首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Due to specific structural organization at the molecular level, several biomolecules (e.g., collagen, myosin etc.) which are strong generators of second harmonic generation (SHG) signals, exhibit unique responses depending on the polarization of the excitation light. By using the polarization second harmonic generation (p‐SHG) technique, the values of the second order susceptibility components can be used to differentiate the types of molecule, which cannot be done by the use of a standard SHG intensity image. In this report we discuss how to implement p‐SHG on a commercial multiphoton microscope and overcome potential artifacts in susceptibility (χ) image. Furthermore we explore the potential of p‐SHG microscopy by applying the technique to different types of tissue in order to determine corresponding reference values of the ratio of second‐order χ tensor elements. These values may be used as a bio‐marker to detect any structural alterations in pathological tissue for diagnostic purposes.

The SHG intensity image (red) in ( a ) shows the distribution of collagen fibers in ovary tissue but cannot determine the type of collagen fiber. However, the histogram distribution ( b ) for the values of the χ tensor element ratio can be used to quantitatively identify the types of collagen fibers.  相似文献   


2.
Polarization‐dependent second‐harmonic generation (P‐SHG) microscopy is used to characterize molecular nonlinear optical properties of collagen and determine a three‐dimensional (3D) orientation map of collagen fibers within a pig tendon. C6 symmetry is used to determine the nonlinear susceptibility tensor components ratios in the molecular frame of reference and , where the latter is a newly extracted parameter from the P‐SHG images and is related to the chiral structure of collagen. The is observed for collagen fibers tilted out of the image plane, and can have positive or negative values, revealing the relative polarity of collagen fibers within the tissue. The P‐SHG imaging was performed using a linear polarization‐in polarization‐out (PIPO) method on thin sections of pig tendon cut at different angles. The nonlinear chiral properties of collagen can be used to construct the 3D organization of collagen in the tissue and determine the orientation‐independent molecular susceptibility ratios of collagen fibers in the molecular frame of reference.   相似文献   

3.
Polarization‐resolved second‐harmonic generation (P‐SHG) microscopy is a technique capable of characterizing nonlinear optical properties of noncentrosymmetric biomaterials by extracting the nonlinear susceptibility tensor components ratio , with z‐axis parallel and x‐axis perpendicular to the C6 symmetry axis of molecular fiber, such as a myofibril or a collagen fiber. In this paper, we present two P‐SHG techniques based on incoming and outgoing circular polarization states for a fast extraction of : A dual‐shot configuration where the SHG circular anisotropy generated using incident right‐ and left‐handed circularly‐polarized light is measured; and a single‐shot configuration for which the SHG circular anisotropy is measured using only one incident circular polarization state. These techniques are used to extract the of myosin fibrils in the body wall muscles of Drosophila melanogaster larva. The results are in good agreement with values obtained from the double Stokes‐Mueller polarimetry. The dual‐ and single‐shot circular anisotropy measurements can be used for fast imaging that is independent of the in‐plane orientation of the sample. They can be used for imaging of contracting muscles, or for high throughput imaging of large sample areas.  相似文献   

4.
Several specific alterations of the extracellular matrix can be considered a distinctive hallmark of cancer. In particular, a different morphology of the collagen scaffold is frequently found within the peritumoural environment. In this study, we report about a significant difference in the ultrastructural organization of collagen at the supra‐molecular level between the perilesional scaffold and the tumour area in human breast carcinoma samples. In particular, we demonstrated that polarization‐resolved second‐harmonic generation (P‐SHG) microscopy is able to link the altered collagen architecture at the ultrastructural level found in perilesional tissue with a different organization of collagen fibrils at the molecular level.  相似文献   

5.
Summary The amino acid (aa) sequences of the polypeptides encoded by five collagen genes of the nematodeCaenorhabditis elegans, col-6, col-7 (partial),col-8, col-14, andcol-19, were determined. These collagen polypeptides, as well as those encoded by the previously sequencedC. elegans collagen genescol-1 andcol-2, share a common organization into five domains: an amino-terminal leader, a short (30–33 aa) (Gly-X-Y) n domain, a non(Gly-X-Y) spacer, a long (127–132 aa) (Gly-X-Y) n domain, and a short carboyl-terminal domain. The domain organizations and intron positions of these polypeptides were compared with those of the polypeptides encoded byDrosophila andStrongylocentrotus type IV, and vertebrate types I, II, III, IV, and IX collagen genes; theC. elegans collagen polypeptides are most similar to the vertebrate type IX collagents. It is suggested that the collagen gene family comprises two divergent subfamilies, one of which includes the vertebrate interstitial collagen genes, and the other of which includes the invertebrate collagen genes and the vertebrate type IV and type IX collagen genes. Only the vertebrate interstitial collagen genes display clear evidence of evolution via the tandem duplication of a 54-bp exon.  相似文献   

