首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
In recent years, there have been considerable efforts to restore degraded tropical montane forests through active restoration using indigenous tree species. However, little is known about how these species used for restoration influence other species. In this study, two potential restoration species, Albizia gummifera and Neoboutonia macrocalyx, are investigated with regard to the relationship between their density and the abundance and richness of other plant species. The study was conducted in a degraded forest consisting of disturbed transition zones and secondary forest. Our results show positive relationships between the density of A. gummifera and the abundance of tree seedling and sapling richness in the transition zones and in the secondary forest. Shrub richness was negatively related to the density of A. gummifera. Abundance and richness of tree saplings and shrubs were positively related to N. macrocalyx density both in the transition zones and in the secondary forest. Herb species richness declined with N. macrocalyx density in the transition zones but increased with N. macrocalyx density in the secondary forest. The positive relationships between the density of the two tree species and species richness of other woody species suggest that both A. gummifera and N. macrocalyx can be suitable for active restoration of degraded mountain forests within their natural range.  相似文献   

3.
    
Global change is modifying species communities from local to landscape scales, with alterations in the abiotic and biotic determinants of geographic range limits causing species range shifts along both latitudinal and elevational gradients. An important but often overlooked component of global change is the effect of anthropogenic disturbance, and how it interacts with the effects of climate to affect both species and communities, as well as interspecies interactions, such as facilitation and competition. We examined the effects of frequent human trampling disturbances on alpine plant communities in Switzerland, focusing on the elevational range of the widely distributed cushion plant Silene acaulis and the interactions of this facilitator species with other plants. Examining size distributions and densities, we found that disturbance appears to favor individual Silene growth at middle elevations. However, it has negative effects at the population level, as evidenced by a reduction in population density and reproductive indices. Disturbance synergistically interacts with the effects of elevation to reduce species richness at low and high elevations, an effect not mitigated by Silene. In fact, we find predominantly competitive interactions, both by Silene on its hosted and neighboring species and by neighboring (but not hosted) species on Silene. Our results indicate that disturbance can be beneficial for Silene individual performance, potentially through changes in its neighboring species community. However, possible reduced recruitment in disturbed areas could eventually lead to population declines. While other studies have shown that light to moderate disturbances can maintain high species diversity, our results emphasize that heavier disturbance reduces species richness, diversity, as well as percent cover, and adversely affects cushion plants and that these effects are not substantially reduced by plant–plant interactions. Heavily disturbed alpine systems could therefore be at greater risk for upward encroachment of lower elevation species in a warming world.  相似文献   

4.
5.
    
  1. Comparative population genetic studies provide a powerful means for assessing the degree to which evolutionary histories may be congruent among taxa while also highlighting the potential for cryptic diversity within existing species.
  2. In the Rocky Mountains, three confamilial stoneflies (Zapada glacier, Lednia tumana, and Lednia tetonica; Plecoptera, Nemouridae) occupy cold alpine streams that are primarily fed by melting ice. Lednia tumana and L. tetonica are sister species diagnosed from systematic morphological differences, and they are endemic to areas surrounding Glacier National Park and Grand Teton National Park, respectively, in the U.S. Rocky Mountains. Zapada glacier is also present in alpine streams from Glacier National Park to the Teton Range, sometimes co‐occurring with either Lednia species.
  3. We used mitochondrial sequence data to clarify species boundaries, compare population genetic patterns, and test demographic models in a coalescent framework for the three stoneflies. We addressed four questions: (1) Is there genetic support for the morphology‐based species boundaries in Lednia? (2) Is there genetic support for cryptic, or as‐yet undescribed, diversity within Z. glacier? (3) Do similar geographic distributions and ecological requirements yield spatial congruence of genetic structure between high‐elevation Lednia and Z. glacier populations? (4) Is there evidence for contemporary gene flow among isolated populations in either group?
  4. Our results supported the existing taxonomy with Z. glacier and the two Lednia species differing in their depths of divergence among study regions (e.g. maximum sequence divergence within Z. glacier = 1.2% versus 5% between L. tumana and L. tetonica). However, spatial population genetic patterns were broadly congruent, indicating stonefly populations isolated on mountaintop islands. Coalescent modelling supported the possibility of rare, extremely limited contemporary gene flow among Z. glacier populations, with no support for gene flow between L. tumana and L. tetonica.
  5. The focal stoneflies and associated assemblages occupy the highest elevation, coldest permanent alpine streams in the study region. This lotic habitat type faces an uncertain future under a diminishing alpine cryosphere. Given spatial congruence of genetic structure demonstrating unique biodiversity associated with individual alpine islands, we encourage conservation management strategies be developed and applied at corresponding spatial scales.
  相似文献   

6.
    

