首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liver fibrosis is a growing global health problem characterized by excess deposition of fibrillar collagen, and activation of hepatic stellate cells (HSCs). Adiponectin is known to possess anti-fibrotic properties; however a high physiological concentration and multiple forms circulating in blood prohibit clinical use. Recently, an adiponectin-like small synthetic peptide agonist (ADP355: H-DAsn-Ile-Pro-Nva-Leu-Tyr-DSer-Phe-Ala-DSer-NH2) was synthesized for the treatment of murine breast cancer. The present study was designed to evaluate the efficacy of ADP355 as an anti-fibrotic agent in the in vivo carbon tetrachloride (CCl4)-induced liver fibrosis model. Liver fibrosis was induced in eight-week old male C57BL/6J mice by CCl4-gavage every other day for four weeks before injection of a nanoparticle-conjugated with ADP355 (nano-ADP355). Control gold nanoparticles and nano-ADP355 were administered by intraperitoneal injection for two weeks along with CCl4-gavage. All mice were sacrificed after 6 weeks, and serum and liver tissue were collected for biochemical, histopathologic and molecular analyses. Biochemical studies suggested ADP355 treatment attenuates liver fibrosis, determined by reduction of serum aspartate aminotransferase (AST), alanine aminotransferase ALT) and hydroxyproline. Histopathology revealed chronic CCl4-treatment results in significant fibrosis, while ADP355 treatment induced significantly reversed fibrosis. Key markers for fibrogenesis–α-smooth muscle actin (α-SMA), transforming growth factor-beta1 (TGF-β1), connective tissue growth factor (CTGF), and the tissue inhibitor of metalloproteinase I (TIMP1) were also markedly attenuated. Conversely, liver lysates from ADP355 treated mice increased phosphorylation of both endothelial nitric oxide synthase (eNOS) and AMPK while AKT phosphorylation was diminished. These findings suggest ADP355 is a potent anti-fibrotic agent that can be an effective intervention against liver fibrosis.  相似文献   

2.

Aims

We investigated the protective effect of berberine (BBR) on chronic liver fibrosis in mice and the potential mechanism underlying the activation of AMP-activated protein kinase (AMPK) pathway.

Main methods

CCl4-induced chronic liver fibrosis model in mice was established and activated rat hepatic stellate cell was treated with BBR. Cell viability was evaluated by SRB assay and protein expressions were detected by Western blot.

Key findings

Our results showed that BBR ameliorated the liver fibrosis in mice with CCl4-induced liver injury and inhibited the proliferation of hepatic stellate cell in dose- and time-dependent manner. BBR decreased the enzyme release of ALT, AST, and ALP in serum, elevated SOD and reduced MDA content of liver tissue in CCl4-induced liver fibrosis model. BBR delayed the formation of regenerative nodules and reduced necrotic areas compared to CCl4 group. Moreover, BBR treatment activated AMPK, decreased the protein expression of Nox4, TGF-β1 and the phosphorylated Akt. The expression of smooth muscle actin (α-SMA), the marker of activated hepatic stellate cell, was also reduced by BBR treatment.

Significance

Our studies firstly demonstrated that BBR exerted hepatoprotective effects possibly via activation of AMPK, blocking Nox4 and Akt expression. Our findings may benefit the development of new strategies in the prevention of chronic liver disease.  相似文献   

3.
目的:研究Notch通路在肝纤维发生发展中作用及可能的分子机制。方法:Wistar大鼠40只随机分为正常对照组与病理模型组,病理模型组皮下注射四氯化碳制备肝纤维化模型。8周后将大鼠处死,取肝组织行病理HE染色评价肝纤维化程度并采用免疫组织化学法检测Notch-1蛋白、E-cadherin蛋白与TGF-β1蛋白的表达。结果:肝组织病理HE染色示肝纤维化大鼠肝脏肝细胞坏死、再生明显,胶原纤维沉积明显增加,肝实质结构紊乱。与正常对照组相比,病理模型组notch-1与TGF-β1蛋白表达明显增加,而E-cadherin蛋白的表达明显下降(P<0.01)。结论:Notch通路在大鼠肝纤维化发生发展中可能起重要作用。  相似文献   

