首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prions, the causative agent of chronic wasting disease (CWD) enter the environment through shedding of bodily fluids and carcass decay, posing a disease risk as a result of their environmental persistence. Plants have the ability to take up large organic particles, including whole proteins, and microbes. This study used wheat (Triticum aestivum L.) to investigate the uptake of infectious CWD prions into roots and their transport into aerial tissues. The roots of intact wheat plants were exposed to infectious prions (PrPTSE) for 24 h in three replicate studies with PrPTSE in protein extracts being detected by western blot, IDEXX and Bio-Rad diagnostic tests. Recombinant prion protein (PrPC) bound to roots, but was not detected in the stem or leaves. Protease-digested CWD prions (PrPTSE) in elk brain homogenate interacted with root tissue, but were not detected in the stem. This suggests wheat was unable to transport sufficient PrPTSE from the roots to the stem to be detectable by the methods employed. Undigested PrPTSE did not associate with roots. The present study suggests that if prions are transported from the roots to the stems it is at levels that are below those that are detectable by western blot, IDEXX or Bio-Rad diagnostic kits.  相似文献   

2.
The prevalence of variant Creutzfeldt-Jakob disease (vCJD) in the population remains uncertain, although it has been estimated that 1 in 2000 people in the United Kingdom are positive for abnormal prion protein (PrPTSE) by a recent survey of archived appendix tissues. The prominent lymphotropism of vCJD prions raises the possibility that some surgical procedures may be at risk of iatrogenic vCJD transmission in healthcare facilities. It is therefore vital that decontamination procedures applied to medical devices before their reprocessing are thoroughly validated. A current limitation is the lack of a rapid model permissive to human prions. Here, we developed a prion detection assay based on protein misfolding cyclic amplification (PMCA) technology combined with stainless-steel wire surfaces as carriers of prions (Surf-PMCA). This assay allowed the specific detection of minute quantities (10−8 brain dilution) of either human vCJD or ovine scrapie PrPTSE adsorbed onto a single steel wire, within a two week timeframe. Using Surf-PMCA we evaluated the performance of several reference and commercially available prion-specific decontamination procedures. Surprisingly, we found the efficiency of several marketed reagents to remove human vCJD PrPTSE was lower than expected. Overall, our results demonstrate that Surf-PMCA can be used as a rapid and ultrasensitive assay for the detection of human vCJD PrPTSE adsorbed onto a metallic surface, therefore facilitating the development and validation of decontamination procedures against human prions.  相似文献   

3.

Background

Variant Creutzfeldt-Jakob disease (vCJD) is a neurodegenerative infectious disorder, characterized by a prominent accumulation of pathological isoforms of the prion protein (PrPTSE) in the brain and lymphoid tissues. Since the publication in the United Kingdom of four apparent vCJD cases following transfusion of red blood cells and one apparent case following treatment with factor VIII, the presence of vCJD infectivity in the blood seems highly probable. For effective blood testing of vCJD individuals in the preclinical or clinical phase of infection, it is considered necessary that assays detect PrPTSE concentrations in the femtomolar range.

Methodology/Principal Findings

We have developed a three-step assay that firstly captures PrPTSE from infected blood using a plasminogen-coated magnetic-nanobead method prior to its serial amplification via protein misfolding cyclic amplification (PMCA) and specific PrPTSE detection by western blot. We achieved a PrPTSE capture yield of 95% from scrapie-infected material. We demonstrated the possibility of detecting PrPTSE in white blood cells, in buffy coat and in plasma isolated from the blood of scrapie-infected sheep collected at the pre-clinical stage of the disease. The test also allowed the detection of PrPTSE in human plasma spiked with a 10−8 dilution of vCJD-infected brain homogenate corresponding to the level of sensitivity (femtogram) required for the detection of the PrPTSE in asymptomatic carriers. The 100% specificity of the test was revealed using a blinded panel comprising 96 human plasma samples.