Background

The stress‐gradient hypothesis predicts a shift from facilitative to competitive plant interactions with decreasing abiotic stress. This has been supported by studies along elevation and temperature gradients, but also challenged by the hypothesis of a facilitation collapse at extremely harsh sites. Although facilitation is known to be important in primary succession, few studies have examined these hypotheses along primary succession gradients.

Aim

To examine whether there is a relationship between the presence of the circumpolar cushion plant Silene acaulis and other species, and if so, whether there is a shift between positive and negative interactions along a primary succession gradient in a glacier foreland.

Location

Finse, southern Norway.

Methods

We examined the performance of the common alpine forb Bistorta vivipara, species richness of vascular plants, bryophytes and lichens, and the number of seedlings and fertile vascular plants in S. acaulis cushions, and control plots without S. acaulis, along a succession gradient with increasing distance from a glacier front, and thus decreasing abiotic stress. To examine if S. acaulis cushions modify the abiotic environment, we recorded soil temperature, moisture, organic content and pH in cushions and control plots.

Results

Bistorta vivipara performed better, as shown by bigger leaves in S. acaulis cushions compared to control plots in the harshest part of the gradient close to the glacier. There were few differences in B. vivipara performance between cushion and control plots in the more benign environment further away from the glacier. This suggests a shift from facilitative to mainly neutral interactions by S. acaulis on the performance of B. vivipara with decreasing abiotic stress. A trend, although not significant, of higher vascular species richness and fertility inside S. acaulis cushions along the whole gradient, suggests that S. acaulis also facilitates community‐level species richness. The causal mechanism of this facilitation is likely that the cushions buffer extreme temperatures.

Conclusions

Our results support the stress‐gradient hypothesis for the relationship between the cushion plant S. acaulis and the performance of a single species along a primary succession gradient in a glacier foreland. S. acaulis also tended to increase vascular plant species richness and fertility regardless of stress level along the gradient, suggesting facilitation at the community level. We found no collapse of facilitation at the most stressful end of the gradient in this alpine glacier foreland.  相似文献   

7.
    
  1. Many communities are shifting composition, with losses of native species and increases of non‐indigenous species (NIS). At its extreme, such alteration of ecological guilds can result in simplification with a single NIS performing an ecological role once carried out by a suite of natives. This alteration has occurred in many rivers of the south‐eastern U.S.A., where the invasive filter‐feeding freshwater clam Corbicula fluminea has proliferated following the nearly complete extirpation of native mussels.
  2. We investigated the factors controlling the distribution and abundance of Corbicula, as well as estimated the ecological service it provides via water filtration. With a nested design, we surveyed multiple transects within four to six sites within each of four rivers that spanned three large catchments in the Georgia piedmont, collecting data on Corbicula density and physical habitat characteristics associated with its presence.
  3. We found Corbicula present in over half of the 1,536 sampled 0.044 m2 sampled plots, 90 of the 93 transects that spanned the width of the river, and all 1–2 km sample sites, underscoring the clam's ubiquity in the study region. At the river scale, Corbicula densities ranged from 50–212 Corbicula m?2, although individual sites ranged from 7–483 Corbicula m?2. Corbicula was more abundant in areas with higher proportions of gravel, and less abundant with higher proportions of bedrock. A hierarchical model with river, site, and these two substrate variables explained 32% of the variation in Corbicula density.
  4. Using observed densities and published per capita feeding rates, we calculated system‐wide collective filtration rates provided by Corbicula. In the four rivers surveyed and based on estimated residence times for median flows for the summer of 2012, Corbicula is estimated to filter water as many as seven times during median flows and 18 times during minimum flows before water flows out of a 10‐km reach. Due to high abundances and per biomass filtration rates, Corbicula plays an important role in these rivers.
  5. Invasive species, biotic homogenisation, and the loss of functional redundancy may mean that many more rivers are similar to our studied rivers, with a single, often invasive, species dominating ecosystem function. Understanding the influence of biotic homogenisation on ecosystem function is of foremost importance to evaluate the resilience of natural systems.
  相似文献   

8.
    