6.
When 19-day fetal rat triceps muscle was cultured for 7 to 14 days upon decalcified, sequentially extracted adult rat bone, cartilage formed within clefts and vascular spaces of the decalcified bone. The bone substrata were prepared by extracting tibias and femurs of Sprague-Dawley rats with 1:1 chloroform:methanol, 0.6 N HCl, 2 M CaCl2, 0.6 M EDTA, 8 M LiCl, and H2O at 56°C. The culture medium used was CMRL 1066 with 15% newborn calf serum. During cultivation, fibroblastic mesenchymal cells migrated out of muscle and into bone crevices where they secreted a cartilaginous matrix composed of thin, randomly dispersed collagen fibrils and proteoglycan granules. The latter are characteristic for cartilage matrix. Extracted bone matrix contained mature collagen fibrils, some of which retained their typical 640-Å banding. Other collagen fibrils were partially disaggregated and expanded to reveal component 50-Å-thick, beaded micro fibrils. Such an expansion of collagen fibrils is known to result from exposure to proteoglycan solvents such as 2 M CaCl2. The decalcified bone matrix contained many residual devitalized cells and cell fragments which often were seen in close proximity to chondrifying mesenchymal cells. This finding indicates the possibility that residual cellular material could play a role in stimulating cartilage development.  相似文献   

7.
8.
Second harmonic generation (SHG) multiphoton imaging can visualize fibrillar collagen in tissues. SHG has previously shown that fibrillar collagen is altered in various types of cancer. In the present study, in vivo high resolution SHG multi‐photon tomography in living mice was used to study the relationship between cancer cells and intratumor collagen fibrils. Using green fluorescent protein (GFP) to visualize cancer cells and SHG to image collagen, we demonstrated that collagen fibrils provide a scaffold for cancer cells to align themselves and acquire optimal shape. These results suggest a new paradigm for a stromal element of tumors: their role in maintaining anchorage and shape of cancer cells that may enable them to proliferate. J. Cell. Biochem. 114: 99–102, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Gliadin, a protein present in wheat, rye, and barley, undergoes incomplete enzymatic degradation during digestion, producing an immunogenic 33‐mer peptide, LQLQPF(PQPQLPY)3PQPQPF. The special features of 33‐mer that provoke a break in its tolerance leading to gliadin sensitivity and celiac disease remains elusive. Herein, it is reported that 33‐mer gliadin peptide was not only able to fold into polyproline II secondary structure but also depending on concentration resulted in conformational transition and self‐assembly under aqueous condition, pH 7.0. A 33‐mer dimer is presented as one initial possible step in the self‐assembling process obtained by partial electrostatics charge distribution calculation and molecular dynamics. In addition, electron microscopy experiments revealed supramolecular organization of 33‐mer into colloidal nanospheres. In the presence of 1 mM sodium citrate, 1 mM sodium borate, 1 mM sodium phosphate buffer, 15 mM NaCl, the nanospheres were stabilized, whereas in water, a linear organization and formation of fibrils were observed. It is hypothesized that the self‐assembling process could be the result of the combination of hydrophobic effect, intramolecular hydrogen bonding, and electrostatic complementarity due to 33‐mer's high content of proline and glutamine amino acids and its calculated nonionic amphiphilic character. Although, performed in vitro, these experiments have revealed new features of the 33‐mer gliadin peptide that could represent an important and unprecedented event in the early stage of 33‐mer interaction with the gut mucosa prior to onset of inflammation. Moreover, these findings may open new perspectives for the understanding and treatment of gliadin intolerance disorders. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 96–106, 2014.  相似文献   