Conclusion/Significance

We have developed a sensitive and specific amplification assay allowing the detection of PrPTSE in the plasma and buffy coat fractions of blood collected at the pre-clinical phase of the disease. This assay represents a good candidate as a confirmatory assay for the presence of PrPTSE in blood of patients displaying positivity in large scale screening tests.  相似文献   

4.
The self-replicative conformation of misfolded prion proteins (PrP) is considered a major determinant for the seeding activity, infectiousness, and strain characteristics of prions in different host species. Prion-associated seeding activity, which converts cellular prion protein (PrPC) into Proteinase K-resistant, infectious PrP particles (PrPTSE), can be monitored in vitro by protein misfolding cyclic amplification (PMCA). Thus, PMCA has been established as a valuable analytical tool in prion research. Currently, however, it is under discussion whether prion strain characteristics are preserved during PMCA when parent seeds are amplified in PrPC substrate from the identical host species. Here, we report on the comparative structural analysis of parent and progeny (PMCA-derived) PrP seeds by an improved approach of sensitive infrared microspectroscopy. Infrared microspectroscopy revealed that PMCA of native hamster 263K scrapie seeds in hamster PrPC substrate caused conformational alterations in progeny seeds that were accompanied by an altered resistance to Proteinase K, higher sedimentation velocities in gradient ultracentrifugations, and a longer incubation time in animal bioassays. When these progeny seeds were propagated in hamsters, misfolded PrP from brain extracts of these animals showed mixed spectroscopic and biochemical properties from both parental and progeny seeds. Thus, strain modifications of 263K prions induced by PMCA seem to have been partially reversed when PMCA products were reinoculated into the original host species.  相似文献   

5.
Misfolding and aggregation of proteins are common pathogenic mechanisms of a group of diseases called proteinopathies. The formation and spread of proteinaceous lesions within and between individuals were first described in prion diseases and proposed as the basis of their infectious nature. Recently, a similar “prion-like” mechanism of transmission has been proposed in other neurodegenerative diseases such as Alzheimer''s disease. We investigated if misfolding and aggregation of corrupted prion protein (PrPTSE) are always associated with horizontal transmission of disease. Knock-in transgenic mice (101LL) expressing mutant PrP (PrP-101L) that are susceptible to disease but do not develop any spontaneous neurological phenotype were inoculated with (i) brain extracts containing PrPTSE from healthy 101LL mice with PrP plaques in the corpus callosum or (ii) brain extracts from mice overexpressing PrP-101L with neurological disease, severe spongiform encephalopathy, and formation of proteinase K-resistant PrPTSE. In all instances, 101LL mice developed PrP plaques in the area of inoculation and vicinity in the absence of clinical disease or spongiform degeneration of the brain. Importantly, 101LL mice did not transmit disease on serial passage, ruling out the presence of subclinical infection. Thus, in both experimental models the formation of PrPTSE is not infectious. These results have implications for the interpretation of tests based on the detection of protein aggregates and suggest that de novo formation of PrPTSE in the host does not always result in a transmissible prion disease. In addition, these results question the validity of assuming that all diseases due to protein misfolding can be transmitted between individuals.  相似文献   

6.
The structure of the infectious prion protein (PrPSc), which is responsible for Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, has escaped all attempts at elucidation due to its insolubility and propensity to aggregate. PrPSc replicates by converting the non-infectious, cellular prion protein (PrPC) into the misfolded, infectious conformer through an unknown mechanism. PrPSc and its N-terminally truncated variant, PrP 27–30, aggregate into amorphous aggregates, 2D crystals, and amyloid fibrils. The structure of these infectious conformers is essential to understanding prion replication and the development of structure-based therapeutic interventions. Here we used the repetitive organization inherent to GPI-anchorless PrP 27–30 amyloid fibrils to analyze their structure via electron cryomicroscopy. Fourier-transform analyses of averaged fibril segments indicate a repeating unit of 19.1 Å. 3D reconstructions of these fibrils revealed two distinct protofilaments, and, together with a molecular volume of 18,990 Å3, predicted the height of each PrP 27–30 molecule as ~17.7 Å. Together, the data indicate a four-rung β-solenoid structure as a key feature for the architecture of infectious mammalian prions. Furthermore, they allow to formulate a molecular mechanism for the replication of prions. Knowledge of the prion structure will provide important insights into the self-propagation mechanisms of protein misfolding.  相似文献   