4.
Regulation on the function of the hepatic stellate cells (HSCs) is one of the proposed therapeutic approaches to liver fibrosis. In the present study, we examined the in vitro and in vivo effects of CPU-II2, a novel synthetic oleanolic acid (OLA) derivative with nitrate, on hepatic fibrosis. This compound alleviated CCl4-induced hepatic fibrosis in mice with a decrease in hepatic hydroxyproline (Hyp) content and histological changes. CPU-II2 also attenuated the mRNA expression of α-smooth muscle actin (α-SMA) and tissue inhibitor of metalloproteinase type 1 (TIMP-1) induced by CCl4 in mice and reduced both mRNA and protein levels of α-SMA in HSC-T6 cells. Interestingly, CPU-II2 did not affect the survival of HSC-T6 cells but decreased the expression of procollagen-α1 (I) in HSC-T6 cells through down-regulating the phosphorylation of p38 MAPK. Conclusion: CPU-II2 attenuates the development of liver fibrosis rather by regulating the function of HSCs through p38 MAPK pathway than by damaging the stellate cells.  相似文献   

5.
Sirtuin3 (SIRT3) plays an important role in maintaining normal mitochondrial function and alleviating oxidative stress. After carbon tetrachloride (CCl4) administration, the expression of SIRT3 decreased in the liver of mice, which indicated that the SIRT3 might play a crucial role during chemical‐induced acute hepatic injury. To verify the hypothesis, CCl 4 was given to induce acute hepatic injury in SIRT3 knockout (KO) mice and wild‐type (WT) mice. CCl 4‐induced liver injury was more severe in SIRT3 KO mice compared with the WT mice. In addition, the oxidative stress induced by CCl 4 was enhanced in the SIRT3 KO mice. Furthermore, the increased expression of dynamin‐related protein 1 was also aggravated in SIRT3 KO mice after CCl 4 administration. In conclusion, our study demonstrated that SIRT3 deficiency exacerbated CCl 4‐induced impairment of the liver in mice, and the mechanism might be related to enhanced oxidative stress.  相似文献   

6.
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is critical in the pathogenesis of alcoholic liver cirrhosis. However, the effect of ALHD2 on liver fibrosis remains to be further elucidated. This study aimed to demonstrate whether ALDH2 regulates carbon tetrachloride (CCl4)‐induced liver fibrosis and to investigate the efficacy of Alda‐1, a specific activator of ALDH2, on attenuating liver fibrosis. ALDH2 expression was increased after chronic CCl4 exposure. ALDH2 deficiency accentuated CCl4‐induced liver fibrosis in mice, accompanied by increased expression of collagen 1α1, α‐SMA and TIMP‐1. Moreover, ALDH2 knockout triggered more ROS generation, hepatocyte apoptosis and impaired mitophagy after CCl4 treatment. In cultured HSC‐T6 cells, ALDH2 knockdown by transfecting with lentivirus vector increased ROS generation and α‐SMA expression in an in vitro hepatocyte fibrosis model using TGF‐β1. ALDH2 overexpression by lentivirus or activation by Alda‐1 administration partly reversed the effect of TGF‐β1, whereas ALDH2 knockdown totally blocked the protective effect of Alda‐1. Furthermore, Alda‐1 administration protected against liver fibrosis in vivo, which might be mediated through up‐regulation of Nrf2/HO‐1 cascade and activation of Parkin‐related mitophagy. These findings indicate that ALDH2 deficiency aggravated CCl4‐induced hepatic fibrosis through ROS overproduction, increased apoptosis and mitochondrial damage, whereas ALDH2 activation through Alda‐1 administration alleviated hepatic fibrosis partly through activation of the Nrf2/HO‐1 antioxidant pathway and Parkin‐related mitophagy, which indicate ALDH2 as a promising anti‐fibrotic target and Alda‐1 as a potential therapeutic agent in treating CCl4‐induced liver fibrosis.  相似文献   

