首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Near‐infrared diffuse correlation spectroscopy (DCS) is used to record spontaneous cerebral blood flow fluctuations in the frontal cortex. Nine adult subjects participated in the experiments, in which 8‐minute spontaneous fluctuations were simultaneously recorded from the left and right dorsolateral and inferior frontal regions. Resting‐state functional connectivity (RSFC) was measured by the temporal correlation of the low frequency fluctuations. Our data shows the RSFC within the dorsolateral region is significantly stronger than that between the inferior and dorsolateral regions, in line with previous observations with functional near‐infrared spectroscopy. This indicates that DCS is capable of investigating brain functional connectivity in terms of cerebral blood flow.   相似文献   

2.
3.
Fibromyalgia (FM) is a complex syndrome characterized by chronic widespread pain and a heightened response to pressure. Most medical researches pointed out that FM patients with endothelial dysfunction and arterial stiffness. A continuous‐wave near‐infrared spectroscopy (NIRS) system is used in present study to measure the hemodynamic changes elicited by breath‐holding task in patients with FM. Each patient completed a questionnaire survey including demographics, characteristics of body pain, associated symptoms, headache profiles and Hospital Anxiety and Depression Scale. A total of 27 FM patients and 26 health controls were enrolled. In comparison with healthy controls, patients with FM showed lower maximal and averaged change of oxyhemoglobin concentration in both the left (1.634 ±0.890 and 0.810 ±0.525 μM) and the right (1.576 ±0.897 and 0.811 ±0.601 μM) prefrontal cortex than healthy controls (P < .05 for both sides) during the breath‐holding task. In conclusion, FM is associated with altered cerebrovascular reactivity measured by NIRS and breath‐holding task, which may reflect endothelial dysfunction or arterial stiffness. Oxygenated hemoglobin concentration changes of healthy controls and FM patients.   相似文献   

4.
Human connectome describes the complicated connection matrix of nervous system among human brain. It also possesses high potential of assisting doctors to monitor the brain injuries and recoveries in patients. In order to unravel the enigma of neuron connections and functions, previous research has strived to dig out the relations between neurons and brain regions. Verbal fluency test (VFT) is a general neuropsychological test, which has been used in functional connectivity investigations. In this study, we employed convolutional neural network (CNN) on a brain hemoglobin concentration changes (ΔHB) map obtained during VFT to investigate the connections of activated brain areas and different mental status. Our results show that feature of functional connectivity can be identified accurately with the employment of CNN on ΔHB mapping, which is beneficial to improve the understanding of brain functional connections.  相似文献   

5.
Gender differences in psychological processes have been of great interest in a variety of fields including verbal fluency, emotion processing and working memory. Previous studies suggested that women outperform men in verbal working memory (VWM). However, the inherent mechanisms are still unclear. To obtain a deeper insight into the gender differences in brain networks in VWM, this study used near‐infrared spectroscopy (NIRS) and electro‐encephalography (EEG) simultaneously to investigate gender‐related brain networks during verbal Sternberg tasks. NIRS results confirmed that women surpass men in VWM from the perspective of both brain activation and connectivity. Results of EEG (effective connectivity and event‐related spectral power) showed that men tend to use a more visuospatial strategy to encode memory. In addition, novel analysis methods of brain networks can provide useful information about the gender specifics of brain functions. Gender‐related pseudo‐color maps constructed from all channels of average HbO2 activity during low‐ and high‐load tasks (from 0 to 6 seconds after beginning).   相似文献   

6.
Near‐infrared spectroscopy (NIRS) is a noninvasive method for measuring the oxygenation in muscle and other tissues in vivo. For quantitative NIRS measurement of oxygenation dynamics, the vessel‐occlusion test was usually applied as physiological intervention. There are several drawbacks of the vessel‐occlusion method that include skin contact, uncomfortable and microcirculation block of patients. Thus, we propose the far‐infrared (FIR) illumination as a new physiological intervention method in this paper. Our preliminary result shows a linear correlation of oxygenation dynamic signals between FIR illumination and arterial‐occlusion test (AOT) that implies the FIR illumination could be applied for hemodynamic response measurement in clinical diagnosis. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Neuromuscular electrical stimulation (NMES) is used for preventing muscle atrophy and improving muscle strength in patients and healthy people. However, the current intensity of NMES is usually set at a level that causes the stimulated muscles to contract. This typically causes pain. Quantifying the instantaneous changes in muscle microcirculation and metabolism during NMES before muscle contraction occurs is crucial, because it enables the current intensity to be optimally tuned, thereby reducing the NMES‐induced muscle pain and fatigue. We applied near‐infrared spectroscopy (NIRS) to measure instantaneous tissue oxygenation and deoxygenation changes in 43 healthy young adults during NMES at 10, 15, 20, 25, 30, and 35 mA. Having been stabilized at the NIRS signal baseline, the tissue oxygenation and total hemoglobin concentration increased immediately after stimulation in a dose‐dependent manner (P < 0.05) until stimulation was stopped at the level causing muscle contraction without pain. Tissue deoxygenation appeared relatively unchanged during NMES. We conclude that NIRS can be used to determine the optimal NMES current intensity by monitoring oxygenation changes.   相似文献   