10.
The magnetic resonance (MR) appearance of the weight-bearing ("loaded") and not-weight-bearing ("unloaded") regions in T(2)-weighted images of pig articular cartilage is different. On the hypothesis that this difference may be ascribed, at least in part, to a different collagen fibre organization in the two regions, this organization was studied using biochemical, histological, and X-ray diffraction methods. While the mean concentrations of collagen and of its cross-links were the same in the two regions, a regular small angle X-ray diffraction pattern was observed only for the habitually "loaded" tissue. It was also seen by light microscopy that the four typical functional zones were well displayed in the "loaded" cartilage whereas they were not clearly depicted in the "unloaded" tissue. Collagen presented a high concentration of fibrils forming an intricate and dense meshwork at the surface of both "loaded" and "unloaded" cartilage. A second zone of high collagen concentration was present at the upper layer of the deep zone of "loaded" cartilage. By contrast, this lamina of highly concentrated fibrils was lacking in "unloaded" cartilage and collagen fibrils appear thinner. Our study proves that the organization of collagen fibres is different for the "loaded" and "unloaded" regions of articular cartilage. It also suggests that this different organization may influence the MR appearance of the tissue. J. Exp. Zool. 287:346-352, 2000.  相似文献   

11.
Using nonlinear optical microscopy of coherent antistokes Raman scattering (CARS), second harmonic generation (SHG) and two‐photo excitation fluorescence, we in situ observed how the collagen and the bone grow synergistically and competitively during nascent biological evolution. The and ions were first observed to be dispersed in the liquid environment, and the collagen was observed 2 days later. With the help of the collagen, the and ions gradually moved closer to the collagen, and then the bone was produced in the forms of CaCO3 and CaPO3. When the bone was completed with the help of the collagen, the collagen gradually disappeared. The biological evolution of snail bone and collagen can be well revealed by CARS and SHG, and in addition, the biological evolution of structure and morphology can be clearly observed day by day.  相似文献   

12.
Native collagen fibrils were isolated from cephalopod head cartilage and mammal hyaline cartilage. The analysis with TEM after positive and negative staining demonstrated that the fibrils have a periodic structure similar to that of fibrillar type I collagen of mammals. The banding pattern of polymeric forms (SLS, FLS) obtained in vitro from squid cartilage collagen was remarkably different from the analogous forms of mammal collagen types I and II.  相似文献   

13.
Su PJ  Chen WL  Chen YF  Dong CY 《Biophysical journal》2011,100(8):2053-2062
A model is proposed to describe the polarization dependence of second harmonic generation (SHG) from type I collagen fibrils. The model is based on sum-frequency vibrational spectrum experiments that attribute the molecular origins of collagen second-order susceptibility to the peptide groups in the backbone of the collagen α-helix and the methylene groups in the pyrrolidine rings. Applying our model to a polarization SHG (P-SHG) experiment leads to a predicted collagen I peptide pitch-angle of 45.82° ± 0.46° and methylene pitch-angle of 94.80° ± 0.97°. Compared to a previous model that accounts for only the peptide contribution, our results are more consistent with the x-ray diffraction determination of collagen-like peptide. Application of our model to type II collagen from rat trachea cartilage leads to similar results. The peptide pitch-angle of 45.72° ± 1.17° is similar to that of type I collagen, but a different methylene pitch-angle of 97.87° ± 1.79° was found. Our work demonstrates that far-field P-SHG measurements can be used to extract molecular structural information of collagen fibers.  相似文献   

14.
Second-harmonic generation (SHG) by membrane-incorporated probes is a nonlinear optical signal that is voltage-sensitive and the basis of a sensitive method for imaging membrane potential. The voltage dependence of SHG by four different probes, three retinoids (all-trans retinal), and two new retinal analogs, 3-methyl-7-(4′-dimethylamino-phenyl)-2,4,6-heptatrienal (AR-3) and 3,7-dimethyl-9-(4′-dimethylamino-phenyl)-2,4,6,8-nonatetraenal (AR-4), and a styryl dye (FM4-64), were compared in HEK-293 cells. Results were analyzed by fitting data with an expression based on an electrooptic mechanism for SHG, which depends on the complex-valued first- and second-order nonlinear electric susceptibilities (χ2 and χ3) of the probe. This gave values for the voltage sensitivity at the cell's resting potential, the voltage where the SHG is minimal, and the amplitude of the signal at that voltage for each of the four compounds. These measures show that χ2 and χ3 are complex numbers for all compounds except all-trans retinal, consistent with the proximities of excitation and/or emission wavelengths to molecular resonances. Estimates of probe orientation and location in the membrane electric field show that, for the far-from-resonance case, the shot noise-limited signal/noise ratio depends on the location of the probe in the membrane, and on χ3 but not on χ2.  相似文献   