7.
In this study we investigated TNF-alpha and leptin levels in two different liver fibrosis models induced by carbon tetrachloride (CCl(4)) and common bile duct ligation (CBDL). A total of 36 male rats of Albino-Wistar strain were allocated to three groups. One of the groups was the control. The second group received 0.15 ml 100 g(-1) CCl(4) subcutaneously for 6 weeks, 3 days per week. The third group underwent common bile duct ligation (CBDL) and was monitored for 4 weeks. Histopathological investigation included fibrosis, steatosis and inflammation. Serum IL-6 and TNF-alpha levels were analysed by ELISA methods and leptin was analysed by RIA. Fibrosis and steatosis increased significantly in the CCl(4) group in comparison with the CBDL group (p < 0.01; p < 0.001). Leptin and TNF-alpha levels in CCl(4) group were higher than those in the CBDL and control groups (p < 0.05). TNF-alpha and leptin levels were not related to each another in either the CCl(4) group or the CBDL group (r=0.22, p > 0.05; r=0.19, p > 0.05). The IL-6 level was higher in the CCl(4) group in relation to severity of inflammation (p < 0.05). TNF-alpha and leptin levels were higher in animals with liver fibrosis induced by CCl(4), than they were in those whose liver fibrosis was induced by common bile duct ligation. Leptin and TNF-alpha may be less effective on the development of liver fibrosis in the group which underwent common bile duct ligation.  相似文献   

8.
At present, liver fibrosis is a major challenge of global health. When hepatocyte regeneration cannot compensate for hepatocyte death, it will develop into liver fibrosis in chronic liver disease. Initially, collagen produced by myofibroblasts plays a role in maintaining liver integrity, but excessive collagen accumulation can inhibit the residual liver function, leading to liver failure. At present, many scientists are actively looking for drugs to alleviate liver fibrosis. In the current study, we investigated the potential role of uridine in the treatment of liver fibrosis (uridine is a plant/animal‐derived pyrimidine nucleoside, therefore uridine can also be ingested and absorbed by the body, accompanied by the process of food intake). For this, we systematically studied the effect of uridine on CCl4‐induced liver fibrosis in vitro and in vivo through a series of technologies, such as Western blot, laser confocal scanning microscope, ELISA and immunohistochemistry. The experimental results showed that uridine can effectively reduce the accumulation of collagen in liver. Furthermore, uridine can improve the activity of liver cells and alleviate CCl4‐induced liver injury. Furthermore, uridine can significantly alleviate the risk factors caused by hepatic stellate cell activation, uridine treatment significantly down‐regulated the expression of α‐SMA, collagen type‐I and fibronectin. In conclusion, the current research shows that uridine can alleviate CCl4‐induced liver fibrosis, suggesting that uridine can be used as a potential drug to alleviate liver fibrosis.  相似文献   

9.
The transition from liver fibrosis to hepatocellular carcinoma (HCC) has been suggested to be a continuous and developmental pathological process. MicroRNAs (miRNAs) are recently discovered molecules that regulate the expression of genes involved in liver disease. Many reports demonstrate that miR‐483‐5p and miR‐483‐3p, which originate from miR‐483, are up‐regulated in HCC, and their oncogenic targets have been identified. However, recent studies have suggested that miR‐483‐5p/3p is partially down‐regulated in HCC samples and is down‐regulated in rat liver fibrosis. Therefore, the aberrant expression and function of miR‐483 in liver fibrosis remains elusive. In this study, we demonstrate that overexpression of miR‐483 in vivo inhibits mouse liver fibrosis induced by CCl4. We demonstrate that miR‐483‐5p/3p acts together to target two pro‐fibrosis factors, platelet‐derived growth factor‐β and tissue inhibitor of metalloproteinase 2, which suppress the activation of hepatic stellate cells (HSC) LX‐2. Our work identifies the pathway that regulates liver fibrosis by inhibiting the activation of HSCs.  相似文献   