8.
We present a first in vivo application of phase dual‐slopes (DS?), measured with frequency‐domain near‐infrared spectroscopy on four healthy human subjects, to demonstrate their enhanced sensitivity to cerebral hemodynamics. During arterial blood pressure oscillations elicited at a frequency of 0.1 Hz, we compare three different ways to analyze either intensity (I) or phase (?) data collected on the subject's forehead at multiple source‐detector distances: Single‐distance, single‐slope and DS. Theoretical calculations based on diffusion theory show that the method with the deepest maximal sensitivity (at about 11 mm) is DS?. The in vivo results indicate a qualitative difference of phase data (especially DS?) and intensity data (especially single‐distance intensity [SDI]), which we assign to stronger contributions from scalp hemodynamics to SDI and from cortical hemodynamics to DS?. Our findings suggest that scalp hemodynamic oscillations may be dominated by blood volume dynamics, whereas cortical hemodynamics may be dominated by blood flow velocity dynamics.  相似文献   

9.
10.
Near‐infrared spectroscopy (NIRS) has been proposed as a noninvasive modality for detecting complications in patients undergoing extracorporeal membrane oxygenation (ECMO), and it can simultaneously reveal the global circulatory status of these patients. We optimized ECMO therapy on the basis of real‐time peripheral NIRS probing. Three patients underwent venoarterial (VA) ECMO and one patient underwent venovenous (VV) ECMO. All patients received peripheral ECMO cannulation with routine distal perfusion catheter placement. We designed an experimental protocol to adjust ECMO blood flow over 1 hour. Hemodynamic responses were measured using NIRS devices attached to the calf at approximately 60% of the distance from the ankle to the knee. HbO2 levels change substantially with adjustments in ECMO flow, and they are more sensitive than HHb levels and the tissue saturation index (TSI) are. NIRS for optimizing ECMO therapy may be reliable for monitoring global circulatory status.  相似文献   

11.
12.
13.
14.
CACNA1C‐rs1006737 and ZNF804A‐rs1344706 polymorphisms are among the most robustly associated with schizophrenia (SCZ) and bipolar disorder (BD), and recently with brain phenotypes. As these patients show abnormal verbal fluency (VF) and related brain activation, we asked whether the latter was affected by these polymorphisms (alone and in interaction)—to better understand how they might induce risk. We recently reported effects on functional VF‐related (for ZNF804A‐rs1344706) and structural (for both) connectivity. We genotyped and fMRI‐scanned 54 SCZ, 40 BD and 80 controls during VF. With SPM, we assessed the main effect of CACNA1C‐rs1006737, and its interaction with ZNF804A‐rs1344706, and their interaction with diagnosis, on regional brain activation and functional connectivity (psychophysiological interactions—PPI). Using public data, we reported effects of CACNA1C‐rs1006737 and diagnosis on brain expression. The CACNA1C‐rs1006737 risk allele was associated with increased activation, particularly in the bilateral prefronto‐temporal cortex and thalamus; decreased PPI, especially in the left temporal cortex; and gene expression in white matter and the cerebellum. We also found unprecedented evidence for epistasis (interaction between genetic polymorphisms) in the caudate nucleus, thalamus, and cingulate and temporal cortical activation; and CACNA1C up‐regulation in SCZ and BD parietal cortices. Some effects were dependent on BD/SCZ diagnosis. All imaging results were whole‐brain, voxel‐wise, and familywise‐error corrected. Our results support evidence implicating CACNA1C and ZNF804A in BD and SCZ, adding novel imaging evidence in clinical populations, and of epistasis—which needs further replication. Further scrutiny of the inherent neurobiological mechanisms may disclose their potential as putative drug targets.  相似文献   

15.
16.
The clinical symptoms of Alzheimer disease (AD) include a gradual memory loss and subsequent dementia, and neuropathological deposition of senile plaques and neurofibrillary tangles. At the molecular level, AD subjects present overt amyloid β (Aβ) production and tau hyperphosphorylation. Aβ species have been proposed to overactivate the phosphoinositide3‐kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) axis, which plays a central role in proteostasis. The current study investigated the status of the PI3K/Akt/mTOR pathway in post‐mortem tissue from the inferior parietal lobule (IPL) at three different stages of AD: late AD, amnestic mild cognitive impairment (MCI) and pre‐clinical AD (PCAD). Our findings suggest that the alteration of mTOR signaling and autophagy occurs at early stages of AD. We found a significant increase in Aβ (1–42) levels, associated with reduction in autophagy (Beclin‐1 and LC‐3) observed in PCAD, MCI, and AD subjects. Related to the autophagy impairment, we found a hyperactivation of PI3K/Akt/mTOR pathway in IPL of MCI and AD subjects, but not in PCAD, along with a significant decrease in phosphatase and tensin homolog. An increase in two mTOR downstream targets, p70S6K and 4EBP1, occurred in AD and MCI subjects. Both AD and MCI subjects showed increased, insulin receptor substrate 1, a candidate biomarker of brain insulin resistance, and GSK‐3β, a kinase targeting tau phosphorylation. Nevertheless, tau phosphorylation was increased in the clinical groups. The results hint at a link between Aβ and the PI3K/Akt/mTOR axis and provide further insights into the relationship between AD pathology and insulin resistance. In addition, we speculate that the alteration of mTOR signaling in the IPL of AD and MCI subjects, but not in PCAD, is due to the lack of substantial increase in oxidative stress.