Mountain plants are considered among the species most vulnerable to climate change, especially at high latitudes where there is little potential for poleward or uphill dispersal. Satellite monitoring can reveal spatiotemporal variation in vegetation activity, offering a largely unexploited potential for studying responses of montane ecosystems to temperature and predicting phenological shifts driven by climate change. Here, a novel remote‐sensing phenology approach is developed that advances existing techniques by considering variation in vegetation activity across the whole year, rather than just focusing on event dates (e.g. start and end of season). Time series of two vegetation indices (VI), normalized difference VI (NDVI) and enhanced VI (EVI) were obtained from the moderate resolution imaging spectroradiometer MODIS satellite for 2786 Scottish mountain summits (600–1344 m elevation) in the years 2000–2011. NDVI and EVI time series were temporally interpolated to derive values on the first day of each month, for comparison with gridded monthly temperatures from the preceding period. These were regressed against temperature in the previous months, elevation and their interaction, showing significant variation in temperature sensitivity between months. Warm years were associated with high NDVI and EVI in spring and summer, whereas there was little effect of temperature in autumn and a negative effect in winter. Elevation was shown to mediate phenological change via a magnification of temperature responses on the highest mountains. Together, these predict that climate change will drive substantial changes in mountain summit phenology, especially by advancing spring growth at high elevations. The phenological plasticity underlying these temperature responses may allow long‐lived alpine plants to acclimate to warmer temperatures. Conversely, longer growing seasons may facilitate colonization and competitive exclusion by species currently restricted to lower elevations. In either case, these results show previously unreported seasonal and elevational variation in the temperature sensitivity of mountain vegetation activity.  相似文献   

9.
    
The Himalaya–Hengduan Mountains encompass two global biodiversity hotspots with high levels of biodiversity and endemism. This area is one of the diversification centres of the genus Rhododendron, which is recognized as one of the most taxonomically challenging plant taxa due to recent adaptive radiations and rampant hybridization. In this study, four DNA barcodes were evaluated on 531 samples representing 173 species of seven sections of four subgenera in Rhododendron, with a high sampling density from the Himalaya–Hengduan Mountains employing three analytical methods. The varied approaches (nj , pwg and blast ) had different species identification powers with blast performing best. With the pwg analysis, the discrimination rates for single barcodes varied from 12.21% to 25.19% with ITS rbcL matK psbA‐trnH. Combinations of ITS + psbA‐trnH + matK and the four barcodes showed the highest discrimination ability (both 41.98%) among all possible combinations. As a single barcode, psbA‐trnH performed best with a relatively high performance (25.19%). Overall, the three‐marker combination of ITS + psbA‐trnH + matK was found to be the best DNA barcode for identifying Rhododendron species. The relatively low discriminative efficiency of DNA barcoding in this genus (~42%) may possibly be attributable to too low sequence divergences as a result of a long generation time of Rhododendron and complex speciation patterns involving recent radiations and hybridizations. Taking the morphology, distribution range and habitat of the species into account, DNA barcoding provided additional information for species identification and delivered a preliminary assessment of biodiversity for the large genus Rhododendron in the biodiversity hotspots of the Himalaya–Hengduan Mountains.  相似文献   

10.
    
Keryn I. Paul  Stephen H. Roxburgh  Jerome Chave  Jacqueline R. England  Ayalsew Zerihun  Alison Specht  Tom Lewis  Lauren T. Bennett  Thomas G. Baker  Mark A. Adams  Dan Huxtable  Kelvin D. Montagu  Daniel S. Falster  Mike Feller  Stan Sochacki  Peter Ritson  Gary Bastin  John Bartle  Dan Wildy  Trevor Hobbs  John Larmour  Rob Waterworth  Hugh T.L. Stewart  Justin Jonson  David I. Forrester  Grahame Applegate  Daniel Mendham  Matt Bradford  Anthony O'Grady  Daryl Green  Rob Sudmeyer  Stan J. Rance  John Turner  Craig Barton  Elizabeth H. Wenk  Tim Grove  Peter M. Attiwill  Elizabeth Pinkard  Don Butler  Kim Brooksbank  Beren Spencer  Peter Snowdon  Nick O'Brien  Michael Battaglia  David M Cameron  Steve Hamilton  Geoff McAuthur  Jenny Sinclair 《Global Change Biology》2016,22(6):2106-2124
Accurate ground‐based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost‐effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above‐ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power‐law models explained 84–95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand‐based biomass from allometric models of varying levels of generalization (species‐specific, plant functional type) were validated using whole‐plot harvest data from 17 contrasting stands (range: 9–356 Mg ha?1). Losses in efficiency of prediction were <1% if generalized models were used in place of species‐specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand‐level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost‐effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species‐specific models is only warranted when gains in accuracy of stand‐based predictions are relatively high (e.g. high‐value monocultures).  相似文献   

