首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inbreeding results from matings between relatives and can cause a reduction in offspring fitness, known as inbreeding depression. Previous work has shown that a wide range of environmental stresses, such as extreme temperatures, starvation and parasitism, can exacerbate inbreeding depression. It has recently been argued that stresses due to intraspecific competition should have a stronger effect on the severity of inbreeding depression than stresses due to harsh physical conditions. Here, we tested whether an increase in the intensity of sibling competition can exacerbate inbreeding depression in the burying beetle Nicrophorus vespilloides. We used a 2 × 3 factorial design with offspring inbreeding status (outbred or inbred) and brood size (5, 20, or 40 larvae) as the two factors. We found a main effect of inbreeding status, as inbred larvae had lower survival than outbred larvae, and a main effect of brood size, as larvae in large broods had lower survival and mass than larvae in medium‐sized broods. However, there was no effect of the interaction between inbreeding status and brood size, suggesting that sibling competition did not influence the severity of inbreeding depression. Since we focused on sibling competition within homogeneous broods of either inbred or outbred larvae, we cannot rule out possible effects of sibling competition on inbreeding depression in mixed paternity broods comprising of both inbred and outbred offspring. More information on whether and when sibling competition might influence inbreeding depression can help advance our understanding of the causes underlying variation in the severity of inbreeding depression.  相似文献   

2.
The deleterious effects of inbreeding have long been known, and inbreeding can increase the risk of extinction for local populations in metapopulations. However, other consequences of inbreeding in metapopulations are still not well understood. Here we show the presence of strong inbreeding depression in a rockpool metapopulation of the planktonic freshwater crustacean Daphnia magna, which reproduces by cyclical parthenogenesis. We conducted three experiments in real and artificial rockpools to quantify components of inbreeding depression in the presence and the absence of competition between clonal lines of selfed and outcrossed genotypes. In replicated asexual populations, we recorded strong selection against clones produced by selfing in competition with clones produced by outcrossing. In contrast, inbreeding depression was much weaker in single-clone populations, that is, in the absence of competition between inbred and outbred clones. The finding of a competitive advantage of the outbred genotypes in this metapopulation suggests that if rockpool populations are inbred, hybrid offspring resulting from crosses between immigrants and local genotypes might have a strong selective advantage. This would increase the effective gene flow in the metapopulation. However, the finding of low inbreeding depression in the monoclonal populations suggests that inbred and outbred genotypes might have about equal chances of establishing new populations.  相似文献   

3.
We investigate the effect of offspring and maternal inbreeding on maternal and offspring traits associated with early offspring fitness in the burying beetle Nicrophorus vespilloides. We conducted two experiments. In the first experiment, we manipulated maternal inbreeding only (keeping offspring outbred) by generating mothers that were outbred, moderately inbred or highly inbred. Meanwhile, in the second experiment, we manipulated offspring inbreeding only (keeping females outbred) by generating offspring that were outbred, moderately inbred or highly inbred. In both experiments, we monitored subsequent effects on breeding success (number of larvae), maternal traits (clutch size, delay until laying, laying skew, laying spread and egg size) and offspring traits (hatching success, larval survival, duration of larval development and average larval mass). Maternal inbreeding reduced breeding success, and this effect was mediated through lower hatching success and greater larval mortality. Furthermore, inbred mothers produced clutches where egg laying was less skewed towards the early part of laying than outbred females. This reduction in the skew in egg laying is beneficial for larval survival, suggesting that inbred females adjusted their laying patterns facultatively, thereby partially compensating for the detrimental effects of maternal inbreeding on offspring. Finally, we found evidence of a nonlinear effect of offspring inbreeding coefficient on number of larvae dispersing. Offspring inbreeding affected larval survival and larval development time but also unexpectedly affected maternal traits (clutch size and delay until laying), suggesting that females adjust clutch size and the delay until laying in response to being related to their mate.  相似文献   

4.
Mating with relatives has often been shown to negatively affect offspring fitness (inbreeding depression). There is considerable evidence for inbreeding depression due to effects on naturally selected traits, particularly those expressed early in life, but there is less evidence of it for sexually selected traits. This is surprising because sexually selected traits are expected to exhibit strong inbreeding depression. Here, we experimentally created inbred and outbred male mosquitofish (Gambusia holbrooki). Inbred males were the offspring of matings between full siblings. We then investigated how inbreeding influenced a number of sexually selected male traits, specifically: attractiveness, sperm number and velocity, as well as sperm competitiveness based on a male's share of paternity. We found no inbreeding depression for male attractiveness or sperm traits. There was, however, evidence that lower heterozygosity decreased paternity due to reduced sperm competitiveness. Our results add to the growing evidence that competitive interactions exacerbate the negative effects of the increased homozygosity that arises when there is inbreeding.  相似文献   