15.
Understanding the high temperature behavior of collagen and collagenous tissue is important for surgical procedures and biomaterials processing for the food, pharmaceutical, and cosmetics industries. One primary event for proteins is thermal denaturation that involves unfolding the polypeptide chains while maintaining the primary structure intact. Collagen in the extracellular matrix of cartilage and other connective tissue is a hierarchical material containing bundles of triple‐helical fibers associated with water and proteoglycan components. Thermal analysis of dehydrated collagen indicates irreversible denaturation at high temperature between 135°C and 200°C, with another reversible event at ~60‐80°C for hydrated samples. We report high temperature Raman spectra for freeze‐dried cartilage samples that show an increase in laser‐excited fluorescence interpreted as conformational changes associated with denaturation above 140°C. Spectra for separated collagen and proteoglycan fractions extracted from cartilage indicate the changes are associated with collagen. The Raman data also show appearance of new features indicating peptide bond hydrolysis at high temperature implying that molecular H2O is retained within the freeze‐dried tissue. This is confirmed by thermogravimetric analysis that show 5‐7 wt% H2O remaining within freeze‐dried cartilage that is released progressively upon heating up to 200°C. Spectra obtained after exposure to high temperature and re‐hydration following recovery indicate that the capacity of the denatured collagen to re‐absorb water is reduced. Our results are important for revealing the presence of bound H2O within the collagen component of connective tissue even after freeze‐drying and its role in denaturation that is accompanied by or perhaps preceded by breakdown of the primary polypeptide structure.  相似文献   

16.
An investigation of ageing in human costal cartilage   总被引:4,自引:0,他引:4  
Summary Changes in human costal cartilage with increasing age (2–81 years) have been studied in the optical and electron microscope using routine and histochemical techniques.Concurrent with increasing age, chondrocytes undergo degeneration which is characterized initially by the accumulation of lipidic material within cells and, subsequently, by the formation of a halo around degenerating chondrocytes. The halo material is composed of electron dense bodies, amorphous material, and collagen fibrils. Both electron dense bodies and the amorphous material are of cellular origin and they have similar histochemical responses.Using histochemical techniques in the optical and in the electron microscope, it has been shown that chondroitin sulfate decreases with increasing age, while a hyaluronidase resistant material (presumably keratan sulfate) increases, initially in the central zone, and subsequently in the peripheral zones. Hyaluronidase resistant material is minute or absent in the central zone of aged cartilage.The genesis of collagen fibrils progresses from thin unbanded collagen-like fibrils in the pericellular lacunae of chondrocytes in young specimens to thick fibrils (sometimes in excess of 0.5 ) with a period of 640 Å in ageing cartilage. Aggregation of collagen fibrils seems to be related at least initially to the preponderance of matrix granules and beaded filaments which have been shown to originate intracellularly in vacuoles formed in degenerating mitochondria. Both of these structures contain glycosaminoglycans and, with increasing age, glycosaminoglycans decrease while collagen fibrils aggregate. In old age, the amorphous material, and possibly the content of disrupting electron dense bodies, seem to give origin to some collagen fibrils. This and other mechanisms of formation of collagen fibrils have been observed and they are discussed.Calcification of the matrix increases with increasing age and this agrees with previous findings.Supported by grants from the Italian National Research Council. — The authors are indebted to Miss Giuliana Silvestrini and to Mr. Lucio Virgilii for their expert and extensive technical assistance. — To Dr. A. Ascenzi, Director 1° Istituto di Anatomia e Istologia Patologica, and to Dr. C. Cavallero, Director, 2° Istituto di Anatomia e Istologia Patologica, Università di Roma, the senior author would like to express his appreciation for the use of equipment and facilities pursuant to this investigation, while on sabbatical leave from the University of California, Irvine, College of Medicine. — We wish to extend our thanks to the Italian National Research Council for supporting this study.On sabbatical leave from the University of California, Irvine, College of Medicine.  相似文献   