7.
Prion diseases are fatal neurodegenerative disorders caused by an aberrant accumulation of the misfolded cellular prion protein (PrPC) conformer, denoted as infectious scrapie isoform or PrPSc. In inherited human prion diseases, mutations in the open reading frame of the PrP gene (PRNP) are hypothesized to favor spontaneous generation of PrPSc in specific brain regions leading to neuronal cell degeneration and death. Here, we describe the NMR solution structure of the truncated recombinant human PrP from residue 90 to 231 carrying the Q212P mutation, which is believed to cause Gerstmann-Sträussler-Scheinker (GSS) syndrome, a familial prion disease. The secondary structure of the Q212P mutant consists of a flexible disordered tail (residues 90–124) and a globular domain (residues 125–231). The substitution of a glutamine by a proline at the position 212 introduces novel structural differences in comparison to the known wild-type PrP structures. The most remarkable differences involve the C-terminal end of the protein and the β2–α2 loop region. This structure might provide new insights into the early events of conformational transition of PrPC into PrPSc. Indeed, the spontaneous formation of prions in familial cases might be due to the disruptions of the hydrophobic core consisting of β2–α2 loop and α3 helix.  相似文献   

8.
《朊病毒》2013,7(2):49-51
Understanding the mechanism by which prion infectivity is encoded by the misfolded protein PrPSc remains a high priority within the prion field. Work from several groups has indicated cellular cofactors may be necessary to form infectious prions in vitro. The identity of endogenous prion conversion cofactors is currently unknown, but may include polyanions and/or lipid molecules. In a recent study, we manufactured infectious hamster prions containing purified PrPSc, co-purified lipid, and a synthetic photocleavable polyanion. The polyanion was incorporated into infectious PrPSc complexes, and then specifically degraded by exposure to ultraviolet light. Light-induced in situ degradation of the incorporated polyanion had no effect on the specific infectivity of the samples as determined by end-point dilution sPMCA and scrapie incubation time assays. Furthermore, prion strain properties were not changed by polyanion degradation, suggesting that intact polyanions are not required to maintain the infectious properties of hamster prions. Here, we review these results and discuss the potential roles cofactors might play in encoding prion infectivity and/or strain properties.  相似文献   