5.
Inbreeding depression is defined as a fitness decline in progeny resulting from mating between related individuals, the severity of which may vary across environmental conditions. Such inbreeding‐by‐environment interactions might reflect that inbred individuals have a lower capacity for adjusting their phenotype to match different environmental conditions better, as shown in prior studies on developmental plasticity. Behavioural plasticity is more flexible than developmental plasticity because it is reversible and relatively quick, but little is known about its sensitivity to inbreeding. Here, we investigate effects of inbreeding on behavioural plasticity in the context of parent–offspring interactions in the burying beetle Nicrophorus vespilloides. Larvae increase begging with the level of hunger, and parents increase their level of care when brood sizes increase. Here, we find that inbreeding increased behavioural plasticity in larvae: inbred larvae reduced their time spent associating with a parent in response to the length of food deprivation more than outbred larvae. However, inbreeding had no effect on the behavioural plasticity of offspring begging or any parental behaviour. Overall, our results show that inbreeding can increase behavioural plasticity. We suggest that inbreeding‐by‐environment interactions might arise when inbreeding is associated with too little or too much plasticity in response to changing environmental conditions.  相似文献   

6.
Inbreeding depression is the reduction in fitness caused by mating between related individuals. Inbreeding is expected to cause a reduction in offspring fitness when the offspring themselves are inbred, but outbred individuals may also suffer a reduction in fitness when they depend on care from inbred parents. At present, little is known about the significance of such intergenerational effects of inbreeding. Here, we report two experiments on the burying beetle Nicrophorus vespilloides, an insect with elaborate parental care, in which we investigated inbreeding depression in offspring when either the offspring themselves or their parents were inbred. We found substantial inbreeding depression when offspring were inbred, including reductions in hatching success of inbred eggs and survival of inbred offspring. We also found substantial inbreeding depression when parents were inbred, including reductions in hatching success of eggs produced by inbred parents and survival of outbred offspring that received care from inbred parents. Our results suggest that intergenerational effects of inbreeding can have substantial fitness costs to offspring, and that future studies need to incorporate such costs to obtain accurate estimates of inbreeding depression.  相似文献   

7.
Inbreeding frequently leads to inbreeding depression, a reduction in the trait values of inbred individuals. Inbreeding depression has been documented in sexually selected characters in several taxa, and while there is correlational evidence that male fertility is especially susceptible to inbreeding depression, there have been few direct experimental examinations of this. Here, we assessed inbreeding depression in male fertility and a range of other male fitness correlates in Drosophila simulans. We found that male fertility and attractiveness were especially susceptible to inbreeding depression. Additionally, levels of testicular oxidative stress were significantly elevated in inbred males, although sperm viability did not differ between inbred and outbred males. Copulation duration, induction of oviposition, and the proportion of eggs hatching did not differ for females mated to inbred or outbred males. Nevertheless, our results clearly show that key male fitness components are impaired by inbreeding and provide evidence that aspects of male fertility are especially susceptible to inbreeding depression.  相似文献   

8.
It is commonly argued that inbred individuals should be more sensitive to environmental stress than are outbred individuals, presumably because stress increases the expression of deleterious recessive alleles. However, the degree to which inbreeding depression is dependent on environmental conditions is not clear. We use two populations of the seed-feeding beetle, Callosobruchus maculatus, to test the hypotheses that (a) inbreeding depression varies among rearing temperatures, (b) inbreeding depression is greatest at the more stressful rearing temperatures, (c) the degree to which high or low temperature is stressful for larval development varies with inbreeding level, and (d) inbreeding depression is positively correlated between different environments. Inbreeding depression (δ) on larval development varied among temperatures (i.e., there was a significant inbreeding-environment interaction). Positive correlations for degree of inbreeding depression were consistently found between all pairs of temperatures, suggesting that at least some loci affected inbreeding depression across all temperatures examined. Despite variation in inbreeding depression among temperatures, inbreeding depression did not increase consistently with our proxy for developmental stress. However, inbreeding changed which environments are benign versus stressful for beetles; although 20°C was not a stressful rearing temperature for outbred beetles, it became the most stressful environment for inbred larvae. The finding that inbreeding-environment interactions can cause normally benign environments to become stressful for inbred populations has important consequences for many areas of evolutionary genetics, artificial breeding (for conservation or food production), and conservation of natural populations.  相似文献   

