synthesis. Comparison of the cluster across several bacterial genomes shows that its gene content and its gene order are conserved in distant bacterial lineages and, moreover, that, being most conserved in rod-shaped bacteria, the degree of conservation relates to bacterial morphology. We propose a model in which the selective pressure to maintain the cluster arises from the need to efficiently coordinate the processes of elongation and septation in rod-shaped bacteria. Gene order in the dcw cluster would be conserved as a result of mechanisms comprising: (i) a limited amount of peptidoglycan precursors required both for septation and elongation of the wall; (ii) co-translational assembly of the protein complexes involved in cell division and in the synthesis of the peptidoglycan precursors; and (iii) alternation in the cellular localization of the assembled complexes to participate either in the synthesis of the septal peptidoglycan and division, or in the synthesis of the lateral wall. The name genomic channeling is proposed for this model as it involves a genomic arrangement that could facilitate the assembly of specific protein complexes and their subsequent conveyance to specific locations in the crowded cytoplasm and the envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号