10.
Matrix metalloproteinase (MMP) plays an important role in homeostatic regulation of the extracellular environment and degradation of matrix. During liver fibrosis, several MMPs, including MMP-2, are up-regulated in activated hepatic stellate cells, which are responsible for exacerbation of liver cirrhosis. However, it remains unclear how loss of MMP-2 influences molecular dynamics associated with fibrogenesis in the liver. To explore the role of MMP-2 in hepatic fibrogenesis, we employed two fibrosis models in mice; toxin (carbon tetrachloride, CCl4)-induced and cholestasis-induced fibrosis. In the chronic CCl4 administration model, MMP-2 deficient mice exhibited extensive liver fibrosis as compared with wild-type mice. Several molecules related to activation of hepatic stellate cells were up-regulated in MMP-2 deficient liver, suggesting that myofibroblastic change of hepatic stellate cells was promoted in MMP-2 deficient liver. In the cholestasis model, fibrosis in MMP-2 deficient liver was also accelerated as compared with wild type liver. Production of tissue inhibitor of metalloproteinase 1 increased in MMP-2 deficient liver in both models, while transforming growth factor β, platelet-derived growth factor receptor and MMP-14 were up-regulated only in the CCl4 model. Our study demonstrated, using 2 experimental murine models, that loss of MMP-2 exacerbates liver fibrosis, and suggested that MMP-2 suppresses tissue inhibitor of metalloproteinase 1 up-regulation during liver fibrosis.  相似文献   

11.
Hepatic fibrosis involves the interplay of many factors including reactive oxygen species. Recent reports described antioxidant properties of glycosaminoglycans (GAGs). Since several findings have shown that hyaluronic acid (HYA) and chondroitin-4-sulphate (C4S) may act as antioxidant molecules, the aim of this research was to evaluate the antioxidant effects of HYA and C4S treatment in a rat model of liver fibrosis. The effect on tissue inhibitors of metalloproteinases (TIMPs) was also studied. Liver fibrosis was induced in rats by eight intraperitoneal injections of CCl4, twice a week for 6 weeks. HYA or C4S alone (25 mg/kg) or HYA and C4S in combination (12.5 + 12.5 mg/kg) were administered daily by the same route during the 6 weeks. At the end of the 6-week treatment period (24 h after the last dose of GAGs), the following parameters were evaluated: (1) serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, as index of hepatic cell disruption; (2) hepatic conjugated dienes (CD), as index of lipid peroxidation; (3) hepatic TIMPs activity and expression; (4) hepatic superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity, as index of endogenous defences; (5) hepatic hydroxyproline, as index of collagen deposition. CCl4-induced liver fibrosis enhanced lipid peroxidation and TIMPs activation, increased ALT and AST, depleted antioxidants SOD and GPx, and caused collagen deposition in liver tissue. Treatment with GAGs, especially when in combination, successfully reduced ALT and AST rise, lipid peroxidation by evaluating conjugated dienes, TIMPs activation and mRNA expression, partially restored SOD and GPx activities, and limited collagen deposition in the hepatic tissue. The data obtained showed that these molecules were able to limit hepatic injury induced by chronic CCl4 intoxication and especially limited liver fibrosis. They also confirm that HYA and C4S may exert antioxidant mechanism, while reduction of TIMPs expression suggests that GAGs may influence MMPs and TIMPs imbalance in liver fibrosis.  相似文献   