9.
Abstract. It has long been assumed that inbreeding depression in haplodiploid organisms is low due to their ability to purge genetic load in haploid males. It has been suggested that this low genetic load could facilitate the evolution of inbreeding behaviors driven by local mate competition in hymenopteran parasitoids. I have examined inbreeding depression in haplodiploids in two ways. First I show that an outbreeding haplodiploid wasp Uscana semifumipennis (Hymenoptera: Trichogrammatidae) suffers substantial inbreeding depression. Longevity was 38% shorter, fecundity was 32% lower, and sex ratio was 5% more male for experimentally inbred wasps when compared to outbred controls. There were interactions between size and both fecundity and sex ratio for inbred wasps that were not seen for outbred individuals. Second, an analysis of data from the literature suggests that when inbreeding is experimentally imposed on populations, haplodiploid insects and mites as a group do suffer less from inbreeding depression than diploid insects, although substantial inbreeding depression in haplodiploid taxa does exist. The meta-analysis revealed no difference in inbreeding depression between gregarious haplodiploid wasps, which are likely to have a history of inbreeding, and solitary haplodiploid species, which are assumed to be primarily outbred.  相似文献   

10.
Inbreeding depression, the reduction in fitness due to mating of related individuals, is of particular conservation concern in species with small, isolated populations. Although inbreeding depression is widespread in natural populations, long‐lived species may be buffered from its effects during population declines due to long generation times and thus are less likely to have evolved mechanisms of inbreeding avoidance than species with shorter generation times. However, empirical evidence of the consequences of inbreeding in threatened, long‐lived species is limited. In this study, we leverage a well‐studied population of gopher tortoises, Gopherus polyphemus, to examine the role of inbreeding depression and the potential for behavioural inbreeding avoidance in a natural population of a long‐lived species. We tested the hypothesis that increased parental inbreeding leads to reduced hatching rates and offspring quality. Additionally, we tested for evidence of inbreeding avoidance. We found that high parental relatedness results in offspring with lower quality and that high parental relatedness is correlated with reduced hatching success. However, we found that hatching success and offspring quality increase with maternal inbreeding, likely due to highly inbred females mating with more distantly related males. We did not find evidence for inbreeding avoidance in males and outbred females, suggesting sex‐specific evolutionary trade‐offs may have driven the evolution of mating behaviour. Our results demonstrate inbreeding depression in a long‐lived species and that the evolution of inbreeding avoidance is shaped by multiple selective forces.  相似文献   

11.
Inbreeding depression occurs when individuals who are closely related mate and produce offspring with reduced fitness. Although inbreeding depression is a genetic phenomenon, the magnitude of inbreeding depression can be influenced by environmental conditions and parental effects. In this study, we tested whether size-based parental effects influence the magnitude of inbreeding depression in an insect with elaborate and obligate parental care (the burying beetle, Nicrophorus orbicollis). We found that larger parents produced larger offspring. However, larval mass was also influenced by the interaction between parental body size and larval inbreeding status: when parents were small, inbred larvae were smaller than outbred larvae, but when parents were large this pattern was reversed. In contrast, survival from larval dispersal to adult emergence showed inbreeding depression that was unaffected by parental body size. Our results suggest that size-based parental effects can generate variation in the magnitude of inbreeding depression. Further work is needed to dissect the mechanisms through which this might occur and to better understand why parental size influences inbreeding depression in some traits but not others.  相似文献   

12.
Many organisms have been reported to choose their mates in order to increase the heterozygosity of their offspring by avoiding mating with relatives or homozygous individuals. Most previous studies using Drosophila melanogaster have used artificial chromosomes or extreme inbreeding treatments, situations unlikely to be matched in nature. Additionally, few studies have examined the interaction between female inbreeding status and her choice of mate. Using females and males from populations that had experienced either random mating or one generation of sib-sib inbreeding, we measured the preferences of females for males. Our results indicate that outbred males were chosen more often than inbred males and that this preference may be more pronounced in outbred females than in inbred ones.  相似文献   