11.
  总被引:4,自引:0,他引:4  
The Mongolian Steppe is one of the largest remaining grassland ecosystems. Recent studies have reported widespread decline of vegetation across the steppe and about 70% of this ecosystem is now considered degraded. Among the scientific community there has been an active debate about whether the observed degradation is related to climate, or over‐grazing, or both. Here, we employ a new atmospheric correction and cloud screening algorithm (MAIAC) to investigate trends in satellite observed vegetation phenology. We relate these trends to changes in climate and domestic animal populations. A series of harmonic functions is fitted to Moderate Resolution Imaging Spectroradiometer (MODIS) observed phenological curves to quantify seasonal and inter‐annual changes in vegetation. Our results show a widespread decline (of about 12% on average) in MODIS observed normalized difference vegetation index (NDVI) across the country but particularly in the transition zone between grassland and the Gobi desert, where recent decline was as much as 40% below the 2002 mean NDVI. While we found considerable regional differences in the causes of landscape degradation, about 80% of the decline in NDVI could be attributed to increase in livestock. Changes in precipitation were able to explain about 30% of degradation across the country as a whole but up to 50% in areas with denser vegetation cover (P < 0.05). Temperature changes, while significant, played only a minor role (r2 = 0.10, P < 0.05). Our results suggest that the cumulative effect of overgrazing is a primary contributor to the degradation of the Mongolian steppe and is at least partially responsible for desertification reported in previous studies.  相似文献   

12.
    
In an ecosystem under simultaneous threat from multiple alien species, one invader may buffer the impact of another. Our surveys on a remote floodplain in the Kimberley region of north western Australia show that invasive chinee apple trees (Ziziphus mauritiana) provide critical refuge habitat for native rodents (pale field rats, Rattus tunneyi). Feral horses (Equus caballus) have trampled most of the remaining floodplain, but are excluded from the area around each chinee apple tree by thorny foliage. Although chinee apple trees constituted <10% of trees along our transects, they represented >50% of trees that harboured rat burrows. The mean number of burrows under each chinee apple tree was twice as high as under most other tree species, and we trapped more than seven times as many rats under chinee apple trees as under other types of trees. The extensive burrow systems under chinee apple trees contained female as well as male rats, whereas we only captured males around the smaller burrow systems under other tree species. Our data suggest that this invasive tree plays a critical role in the persistence of pale field rat populations in this degraded ecosystem, and that managers should maintain these trees (despite their alien origins) at least until feral horses have been removed.  相似文献   

13.
    
Long‐lived tree species are genetically differentiated and locally adapted with respect to fitness‐related traits, but the genetic basis of local adaptation remains largely unresolved. Recent advances in population genetics and landscape genomic analyses enable identification of putative adaptive loci and specific selective pressures acting on local adaptation. Here, we sampled 60 evergreen oak (Quercus aquifolioides) populations throughout the species' range and pool‐sequenced 587 individuals at drought‐stress candidate genes. We analyzed patterns of genetic diversity and differentiation for 381 single nucleotide polymorphisms (SNPs) from 65 candidate genes and eight microsatellites. Outlier loci were identified by genetic differentiation analysis and genome–environment associations. The response pattern of genetic variation to environmental gradient was assessed by linear isolation‐by‐distance/environment tests, redundancy analysis, and nonlinear methods. SNPs and microsatellites revealed two genetic lineages: Tibet and Hengduan Mountains–Western Sichuan Plateau (HDM‐WSP), with reduced genetic diversity in Tibet lineage. More outlier loci were detected in HDM‐WSP lineage than Tibet lineage. Among these, three SNPs in two genes responded to dry season precipitation in the HDM‐WSP lineage but not in Tibet. By contrast, genetic variation in the Tibet lineage was related to geographic distance instead of the environment. Furthermore, risk of nonadaptedness (RONA) analyses suggested HDM‐WSP lineage will have a better capacity to adapt in the predicted future climate compared with the Tibet lineage. We detected genetic imprints consistent with natural selection and molecular adaptation to drought on the Qinghai–Tibet Plateau (QTP) over a range of long‐lived and widely distributed oak species in a changing environment. Our results suggest that different within‐species adaptation processes occur in species occurring in heterogeneous environments.  相似文献   

14.
15.
    