12.
Liver fibrosis is the excessive accumulation of extracellular matrix proteins in response to the inflammatory response that accompanies tissue injury, which at an advanced stage can lead to cirrhosis and even liver failure. This study investigated the role of the CXC chemokine CXCL6 (GCP‐2) in liver fibrosis. The expression of CXCL6 was found to be elevated in the serum and liver tissue of high stage liver fibrosis patients. Furthermore, treatment with CXCL6 (100 ng/mL) stimulated the phosphorylation of EGFR and the expression of TGF‐β in cultured Kupffer cells (KCs). Although treatment with CXCL6 directly did not activate the hepatic stellate cell (HSC) line, HSC‐T6, HSCs cultured with media taken from KCs treated with CXCL6 or TGF‐β showed increased expression of α‐SMA, a marker of HSC activation. CXCL6 was shown to function via the SMAD2/BRD4/C‐MYC/EZH2 pathway by enhancing the SMAD3‐BRD4 interaction and promoting direct binding of BRD4 to the C‐MYC promoter and CMY‐C to the EZH2 promoter, thereby inducing profibrogenic gene expression in HSCs, leading to activation and transdifferentiation into fibrogenic myofibroblasts. These findings were confirmed in a mouse model of CCl4‐induced chronic liver injury and fibrosis in which the levels of CXCL6 and TGF‐β in serum and the expression of α‐SMA, SMAD3, BRD4, C‐MYC, and EZH2 in liver tissue were increased. Taken together, our results reveal that CXCL6 plays an important role in liver fibrosis through stimulating the release of TGF‐β by KCs and thereby activating HSCs.  相似文献   

13.
肝纤维化动物模型探讨   总被引:3,自引:0,他引:3  
目的 寻找肝纤维化最佳模型.方法 将Wistar大鼠随机分成血清组、四氯化碳皮下注射组、四氯化碳腹腔注射组,每组30只,各组分别给予猪血清腹腔注射、40%四氯化碳皮下和腹腔注射造模(每周2次),观察造模过程中大鼠死亡情况以及4周及6周各组大鼠肝纤维化的程度.结果 3种方法都能成功制备肝纤维化模型.从动物死亡情况来看,四氯化碳腹腔注射组死亡率明显高于前两组;血清组死亡率最低,但与四氯化碳皮下注射组比较无显著差异;从模型形成时间来看,血清组造模时间较长,明显高于其他两组,四氯化碳皮下注射组与四氯化碳腹腔注射组在模型形成时间上无明显差异.结论 四氯化碳皮下注射组制备肝纤维化模型动物死亡率较低,肝纤维化形成时间较短,是一种制作肝纤维化模型较好的方法.  相似文献   

14.
BACKGROUND/AIMS: Fibrosis occurs in most chronic liver injuries and results from changes in the balance between synthesis and degradation of extracellular matrix (ECM) components. Matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs) are known to regulate the ECM turnover. We investigate the effect of modified synthetic small interfering RNA (siRNA) targeting TIMP-2 in rat model of liver fibrosis. METHODS: Rat hepatic fibrosis was induced by CCl4 for 8 weeks. After the 2-week CCl4 injection period, rats in the three siRNA groups simultaneously received a different dosage (0.05, 0.1 and 0.2 mg.kg(-1), respectively) of modified synthetic siRNA targeting TIMP-2 via the tail vein every 3 days for 6 weeks. The pathological changes in liver tissues were observed by light microscopy and transmission electron microscopy. Portal vein pressure and proliferating cell nuclear antigen were measured. Expression of TIMP-2, MMP-2, MT1-MMP, MMP-13, hepatocyte growth factor, collagen type I, collagen type III and alpha-SMA were evaluated by quantitative real-time polymerase chain reaction or Western blotting or gelatin zymography. RESULTS: Modified synthetic siRNA targeting TIMP-2 induced a dose-dependent inhibition of the TIMP-2 expression in the rat model of liver fibrosis with a similar trend in MMP-2 and MT1-MMP, but an increase in MMP-13. Rats administered siRNA targeting TIMP-2 showed promotion of ECM degradation, reduction in activated hepatic stellate cells and enhancement of hepatocyte regeneration. Furthermore, portal hypertension was also ameliorated after treatment with siRNA targeting TIMP-2. CONCLUSIONS: Knock-down of TIMP-2 expression attenuates CCl4-induced liver fibrosis and is a potential pharmacological target for gene therapy in liver fibrosis.  相似文献   