13.
Natural populations are becoming increasingly fragmented which is expected to affect their viability due to inbreeding depression, reduced genetic diversity and increased sensitivity to demographic and environmental stochasticity. In small and highly inbred populations, the introduction of only a few immigrants may increase vital rates significantly. However, very few studies have quantified the long‐term success of immigrants and inbred individuals in natural populations. Following an episode of natural immigration to the isolated, severely inbred Scandinavian wolf (Canis lupus) population, we demonstrate significantly higher pairing and breeding success for offspring to immigrants compared to offspring from native, inbred pairs. We argue that inbreeding depression is the underlying mechanism for the profound difference in breeding success. Highly inbred wolves may have lower survival during natal dispersal as well as competitive disadvantage to find a partner. Our study is one of the first to quantify and compare the reproductive success of first‐generation offspring from migrants vs. native, inbred individuals in a natural population. Indeed, our data demonstrate the profound impact single immigrants can have in small, inbred populations, and represent one of very few documented cases of genetic rescue in a population of large carnivores.  相似文献   

14.
The effects of inbreeding on sperm quantity and quality are among the most dramatic examples of inbreeding depression. The extent to which inbreeding depression results in decreased fertilization success of a male’s sperm, however, remains largely unknown. This task is made more difficult by the fact that other factors, such as cryptic female choice, male sperm allocation and mating order, can also drive patterns of paternity. Here, we use artificial insemination to eliminate these extraneous sources of variation and to measure the effects of inbreeding on the competitiveness of a male’s sperm. We simultaneously inseminated female guppies (Poecilia reticulata) with equal amounts of sperm from an outbred (f = 0) male and either a highly (f = 0.59) or a moderately inbred (f = 0.25) male. Highly inbred males sired significantly fewer offspring than outbred males, but share of paternity did not differ between moderately inbred and outbred males. These findings therefore confirm that severe inbreeding can impair the competitiveness of sperm, but suggest that in the focal population inbreeding at order of a brother–sister mating does not reduce a male’s sperm competitiveness.  相似文献   

15.
N S H Tien  M W Sabelis  M Egas 《Heredity》2015,114(3):327-332
Compared with diploid species, haplodiploids suffer less inbreeding depression because male haploidy imposes purifying selection on recessive deleterious alleles. However, alleles of genes only expressed in the diploid females are protected in heterozygous individuals. This leads to the prediction that haplodiploids suffer more from inbreeding effects on life-history traits controlled by genes with female-limited expression. To test this, we used a wild population of the haplodiploid mite Tetranychus urticae. First, negative effects of inbreeding were investigated by comparing maturation rate, juvenile survival, oviposition rate and longevity between lines created by three generations of either outbreeding or mother–son inbreeding. Second, purging through inbreeding was investigated by comparing the intensity of inbreeding depression between outbred families with known inbreeding/outbreeding mating histories. Negative effects of inbreeding and evidence for purging were found for the female trait oviposition rate, but not for juvenile survival and longevity. Both male and female maturation rate were negatively affected by inbreeding, most likely due to maternal effects because inbred offspring of outbred mothers was not affected. These results support the hypothesis that, in haplodiploids inbreeding effects and genetic variation due to deleterious recessive alleles may depend on gender.  相似文献   

16.
As populations decline to levels where reproduction among close genetic relatives becomes more probable, subsequent increases in homozygous recessive deleterious expression and/or loss of heterozygote advantage can lead to inbreeding depression. Here, we measure how inbreeding across replicate lines of the flour beetle Tribolium castaneum impacts on male reproductive fitness in the absence or presence of male–male competition. Effects on male evolution from mating pattern were removed by enforcing monogamous mating throughout. After inbreeding across eight generations, we found that male fertility in the absence of competition was unaffected. However, we found significant inbreeding depression of sperm competitiveness: non-inbred males won 57 per cent of fertilizations in competition, while inbred equivalents only sired 42 per cent. We also found that the P2 ‘offence’ role in sperm competition was significantly more depressed under inbreeding than sperm ‘defence’ (P1). Mating behaviour did not explain these differences, and there was no difference in the viability of offspring sired by inbred or non-inbred males. Sperm length variation was significantly greater in the ejaculates of inbred males. Our results show that male ability to achieve normal fertilization success was not depressed under strong inbreeding, but that inbreeding depression in these traits occurred when conditions of sperm competition were generated.  相似文献   