9.
10.
Understanding the mechanism by which prion infectivity is encoded by the misfolded protein PrPSc remains a high priority within the prion field. Work from several groups has indicated cellular cofactors may be necessary to form infectious prions in vitro. The identity of endogenous prion conversion cofactors is currently unknown, but may include polyanions and/or lipid molecules. In a recent study, we manufactured infectious hamster prions containing purified PrPSc, co-purified lipid and a synthetic photocleavable polyanion. The polyanion was incorporated into infectious PrPSc complexes and then specifically degraded by exposure to ultraviolet light. Light-induced in situ degradation of the incorporated polyanion had no effect on the specific infectivity of the samples as determined by end-point dilution sPMCA and scrapie incubation time assays. Furthermore, prion strain properties were not changed by polyanion degradation, suggesting that intact polyanions are not required to maintain the infectious properties of hamster prions. Here, we review these results and discuss the potential roles cofactors might play in encoding prion infectivity and/or strain properties.Key words: prion, polyanion, photodegradation, incorporation, PrPThe prion diseases are infectious diseases that are believed to be caused by the conformational change of a host-encoded protein, PrPC, to a pathogenic conformer PrPSc. The controversial “protein-only” hypothesis posits that the infectious agent is composed solely of the misfolded conformer PrPSc. There have been many attempts to create infectious prions from purified recombinant PrP protein. However, all of the samples generated in these experiments display relatively low levels of specific infectivity when inoculated intracerebrally into wild-type animals.14 Several lines of evidence suggest that cellular cofactors, such as polyanionic molecules, facilitate the formation of the infectious conformation.514The first in vitro PrP conversion assay used radiolabeled PrPC substrate purified from mammalian cells mixed with a stoichiometric excess of unlabeled PrPSc. This cell free assay produced a protease-resistant, radioactive product termed PrP-res.15 These pioneering studies showed for the first time that PrP could be specifically transformed in vitro, but the yield using purified substrates was low. Using a modification of the cell free assay in which crude brain homogenate replaced purified PrPC as the substrate, our laboratory was able to amplify PrPSc 6-fold over input prion seed, suggesting that non-PrP constituents of crude brain homogenate might be required for efficient PrPSc formation in vitro.16 Using this system, we discovered that nuclease treatment of hamster brain homogenates abolished PrPSc amplification in vitro, and that reconstituting the nuclease-treated reactions with purified mammalian RNA rescued the amplification process.5 PrPSc amplification could also be obtained by adding certain synthetic homopolymeric nucleic acids to immunopurified PrPC.6 Taken together, these surprising results argue that non-proteinaceous, host-encoded cofactors such as RNA molecules might facilitate prion conversion through a structural (as opposed to encoding) mechanism.8 The high efficiency of the serial protein misfolding amplification (sPMCA) technique developed by Soto and colleagues has allowed researchers to amplify prion infectivity as well as PrPSc molecules.17,18 Using sPMCA, we showed that infectious PrPSc molecules could be formed from immunopurified PrPC, co-purified lipid and synthetic RNA molecules. Moreover, even unseeded reactions containing these defined components were capable of generating prions with high specific infectivity in a prion-free environment, showing for the first time that wild type infectious prions could be produced de novo.7Additional studies in this purified system showed that PrPC molecules undergo a time-dependent conformational change upon interaction with RNA. When this change occurs, PrPC adopts an intermediate conformation that mimics some of the characteristics of PrPSc, such as detergent insolubility and reactivity to PrPSc-specific antibodies, but remains sensitive to proteinase K digestion.8 When incubated with a heterogeneous size mixture of homopolymeric [32P] poly(A) molecules during PMCA, hamster PrPC molecules incorporated a specific size subset (1–2.5 kb) of the RNA molecules into nuclease-resistant complexes. The physical interaction between RNA and PrPSc was confirmed by fluorescence microscopy experiments showing that fluorescein-labeled RNA molecules became integrated into nuclease-resistant complexes with PrPSc molecules. Interestingly, neuropathologic analysis of scrapie-infected hamsters revealed that endogenous RNA molecules stained with acridine orange co-localized with large extracellular PrP aggregates.8 Taken together, these studies suggest that PrP interacts specifically with polyanionic molecules in vitro and in situ, and raised the possibility that polyanions might be a necessary component of infectious prions.Jeong et al. investigated whether endogenous RNA molecules might be required for prion infectivity by treating scrapie brain homogenates with LiAlH4 (lithium aluminum hydride), a strong reducing agent that can cleave the phosphodiester bond in RNA molecules.19 Interestingly, treatment of hamster scrapie brain homogenates with LiAlH4 caused an ∼3-fold increase in scrapie incubation period