17.
We present a multimodal in vivo skin imaging instrument that is capable of simultaneously acquiring multiphoton and reflectance confocal images at up to 27 frames per second with 256 × 256 pixel resolution without the use of exogenous contrast agents. A single femtosecond laser excitation source is used for all channels ensuring perfect image registration between the two‐photon fluorescence (TPF), second harmonic generation (SHG), and reflectance confocal microscopy (RCM) images. Images and videos acquired with the system show that the three imaging channels provide complementary information in in vivo human skin measurements. In the epidermis, cell boundaries are clearly seen in the RCM channel, while cytoplasm is better seen in the TPF imaging channel, whereas in the dermis, SHG and TPF channels show collagen bundles and elastin fibers, respectively. The demonstrated fast imaging speed and multimodal imaging capabilities of this MPM/RCM instrument are essential features for future clinical application of this technique. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Cartilage damage was studied using non-invasive multiphoton-excited autofluorescence and quantitative second harmonic generation (SHG) microscopy. Two cryopreservation techniques based upon freezing and vitrification methods, respectively, were employed to determine whether or not the collagen fiber structure of full thickness porcine articular cartilage was affected by cryopreservation and whether the level of collagen damage could be determined quantitatively in non-processed (non-fixed, non-sliced, non-stained) tissues. Multiphoton-induced autofluorescence imaging revealed the presence of chondrocytes, as well as collagenous structures in all fresh, vitrified and frozen cryopreserved cartilage samples. SHG imaging of the frozen cryopreserved specimens showed a dramatic loss of mean gray value intensities when compared to both fresh and vitrified tissues (< 0.05), indicating structural changes of the extracellular matrix, in particular the deformation and destruction of the collagen fibers in the analyzed articular cartilage. A 0.9974 correlation coefficient was observed between the metabolic cell activity assessed by the alamarBlue technique, and retention of collagen structure between the three experimental groups. These studies suggest that multiphoton-induced autofluorescence imaging combined with quantitative SHG signal profiling may prove to be useful tools for the investigation of extracellular matrix changes in preserved cartilage, giving insights on the structural quality prior to implantation.  相似文献   

19.
Summary The organization of collagen fibrils in the rat sciatic nerve was studied by scanning electron microscopy after digestion of cellular elements by sodium hydroxide treatment, and by conventional transmission electron microscopy. The epineurium consisted mainly of thick bundles of collagen fibrils measuring about 10–20 m in width; they were wavy and ran slightly obliquely to the nerve axis. Between these collagen bundles, a very coarse meshwork of randomly oriented collagen fibrils was present. In the perineurium, collagen fibrils occupied the interspaces between the concentrically arranged perineurial cells; in each interspace, they formed a sheet of characteristic lacework elaborately interwoven by thin (about 3 m or less in width) bundles of collagen fibrils. In the subperineurial region, there was a distinct sheet of densely woven collagen fibrils between the perineurium and underlying endoneurial fibroblasts. In the endoneurium, collagen fibrils surrounded individual nerve fibers in two layers as scaffolds: the inner layer was made up of a delicate meshwork of very fine collagen fibrils, and the outer one consisted of longitudinally oriented bundles of about 1–3 m in width. The collagen fibril arrangement described above may protect the nerve fibers against external forces.  相似文献   

20.
Pepsin-solubilized collagen I from skin and bone was analyzed with regard to its thermal stability as a triple helical molecule in solution and afterin vitro fibril formation. Collagen I from human control bone was compared with samples showing deficiencies or surplus in the degree of hydroxylation of lysine. The helix to coil transitions were studied by circulardichroism measurements and limited trypsin digestion. Melting of fibrils from standardizedin vitro self-assembly was investigated turbidimetrically. Human control bone collagen I has a maximum transition rate (T m ) at 43.3°C in 0.05% acetic acid. This is 1.9°C above control skin (T m =41.4°C), most likely, due to a higher degree of prolyl hydroxylation—0.48 in bone vs. 0.41 in skin collagen I. Lysyl overhydroxylation of human and mouse bone collagen I appears to reduce theT m slightly (1°C). Underhydroxylated bone collagen has aT m which is 2°C below control. Melting temperatures ofin vitro formed fibrils are an indication for higher thermostability in parallel with an increase of lysyl hydroxylation. Accordingly, the melting temperature of such fibrils from human control skin, 49.3°C, exceeds control bone by 1.4°C. The degree of lysyl hydroxylation in these samples is 0.14 and 0.10, respectively. Further underhydroxylation (0.06) reduced it down to 45.4°C, while extensive overhydroxylation did not continue to increase the thermal stability of fibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号