15.
MethodsIn vivo, we induced liver fibrosis by bile duct ligation (BDL), chronic carbon tetrachloride (CCl4), and chronic thioacetamide (TAA) administration. Liver fibrosis was examined by immunohistochemistry and Western immunoblotting. In vitro, we used LX-2 human hepatic stellate cells (HSCs) to assess the effect of brivanib on stellate cell proliferation and activation.ResultsAfter in vivo induction with BDL, CCl4, and TAA, mice treated with brivanib showed reduced liver fibrosis and decreased expression of collagen Iα1 and α-smooth muscle actin in the liver. In vitro, brivanib decreased proliferation of HSCs induced by platelet-derived growth factor (PDGF), VEGF, and FGF. Brivanib also decreased stellate cell viability and inhibited PDGFBB-induced phosphorylation of its cognate receptor.ConclusionBrivanib reduces liver fibrosis in three different animal models and decreases human hepatic stellate cell activation. Brivanib may represent a novel therapeutic approach to treatment of liver fibrosis and prevention of liver cancer.  相似文献   

16.
Coagulation factor Xa appears involved in the pathogenesis of pulmonary fibrosis. Through its interaction with protease activated receptor-1, this protease signals myofibroblast differentiation in lung fibroblasts. Although fibrogenic stimuli induce factor X synthesis by alveolar cells, the mechanisms of local posttranslational factor X activation are not fully understood. Cell-derived microparticles are submicron vesicles involved in different physiological processes, including blood coagulation; they potentially activate factor X due to the exposure on their outer membrane of both phosphatidylserine and tissue factor. We postulated a role for procoagulant microparticles in the pathogenesis of interstitial lung diseases. Nineteen patients with interstitial lung diseases and 11 controls were studied. All subjects underwent bronchoalveolar lavage; interstitial lung disease patients also underwent pulmonary function tests and high resolution CT scan. Microparticles were enumerated in the bronchoalveolar lavage fluid with a solid-phase assay based on thrombin generation. Microparticles were also tested for tissue factor activity. In vitro shedding of microparticles upon incubation with H2O2 was assessed in the human alveolar cell line, A549 and in normal bronchial epithelial cells. Tissue factor synthesis was quantitated by real-time PCR. Total microparticle number and microparticle-associated tissue factor activity were increased in interstitial lung disease patients compared to controls (84±8 vs. 39±3 nM phosphatidylserine; 293±37 vs. 105±21 arbitrary units of tissue factor activity; mean±SEM; p<.05 for both comparisons). Microparticle-bound tissue factor activity was inversely correlated with lung function as assessed by both diffusion capacity and forced vital capacity (r2 = .27 and .31, respectively; p<.05 for both correlations). Exposure of lung epithelial cells to H2O2 caused an increase in microparticle-bound tissue factor without affecting tissue factor mRNA.Procoagulant microparticles are increased in interstitial lung diseases and correlate with functional impairment. These structures might contribute to the activation of factor X and to the factor Xa-mediated fibrotic response in lung injury.  相似文献   