measured by bioassay, suggesting that RNA may be an important component of infectious prions and therefore may play a role in stabilizing PrPSc structure. However, LiAlH4 is not a specific reagent, and can damage a variety of other macromolecules, including proteins. Therefore, the decrease in infectivity measured in this study cannot be specifically ascribed to degradation of the polyanion.19We recently reinvestigated the potential role of polyanion in maintaining prion infectivity by using a more targeted approach.20 Specifically, we utilized a synthetic oligonucleotide that could be selectively hydrolyzed by treatment with ultraviolet (UV) light. The photocleavable oligonucleotide was synthesized by inserting a photocleavable linker in between every fives bases of a poly(dT) 100-mer. Exposure to UV light quantitatively converted the oligonucleotide into five base fragments. During incubation with excess recombinant PrP, the photocleavable oligonucleotide became incorporated into a nuclease-resistant nucleoprotein complex, but remained sensitive to photocleavage. This novel system allowed us to study the role of a polyanion molecule incorporated into infectious prions in situ (Fig. 1).Open in a separate windowFigure 1Selective photodegradation of an incorporated polyanion in situ.We used PMCA to create PrPSc molecules that contained either the photocleavable oligonucleotide or a non-photocleavable control analog. After treatment with UV light, the infectivity of each sample was measured using a combination of end-point dilution sPMCA and animal bioassays. The end-point dilution PMCA assay showed a ∼1 log decrease in the seeding ability of PrPSc samples treated with UV light, but this effect was not specific since a similar decrease was measured in samples containing the control nucleic acid. In the bioassay, there was no change in the incubation periods of animals inoculated with PrPSc samples treated either in the presence or absence of UV light. Neuropathological analysis of inoculated animals also showed no differences in neurotropism between the two groups. Degradation of the nucleic acid had no effect on the molecular migration or structural stability of PrPSc samples as determined by SDS-PAGE and urea denaturation assays, respectively. There were also no differences in the molecular migration or glycosylation profile of the PrPSc molecules produced in the brains of animals inoculated with light- versus mock-treated inocula, and urea denaturation assays showed no differences in PrPSc stability. These results collectively demonstrate that the presence of intact polyanion molecules is not required to maintain the infectious, biochemical or strain properties prions generated in vitro.These results are consistent with the stringent “protein-only” hypothesis, but do not yet provide definitive proof. The purified PrPC molecules used as substrate in these experiments contain a stoichiometric amount of co-purified lipid7 that may play a role in the generation of prion infectivity.9 Also, although the efficacy of photocleavage conditions was carefully confirmed in control reactions, it is possible that some intact oligonucleotide survived UV treatment at a level below detection. Alternatively, the remnant five base nucleic acid fragments may remain incorporated within the PrPSc molecule and play a role in maintaining the infectious conformation. Even in this scenario, our results would place a significant geometric constraint on the role of incorporated polyanion. While polyanions ≥40 bases facilitate the formation infectious prions in vitro,8 our results suggest that polyanions >5 bases are not necessary to maintain the infectious properties the prion. The exact role polyanions play in prion formation is still unclear, but it is tempting to speculate that they may serve as scaffolds that facilitate prion conversion by (a) bringing PrPC and PrPSc seed together for templating to occur or (b) acting as a catalyst which is necessary to reduce the activation energy of refolding to the PrPSc form. Future studies will need to be performed to differentiate between these two hypotheses. It is also possible that polyanions are completely dispensable for maintaining PrPSc structure, and it is the co-purified lipid molecules that serve this role instead. Consistent with this possibility, we recently discovered that mouse PrPSc can be serially propagated in vitro in the absence of nucleic acids.21 Finally, it is possible that either polyanions or lipids can function equally well as stabilizers of the infectious PrPSc conformation. More work is required to distinguish between these possibilities.Generating high levels of specific infectivity solely using purified recombinant PrP remains the ultimate proof of the “protein-only” hypothesis. To date, evidence suggests that cellular cofactors are necessary to create infectious prions but may or may not be required to maintain infectivity once formed. Significantly, Wang et al. showed that bona fide prions could be formed from recombinant PrP, synthetic lipid and RNA molecules.9 Although no completely pure preparations of misfolded PrP possessing significant levels of specific infectivity have yet been produced, it should eventually be possible to produce such a preparation if the “protein-only” hypothesis is correct. On the other hand, a rigorous refutation of the hypothesis would require demonstrating that PrPSc and infectivity can be dissociated.  相似文献   