17.
In what types of environments should we expect to find strong inbreeding depression? Previous studies indicate that inbreeding depression, δ, is positively correlated with the stressfulness of the environment in which it is measured. However, it remains unclear why stress, per se, should increase δ. To our knowledge, only “competitive stress” has a logical connection to δ. Through competition for resources, better quality (outbred) individuals make the environment worse for lower quality (inbred) individuals, accentuating the differences between them. For this reason, we expect inbreeding depression to be stronger in environments where the fitness of individuals is more sensitive to the presence of conspecifics (i.e., where fitness is more density dependent). Indeed, some studies suggest a role for competition within environments, but this idea has not been tested in the context of understanding variation in δ across environments. Using Drosophila melanogaster, we estimated δ for viability in 22 different environments. These environments were simultaneously characterized for (1) stressfulness and (2) density dependence. Although stress and density dependence are moderately correlated with each other, inbreeding depression is much more strongly correlated with density dependence. These results suggest that mean selection across the genome is stronger in environments where competition is intense, rather than in environments that are stressful for other reasons.  相似文献   

18.
Inbreeding can profoundly affect the interactions of plants with herbivores as well as with the natural enemies of the herbivores. We studied how plant inbreeding affects herbivore oviposition preference, and whether inbreeding of both plants and herbivores alters the probability of predation or parasitism of herbivore eggs. In a laboratory preference test with the specialist herbivore moth Abrostola asclepiadis and inbred and outbred Vincetoxicum hirundinaria plants, we discovered that herbivores preferred to oviposit on outbred plants. A field experiment with inbred and outbred plants that bore inbred or outbred herbivore eggs revealed that the eggs of the outbred herbivores were more likely to be lost by predation, parasitism or plant hypersensitive responses than inbred eggs. This difference did not lead to differences in the realized fecundity as the number of hatched larvae did not differ between inbred and outbred herbivores. Thus, the strength of inbreeding depression in herbivores decreases when their natural enemies are involved. Plant inbreeding did not alter the attraction of natural enemies of the eggs. We conclude that inbreeding can significantly alter the interactions of plants and herbivores at different life-history stages, and that some of these alterations are mediated by the natural enemies of the herbivores.  相似文献   

19.
Inbreeding depression is usually quantified by regressing individual phenotypic values on inbreeding coefficients, implicitly assuming there is no correlation between an individual's phenotype and the kinship coefficient to its mate. If such an association between parental phenotype and parental kinship exists, and if the trait of interest is heritable, estimates of inbreeding depression can be biased. Here we first derive the expected bias as a function of the covariance between mean parental breeding value and parental kinship. Subsequently, we use simulated data to confirm the existence of this bias, and show that it can be accounted for in a quantitative genetic animal model. Finally, we use long‐term individual‐based data for white‐throated dippers (Cinclus cinclus), a bird species in which inbreeding is relatively common, to obtain an empirical estimate of this bias. We show that during part of the study period, parents of inbred birds had shorter wings than those of outbred birds, and as wing length is heritable, inbred individuals were smaller, independent of any inbreeding effects. This resulted in the overestimation of inbreeding effects. Similarly, during a period when parents of inbred birds had longer wings, we found that inbreeding effects were underestimated. We discuss how such associations may have arisen in this system, and why they are likely to occur in others, too. Overall, we demonstrate how less biased estimates of inbreeding depression can be obtained within a quantitative genetic framework, and suggest that inbreeding and additive genetic effects should be accounted for simultaneously whenever possible.  相似文献   

20.
Pollen fate can strongly affect the genetic structure of populations with restricted gene flow and significant inbreeding risk. We established an experimental population of inbred and outbred Silene latifolia plants to evaluate the effects of (i) inbreeding depression, (ii) phenotypic variation and (iii) relatedness between mates on male fitness under natural pollination. Paternity analysis revealed that outbred males sired significantly more offspring than inbred males. Independently of the effects of inbreeding, male fitness depended on several male traits, including a sexually dimorphic (flower number) and a gametophytic trait (in vitro pollen germination rate). In addition, full-sib matings were less frequent than randomly expected. Thus, inbreeding, phenotype and genetic dissimilarity simultaneously affect male fitness in this animal-pollinated plant. While inbreeding depression might threaten population persistence, the deficiency of effective matings between sibs and the higher fitness of outbred males will reduce its occurrence and counter genetic erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号