Die‐back disease caused by Phomopsis (Diaporthe) azadirachtae is the devastating disease of Azadirachta indica. Accurate identification of P. azadirachtae is always problematic due to morphological plasticity and delayed appearance of conidia. A species‐specific PCR‐based assay was developed for rapid and reliable identification of P. azadirachtae by designing a species‐specific primer‐targeting ITS region of P. azadirachtae isolates. The assay was validated with DNA isolated from different Phomopsis species and other fungal isolates. The PCR assay amplified 313‐bp product from all the isolates of P. azadirachtae and not from any other Phomopsis species or any genera indicating its specificity. The assay successfully detected the pathogen DNA in naturally and artificially infected neem seeds and twigs indicating its applicability in seed quarantine and seed health testing. The sensitivity of the assay was 100 fg when genomic DNA of all isolates was analysed. The PCR‐based assay was 92% effective in comparison with seed plating technique in detecting the pathogen. This is the first report on the development of species‐specific PCR assay for identification and detection of P. azadirachtae. Thus, PCR‐based assay developed is very specific, rapid, confirmatory and sensitive tool for detection of pathogen P. azadirachtae at early stages.  相似文献   

16.
    
  1. The aim of this study was to compare the butterfly assemblages in semi‐natural pastures and power‐line corridors and to analyse the effects of vegetation height, occurrence of trees and shrubs and different flowering vascular plant groups on butterfly diversity and abundance.
  2. Twelve of 26 analysed butterfly species were more abundant in power‐line corridors than in semi‐natural pastures. Only one species preferred semi‐natural pastures.
  3. In semi‐natural pastures butterflies were most common in segments with tall vegetation, whereas butterflies in power‐line corridors were most common in segments with vegetation of short or intermediate height. Short vegetation was sparser in power‐line corridors (mean cover 4%) than in semi‐natural pastures (33%), whereas tall vegetation was more common in power‐line corridors (59%) than in semi‐natural pastures (35%).
  4. The amount of flowers was the factor that affected the abundance of most species. Twenty‐one of the 26 species showed positive associations with numbers of flowers of different families.
  5. Flowers of the plant families Apiaceae, Caryophyllaceae, Primulaceae, Rubiaceae, Scrophulariaceae, and Violaceae showed positive associations with the abundance of several butterfly species.
  6. Vegetation height seems to be a limiting factor in semi‐natural pastures, and less intensive management (division of pastures into grazing pens, late season grazing, grazing every second year, or reduced grazing pressure) would benefit butterflies. In power‐line corridors (dominated by tall vegetation) the opposite would be beneficial for butterflies, for example more frequent clearing of vegetation along the power‐line trails combined with mowing of selected areas.
  相似文献   

17.
    
  1. The Mojave Desert of the southwestern U.S. is home to two protected species of poppy in the genus Arctomecon Torr. & Frém. (Papaveraceae). A pollinator of these species is the specialist bee Perdita meconis Griswold (Andrenidae) a specialist on poppy pollen.
  2. Recently, the easternmost population of P. meconis, which was associated with A. humilis Coville in Utah, has become locally extinct, and other historically associated bee pollinators have become scarce. Implicated in the disruption of this pollination system is invasion by the Africanised honey bee.
  3. Here we report on the status of P. meconis in historic populations associated with congener A. californica Torr. & Frém., 100 km west in Clark Co., Nevada where the Africanised honey bee is also adventive.
  4. We surveyed flower visitors at eight A. californica populations in 2017, six of which had been surveyed in 1995. In general, we found no disruptions of the historic pollination system of A. californica despite the presence of abundant Africanised honey bees, which largely foraged at other flower species.
  5. The most likely cause of the disparate effects of the Africanised honey bee in Utah and Nevada is livestock grazing. Grazing in Utah has been continuous for over three decades and while cattle do not graze A. humilis, they graze its floral competitors, forcing honey bees to forage on poppy flowers. In Nevada, protections afforded to the desert tortoise halted grazing approximately when the Africanised honey bee invaded, making diverse floral forage available for honey bees.
  相似文献   