11.
The clinicopathological phenotypes of sporadic Creutzfeldt-Jakob disease (sCJD) correlate with the allelotypes (M or V) of the polymorphic codon 129 of the human prion protein (PrP) gene and the electrophoretic mobility patterns of abnormal prion protein (PrPSc). Transmission of sCJD prions to mice expressing human PrP with a heterologous genotype (referred to as cross-sequence transmission) results in prolonged incubation periods. We previously reported that cross-sequence transmission can generate a new prion strain with unique transmissibility, designated a traceback phenomenon. To verify experimentally the traceback of sCJD-VV2 prions, we inoculated sCJD-VV2 prions into mice expressing human PrP with the 129M/M genotype. These 129M/M mice showed altered neuropathology and a novel PrPSc type after a long incubation period. We then passaged the brain homogenate from the 129M/M mouse inoculated with sCJD-VV2 prions into other 129M/M or 129V/V mice. Despite cross-sequence transmission, 129V/V mice were highly susceptible to these prions compared to the 129M/M mice. The neuropathology and PrPSc type of the 129V/V mice inoculated with the 129M/M mouse-passaged sCJD-VV2 prions were identical to those of the 129V/V mice inoculated with sCJD-VV2 prions. Moreover, we generated for the first time a type 2 PrPSc-specific antibody in addition to type 1 PrPSc-specific antibody and discovered that drastic changes in the PrPSc subpopulation underlie the traceback phenomenon. Here, we report the first direct evidence of the traceback in prion infection.Creutzfeldt-Jakob disease (CJD) is a lethal transmissible neurodegenerative disease caused by an abnormal isoform of prion protein (PrPSc), which is converted from the normal cellular isoform (PrPC) (1, 23). The genotype (M/M, M/V, or V/V, where M and V are allelotypes) at polymorphic codon 129 of the human prion protein (PrP) gene and the type (type 1 or type 2) of PrPSc in the brain are major determinants of the clinicopathological phenotypes of sporadic CJD (sCJD) (15-18). Type 1 and type 2 PrPSc are distinguishable according to the size of the proteinase K-resistant core of PrPSc (PrPres) (21 and 19 kDa, respectively), reflecting differences in the proteinase K cleavage site (at residues 82 and 97, respectively) (15, 18). According to this molecular typing system, sCJD can be classified into six subgroups (MM1, MM2, MV1, MV2, VV1, or VV2).The homology of the PrP genes between inoculated animals and the inoculum determines the susceptibility to prion infection. Transmission of sCJD prions to mice expressing human PrP with a nonhomologous genotype (referred to as cross-sequence transmission) results in a relatively long incubation period (10, 12). Meanwhile, the cross-sequence transmission can generate a new prion strain. Transmission of sCJD-VV2 prions to mice expressing human PrP with the 129M/M genotype generates unusual PrPres intermediate in size between type 1 and type 2 (10). We have designated this unusual PrPres with an upward size shift (Sh+) from the inoculated type 2 template MM[VV2]2Sh+ PrPres, where the notation is of the following form: host genotype [type of inoculated prion] type of generated PrPres.Similar to the MM[VV2]2Sh+ PrPres, the intermediate-sized PrPres has been observed in the plaque-type of dura mater graft-associated CJD (p-dCJD) (10, 13). Furthermore, a transmission study using p-dCJD prions revealed that PrP-humanized mice with the 129V/V genotype were highly susceptible to p-dCJD prions despite cross-sequence transmission (10). In addition, these 129V/V mice inoculated with p-dCJD prions produced type 2 PrPres (10). These findings suggest that p-dCJD could be caused by cross-sequence transmission of sCJD-VV2 prions to individuals with the 129M/M genotype. We have designated this phenomenon “traceback.” The traceback phenomenon was discovered for the first time by a transmission study using variant CJD (vCJD) prions (2). Mice expressing bovine PrP were highly susceptible to vCJD prions because vCJD was caused by cross-sequence transmission of bovine spongiform encephalopathy prions to human. These findings suggest that a traceback study can be a powerful tool to identify the origin of prions (2, 10, 11). However, the traceback phenomenon has not been verified experimentally despite the abundant circumstantial evidence described above.To verify the traceback of sCJD-VV2 prions, we inoculated sCJD-VV2 prions into PrP-humanized mice with the 129M/M genotype as an experimental model of p-dCJD. Thereafter, we inoculated these MM[VV2]2Sh+ prions into PrP-humanized mice with the 129M/M or 129V/V genotype and compared the incubation period, neuropathology, and the type of PrPres in the brain. Here, we report the first direct evidence of the traceback in prion infection.  相似文献   