  相似文献   


17.
Under a 980‐nm excitation, the up‐conversion (UC) spectra of LuNbO4:Yb3+,Tm3+ powders exhibited predominantly near‐infrared bands (~805 nm) of Tm3+ through an energy transfer process from Yb3+ to Tm3+. Regarding the down‐conversion (DC) luminescence of the powders, the photoluminescence excitation spectra consisted of a broad charge transfer band (270 nm) due to [NbO4]3? and sharp band (360 nm) of Tm3+, while the corresponding emission spectra exhibited a blue emission at 458 nm. Upon substitution of Ga3+ and Ta5+ for Lu3+ and Nb5+, respectively, both UC and DC luminescence properties were significantly enhanced. For the Ga3+ substitution, the increased emission intensity could be explained by the crystal field asymmetry surrounding the Tm3+ ions induced by the large difference in ionic radius between Ga3+ and Lu3+. For the Ta5+ substitution, we believe that an M′‐LuTaO4 substructure was formed in the host, which led to the formation of a TaO6 octahedral coordination instead of a NbO4 tetrahedral coordination. Consequently, the crystal symmetry of the local structure was modified, and thus the UC and DC luminescence properties were enhanced. The dual‐mode (UC and DC) luminescence demonstrates that LuNbO4:Yb3+,Tm3+ has a great potential in the fields of temperature sensing probes, anti‐counterfeiting, and bioapplications.  相似文献   

18.
Recent evidence indicates that oxidative stress and genetic factors play an important role in the pathogenesis of vitiligo. SNPs in miRNAs involved in oxidative stress could potentially influence the development of vitiligo. In this case–control study, we investigated the association of a functional SNP of rs11614913 in miR‐196a‐2 with risk of vitiligo. A significantly lower risk of vitiligo was associated with the rs11614913 miR‐196a‐2 CC genotype (adjusted OR, 0.77; CI, 0.60–0.98). In addition, TYRP1 gene expression was considerably down‐regulated by the rs11614913 C allele in miR‐196a‐2, which lowered the levels of intracellular reactive oxygen species (ROS) and reduced the proportion of early apoptosis in human melanocytes in response to H2O2 treatment. Our data suggest that the rs11614913 C allele in miR‐196a‐2 confers potential protection against oxidative effects on human melanocytes through the modulation of the target gene, TYRP1, which may account for the decreased risk of vitiligo in this study population.  相似文献   

19.
Attention‐deficit hyperactivity disorder (ADHD) is one of the most common neuropsychiatric disorders in children and adolescents with high heritability. Evidence is accumulating that SLC1A3 may play a role in ADHD etiology. Therefore, a two‐stage case‐control study was conducted on 752 cases and 774 controls to explore the role of SLC1A3 in ADHD. Bioinformatic annotations and functional experiments were applied to reveal the potential biological mechanisms. Finally, SLC1A3 rs1049522 showed significant association with ADHD risk in two stages with CA genotype vs AA genotype, odds ratio (OR) = 0.694 (95% confidence interval, CI = 0.570‐0.844) and dominant model, OR = 0.749 (95% CI = 0.621‐0.904) in the combined stage. Besides, rs1049522 was found to be related to ADHD hyperactive/impulsive symptom, and rs1049522‐C showed increased SLC1A3 mRNA expression in the cerebellar cortex. Dual‐luciferase reporter assay further indicated that rs1049522‐C allele enhanced SLC1A3 expression by disrupting the hsa‐miR‐3171 binding site. In conclusion, SLC1A3 variant rs1049522 was implicated in ADHD susceptibility in a Chinese Han population probably by enhancing the SLC1A3 expression in a miRNA‐mediated manner.  相似文献   

20.
Control of raw materials based on an understanding of their impact on product attributes has been identified as a key aspect of developing a control strategy in the Quality by Design (QbD) paradigm. This article presents a case study involving use of a combined approach of Near‐infrared (NIR) spectroscopy and Multivariate Data Analysis (MVDA) for screening of lots of basal medium powders based on their impact on process performance and product attributes. These lots had identical composition as per the supplier and were manufactured at different scales using an identical process. The NIR/MVDA analysis, combined with further investigation at the supplier site, concluded that grouping of medium components during the milling and blending process varied with the scale of production and media type. As a result, uniformity of blending, impurity levels, chemical compatibility, and/or heat sensitivity during the milling process for batches of large‐scale media powder were deemed to be the source of variation as detected by NIR spectra. This variability in the raw materials was enough to cause unacceptably large variability in the performance of the cell culture step and impact the attributes of the resulting product. A combined NIR/MVDA approach made it possible to finger print the raw materials and distinguish between good and poor performing media lots. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号