18.
Climate change impacts, such as accelerated sea‐level rise, will affect stress gradients, yet impacts on competition/stress tolerance trade‐offs and shifts in distributions are unclear. Ecosystems with strong stress gradients, such as estuaries, allow for space‐for‐time substitutions of stress factors and can give insight into future climate‐related shifts in both resource and nonresource stresses. We tested the stress gradient hypothesis and examined the effect of increased inundation stress and biotic interactions on growth and survival of two congeneric wetland sedges, Schoenoplectus acutus and Schoenoplectus americanus. We simulated sea‐level rise across existing marsh elevations and those not currently found to reflect potential future sea‐level rise conditions in two tidal wetlands differing in salinity. Plants were grown individually and together at five tidal elevations, the lowest simulating an 80‐cm increase in sea level, and harvested to assess differences in biomass after one growing season. Inundation time, salinity, sulfides, and redox potential were measured concurrently. As predicted, increasing inundation reduced biomass of the species commonly found at higher marsh elevations, with little effect on the species found along channel margins. The presence of neighbors reduced total biomass of both species, particularly at the highest elevation; facilitation did not occur at any elevation. Contrary to predictions, we documented the competitive superiority of the stress tolerator under increased inundation, which was not predicted by the stress gradient hypothesis. Multifactor manipulation experiments addressing plant response to accelerated climate change are integral to creating a more realistic, valuable, and needed assessment of potential ecosystem response. Our results point to the important and unpredicted synergies between physical stressors, which are predicted to increase in intensity with climate change, and competitive forces on biomass as stresses increase.  相似文献   

19.
    
African savanna termite mounds function as nutrient‐rich foraging hotspots for different herbivore species, but little is known about their effects on the interaction between domestic and wild herbivores. Understanding such effects is important for better management of these herbivore guilds in landscapes where they share habitats. Working in a central Kenyan savanna ecosystem, we compared selection of termite mound patches by cattle between areas cattle accessed exclusively and areas they shared with wild herbivores. Termite mound selection index was significantly lower in the shared areas than in areas cattle accessed exclusively. Furthermore, cattle used termite mounds in proportion to their availability when they were the only herbivores present, but used them less than their availability when they shared foraging areas with wild herbivores. These patterns were associated with reduced herbage cover on termite mounds in the shared foraging areas, partly indicating that cattle and wild herbivores compete for termite mound forage. However, reduced selection of termite mound patches was also reinforced by higher leafiness of Brachiaria lachnantha (the principal cattle diet forage species) off termite mounds in shared than in unshared areas. Taken together, these findings suggest that during wet periods, cattle can overcome competition for termite mounds by taking advantage of wildlife‐mediated increased forage leafiness in the matrix surrounding termite mounds. However, this advantage is likely to dissipate during dry periods when forage conditions deteriorate across the landscape and the importance of termite mounds as nutrient hotspots increases for both cattle and wild herbivores. Therefore, we suggest that those managing for both livestock production and wildlife conservation in such savanna landscapes should adopt grazing strategies that could lessen competition for forage on termite mounds, such as strategically decreasing stock numbers during dry periods.  相似文献   

20.
    
Corvids are often viewed as efficient predators capable of limiting prey species populations. Despite this widely held belief, a comprehensive review quantifying the effect of corvids on the demography of prey species is lacking. We examine the impacts of crows, ravens Corvus spp. and Eurasian Magpies Pica pica on the population parameters of other bird species. We summarize results from 42 studies, which included 326 explicit evaluations of relationships between a corvid and a potential prey species. Population parameters of studied prey species were categorized as abundance‐related (numbers, nest density) or productivity‐related (nest success, brood size). Information from both experimental removal studies and correlative studies was examined. Combining all studies, no negative influence of corvids on either abundance or productivity of prey species was found in 81% of cases. Negative impacts were significantly more likely in cases examining productivity rather than abundance (46 vs. 10%). Experimental studies that removed only corvid species were significantly less likely to show a positive impact on productivity than those removing corvids alongside other predators (16 vs. 60%). This suggests that the impact of corvids is smaller than that of other predators, or that compensatory predation occurs. The impact of corvids was similar between diverse avian groups (such as gamebirds, passerines and waders; or ground‐nesting and other species). Crows were found to be significantly more likely to have a negative impact on prey species productivity than were Magpies (62 vs. 12%), but no differences were found in relation to prey abundance. We conclude that while corvids can have a negative impact on bird species, their impact is small overall, and nearly five times more frequent for productivity than for abundance. These results suggest that in most cases bird populations are unlikely to be limited by corvid predation and that conservation measures may generally be better targeted at other limiting factors. However, negative impacts were found in a minority of cases, and those may require further investigation to develop management tools to mitigate such impacts where they are of economic or conservation concern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号