12.
Prions enter the environment from infected hosts, bind to a wide range of soil and soil minerals, and remain highly infectious. Environmental sources of prions almost certainly contribute to the transmission of chronic wasting disease in cervids and scrapie in sheep and goats. While much is known about the introduction of prions into the environment and their interaction with soil, relatively little is known about prion degradation and inactivation by natural environmental processes. In this study, we examined the effect of repeated cycles of drying and wetting on prion fitness and determined that 10 cycles of repeated drying and wetting could reduce PrPSc abundance, PMCA amplification efficiency and extend the incubation period of disease. Importantly, prions bound to soil were more susceptible to inactivation by repeated cycles of drying and wetting compared to unbound prions, a result which may be due to conformational changes in soil-bound PrPSc or consolidation of the bonding between PrPSc and soil. This novel finding demonstrates that naturally-occurring environmental process can degrade prions.  相似文献   

13.
Recent studies indicate that enzymatic treatment of the infectious PrPSc prion under defined conditions could be an effective method to inactivate infectious prions. However, field studies on prion inactivation are hampered by restricted access to the dangerous and expensive infectious prion material. Hence, a surrogate marker for infectious prions would facilitate more practical prion inactivation research. Protein Sup35p, a non-pathogenic prion-like protein produced in yeast, has physical and chemical properties very similar to the BSE prion. Sup35NM-His6, a derivative of Sup35p, was produced from Escherichia coli by gene cloning, protein expression and purification. Monomeric Sup35NM-His6 is soluble. When aggregated, it forms prion-like amyloid, insoluble and resistant to proteases. Similar to BSE prion, a pre-heating step renders this protein digestible by proteinase K, subtilisin and keratinase but not collagenase and elastase. These results indicated that Sup35NM-His6, being simple and inexpensive to produce and non-pathogenic, can be a potential ideal candidate of prion surrogate protein in the study of prion inactivation and prevention of prion diseases.  相似文献   

14.
Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in vCJD-infected human and macaque blood.  相似文献   

15.
Prions are self-propagating proteinaceous infectious agents capable of transmitting disease in the absence of nucleic acids. The nature of the infectious agent in prion diseases has been at the center of passionate debate for the past 30 years. However, recent reports on the in vitro generation of prions have settled all doubts that the misfolded prion protein (PrPSc) is the key component in propagating infectivity. However, we still do not understand completely the mechanism of prion replication and whether or not other cellular factors besides PrPSc are required for infectivity. In this article, we discuss these recent reports under the context of the protein-only hypothesis and their implications.Key words: prions, infectivity, protein-only hypothesis, protein misfolding cyclic amplification, synthetic prion  相似文献   

16.
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative disorders characterized by the accumulation in the CNS of a pathological conformer (PrPTSE) of the host‐encoded cellular prion protein (PrPC). PrPTSE has a central role in the pathogenesis of the disease but other factors are likely involved in the pathological process. In this work we employed a multi‐step proteomic approach for the identification of proteins that co‐purify with the protease‐resistant core of PrPTSE (PrP27‐30) extracted from brains of hamsters with experimental scrapie. We identified ferritin, calcium/calmodulin‐dependent protein kinase α type II, apolipoprotein E, and tubulin as the major components associated with PrP27‐30 but also trace amounts of actin, cofilin, Hsp90α, the γ subunit of the T‐complex protein 1, glyceraldehyde 3‐phosphate dehydrogenase, histones, and keratins. Whereas some of these proteins (tubulin and ferritin) are known to bind PrP, other proteins (calcium/calmodulin‐dependent protein kinase α type II, Hsp90α) may associate with PrPTSE fibrils during disease. Apolipoprotein E and actin have been previously observed in association with PrPTSE, whereas cofilin and actin were shown to form abnormal rods in the brain of patients with Alzheimer disease. The roles of these proteins in the development of brain lesions are still unclear and further work is needed to explain their involvement in the pathogenesis of TSEs.  相似文献   

17.
Prions are infectious agents that cause the inevitably fatal transmissible spongiform encephalopathy (TSE) in animals and humans9,18. The prion protein has two distinct isoforms, the non-infectious host-encoded protein (PrPC) and the infectious protein (PrPSc), an abnormally-folded isoform of PrPC 8.One of the challenges of working with prion agents is the long incubation period prior to the development of clinical signs following host inoculation13. This traditionally mandated long and expensive animal bioassay studies. Furthermore, the biochemical and biophysical properties of PrPSc are poorly characterized due to their unusual conformation and aggregation states.PrPSc can seed the conversion of PrPC to PrPScin vitro14. PMCA is an in vitro technique that takes advantage of this ability using sonication and incubation cycles to produce large amounts of PrPSc, at an accelerated rate, from a system containing excess amounts of PrPC and minute amounts of the PrPSc seed19. This technique has proven to effectively recapitulate the species and strain specificity of PrPSc conversion from PrPC, to emulate prion strain interference, and to amplify very low levels of PrPSc from infected tissues, fluids, and environmental samples6,7,16,23 .This paper details the PMCA protocol, including recommendations for minimizing contamination, generating consistent results, and quantifying those results. We also discuss several PMCA applications, including generation and characterization of infectious prion strains, prion strain interference, and the detection of prions in the environment.  相似文献   