17.
18.
Kang M  Jeong SJ  Park SY  Lee HJ  Kim HJ  Park KH  Ye SK  Kim SH  Lee JW 《The FEBS journal》2012,279(4):625-635
The development of liver fibrosis from chronic inflammation can involve epithelial-mesenchymal transition (EMT). Severe liver fibrosis can progress to cirrhosis, and further to hepatocellular carcinoma. Because the tetraspanin transmembrane 4 L6 family member 5 (TM4SF5) induces EMT and is highly expressed in hepatocellular carcinoma, it is of interest to investigate whether TM4SF5 expression is correlated with EMT processes during the development of fibrotic liver features. Using hepatic cells in vitro and a CCl(4) -mediated mouse liver in?vivo model, we examined whether TM4SF5 is expressed during liver fibrosis mediated by CCl(4) administration and whether treatment with anti-TM4SF5 reagent blocks the fibrotic liver features. Here, we found that TM4SF5 expression was induced by the transforming growth factor (TGF)β1 and epidermal growth factor signaling pathways in hepatocytes in vitro. In the CCl(4) -mediated mouse liver model, TM4SF5 was expressed during the liver fibrosis mediated by CCl(4) administration and correlated with α-smooth muscle actin expression, collagen I deposition, and TGFβ1 and epidermal growth factor receptor signaling activation in fibrotic septa regions. Interestingly, treatment with anti-TM4SF5 reagent blocked the TM4SF5-mediated liver fibrotic features: the formation of fibrotic septa with α-smooth muscle actin expression and collagen I deposition was attenuated by treatment with anti-TM4SF5 reagent. These results suggest that TM4SF5 expression mediated by TGFβ1 and growth factor can facilitate fibrotic processes during chronic liver injuries. TM4SF5 is thus a candidate target for prevention of liver fibrosis following chronic liver injury.  相似文献   

19.
As an outcome of chronic liver disease, liver fibrosis involves the activation of hepatic stellate cells (HSCs) caused by a variety of chronic liver injuries. It is important to explore approaches to inhibit the activation and proliferation of HSCs for the treatment of liver fibrosis. PLK1 is overexpressed in many human tumour cells and has become a popular drug target in tumour therapy. Therefore, further study of the function of PLK1 in the cell cycle is valid. In the present study, we found that PLK1 expression was elevated in primary HSCs isolated from CCl4‐induced liver fibrosis mice and LX‐2 cells stimulated with TGF‐β1. Knockdown of PLK1 inhibited α‐SMA and Col1α1 expression and reduced the activation of HSCs in CCl4‐induced liver fibrosis mice and LX‐2 cells stimulated with TGF‐β1. We further showed that inhibiting the expression of PLK1 reduced the proliferation of HSCs and promoted HSCs apoptosis in vivo and in vitro. Furthermore, we found that the Wnt/β‐catenin signalling pathway may be essential for PLK1‐mediated HSCs activation. Together, blocking PLK1 effectively suppressed liver fibrosis by inhibiting HSC activation, which may provide a new treatment strategy for liver fibrosis.  相似文献   

20.
目的:观察肝脏特异性SIRT1敲除(SIRT1-LKO)小鼠在四氯化碳(CCL4)诱导下的肝纤维化情况,系统地探讨SIRT1及转录差异基因在肝纤维化中的作用和机制。方法:利用Cre-Lox P重组酶系统构建SIRT1-LKO小鼠模型,经腹腔注射CCL4橄榄油溶液来诱导小鼠肝纤维化,通过血清生化检测肝功能,使用天狼星红染色观察肝脏胶原蛋白沉积,检测α-平滑肌肌动蛋白(α-SMA)的表达来观察肝星状细胞(HSCs)的活化,并进一步利用基因芯片技术和生物信息学分析来筛选转录差异基因。结果:在CCL4诱导下,SIRT1-LKO小鼠比同窝野生(WT)小鼠的肝损伤更加严重,肝纤维化也更为显著(P0.05);通过对转录差异基因进行GO生物过程和KEGG通路分析,发现了一组可能与SIRT1和肝纤维化都存在相关的关键基因(TNC、TPM1、E2F1、DEFB1、LRTM1)。结论:SIRT1缺失会增加CCL4诱导的小鼠肝损伤,加重肝纤维化;SIRT1可能与上述基因协同参与了肝纤维化的发生发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号