18.
Prions are the proteinaceous infectious agents responsible for Transmissible Spongiform Encephalopathies. Compelling evidence supports the hypothesis that prions are composed exclusively of a misfolded version of the prion protein (PrPSc) that replicates in the body in the absence of nucleic acids by inducing the misfolding of the cellular prion protein (PrPC). The most common form of human prion disease is sporadic, which appears to have its origin in a low frequency event of spontaneous misfolding to generate the first PrPSc particle that then propagates as in the infectious form of the disease. The main goal of this study was to mimic an early event in the etiology of sporadic disease by attempting de novo generation of infectious PrPSc in vitro. For this purpose we analyzed in detail the possibility of spontaneous generation of PrPSc by the protein misfolding cyclic amplification (PMCA) procedure. Under standard PMCA conditions, and taking precautions to avoid cross-contamination, de novo generation of PrPSc was never observed, supporting the use of the technology for diagnostic applications. However, we report that PMCA can be modified to generate PrPSc in the absence of pre-existing PrPSc in different animal species at a low and variable rate. De novo generated PrPSc was infectious when inoculated into wild type hamsters, producing a new disease phenotype with unique clinical, neuropathological and biochemical features. Our results represent additional evidence in support of the prion hypothesis and provide a simple model to study the mechanism of sporadic prion disease. The findings also suggest that prion diversity is not restricted to those currently known, and that likely new forms of infectious protein foldings may be produced, resulting in novel disease phenotypes.  相似文献   

19.
Prions arise when the cellular prion protein (PrPC) undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrPSc. Frequently, PrPSc is protease-resistant but protease-sensitive (s) prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec) PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164), denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174) did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrPSc and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600–750 days in Tg4053 mice, which exhibited sPrPSc. These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrPSc.  相似文献   

20.
The production of O2(a1Δg) singlet oxygen in non-self-sustained discharges in pure oxygen and mixtures of oxygen with noble gases (Ar or He) was studied experimentally. It is shown that the energy efficiency of O2(a1Δg production can be optimized with respect to the reduced electric field E/N. It is shown that the optimal E/N values correspond to electron temperatures of 1.2–1.4 eV. At these E/N values, a decrease in the oxygen percentage in the mixture leads to an increase in the excitation rate of singlet oxygen because of the increase in the specific energy deposition per O2 molecule. The onset of discharge instabilities not only greatly reduces the energy efficiency of singlet oxygen production but also makes it impossible to achieve high energy deposition in a non-self-sustained discharge. A model of a non-self-sustained discharge in pure oxygen is developed. It is shown that good agreement between the experimental and computed results for a discharge in oxygen over a wide range of reduced electric fields can be achieved only by taking into account the ion component of the discharge current. The cross section for the electron-impact excitation of O2(a1Δg and the kinetic scheme of the discharge processes with the participation of singlet oxygen are verified by comparing the experimental and computed data on the energy efficiency of the production of O2(a1Δg and the dynamics of its concentration. It is shown that, in the dynamics of O2(a1Δg molecules in the discharge afterglow, an important role is played by their deexcitation in a three-body reaction with the participation of O(3P) atoms. At high energy depositions in a non-self-sustained discharge, this reaction can reduce the maximal attainable concentration of singlet oxygen. The effect of a hydrogen additive to an Ar: O2 mixture is analyzed based on the results obtained using the model developed. It is shown that, for actual electron beam current densities, a significant energy deposition in a non-self-sustained discharge in the mixtures under study can be achieved due to the high rate of electron detachment from negative ions. In this case, however, significant heating of the mixture can lead to a rapid quenching of O2(a1Δg molecules by atomic hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号