首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Majority of current treatment strategies against erectile dysfunction (ED) has been consisted of only a supportive care to sustain enough erection during a sexual intercourse. In this study, we investigated whether the cultured conditioned medium of human exfoliated deciduous dental pulp stem cells (SHED‐CM) had an ability to treat ED through fundamentally repairing the pathological damage of vascular endothelial cells of the corpus cavernosum. An open‐label pilot study was performed from April 2016 to October 2020. SHED‐CM was injected directly into the corpus cavernosum of penis of 38 ED patients who visited our clinic and fulfilled the inclusion criteria. Efficacy was assessed using the simplified International Index of Erectile Function (IIEF‐5) questionnaire. The average age and initial IIEF‐5 score of the patients enrolled in this study was 56 (31–79) years old and 13.1 (5–20) points, respectively. Medical history revealed 7 patients with diabetes, 7 patients with hypertension and 1 patient with priapism undergone shunt operation. Of these, 37 patients (97.4%) showed an improvement in IIEF‐5 of an average of 19.3 (7–25) points or 64.4 (10–300) % increase after three injections of SHED‐CM. Eighteen patients (47.4%) achieved more than 21 points (no ED) in IIEF‐5. No adverse events were encountered. This is the first clinical report of ED treatment in the literatures evaluating the efficacy of SHED‐CM. Treatment with SHED‐CM is expected to repair vascular damages of the corpus cavernosum, which are the main cause of ED, and to be widely spread as a fundamental clinical application for ED.  相似文献   

2.
AIM: To investigate the effect of stem cells from human exfoliated deciduous teeth(SHED) transplanted for bone regeneration in the dog mandibular defect.METHODS: In this prospective comparative study, SHEDs had been isolated 5 years ago from human exfoliated deciduous teeth. The undifferentiated stem cells were seeded into mandibular bone through-andthrough defects of 4 dogs. Similar defects in control group were filled with cell-free collagen scaffold. After 12 wk, biopsies were taken and morphometric analysis was performed. The percentage of new bone formation and foreign body reaction were measured in each case. The data were subject to statistical analysis using the Mann-Whitney U and Kruskalwalis statistical tests. Differences at P 0.05 was considered as significant level.RESULTS: There were no significant differences between control and SHED-seeded groups in connective tissue(P = 0.248), woven bone(P = 0.248) and compact bone(P = 0.082). There were not any side effects in transplanted SHED group such as teratoma or malignancy and abnormalities in this period.CONCLUSION: SHEDs which had been isolated and characterized 5 years ago and stored with cryopreservation banking were capable of proliferation and osteogenesis after 5 years, and no immune response was observed after three months of seeded SHEDs.  相似文献   

3.
Stem cell fate can be induced by the grade of stiffness of the extracellular matrix, depending on the developed tissue or complex tissues. For example, a rigid extracellular matrix induces the osteogenic differentiation in bone marrow derived mesenchymal stem cells (MSCs), while a softer surface induces the osteogenic differentiation in dental follicle cells (DFCs). To determine whether differentiation of ectomesenchymal dental precursor cells is supported by similar grades of extracellular matrices (ECMs) stiffness, we examined the influence of the surface stiffness on the proliferation and osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHED). Cell proliferation of SHED was significantly decreased on cell culture surfaces with a muscle-like stiffness. A dexamethasone-based differentiation medium induced the osteogenic differentiation of SHED on substrates of varying mechanical stiffness. Here, the hardest surface improved the induction of osteogenic differentiation in comparison to that with the softest stiffness. In conclusion, our study showed that the osteogenic differentiation of ectomesenchymal dental precursor cells SHED and DFCs are not supported by similar grades of ECM stiffness.  相似文献   

4.
Enzymatic antioxidant systems, mainly involving mitochondria, are critical for minimizing the harmful effects of reactive oxygen species, and these systems are enhanced by interactions with nonenzymatic antioxidant nutrients. Because fetal growth requires extensive mitochondrial respiration, pregnant women and fetuses are at high risk of exposure to excessive reactive oxygen species. The enhancement of the antioxidant system, e.g., by nutritional management, is therefore critical for both the mother and fetus. Folic acid supplementation prevents homocysteine accumulation and epigenetic dysregulation associated with one-carbon metabolism. However, few studies have examined the antioxidant effects of folic acid for healthy pregnancy outcomes. The purpose of this study was to elucidate the association between the antioxidant effect of folic acid and mitochondria in undifferentiated cells during fetal growth. Neural crest-derived dental pulp stem cells of human exfoliated deciduous teeth were used as a model of undifferentiated cells in the fetus. Pyocyanin induced excessive reactive oxygen species, resulting in a decrease in cell growth and migration accompanied by mitochondrial fragmentation and inactivation in dental pulp stem cells. This damage was significantly improved by folic acid, along with decreased mitochondrial reactive oxygen species, PGC-1α upregulation, DRP1 downregulation, mitochondrial elongation, and increased ATP production. Folic acid may protect undifferentiated cells from oxidative damage by targeting mitochondrial activation. These results provide evidence for a new benefit of folic acid in pregnant women and fetuses.  相似文献   

5.
BACKGROUNDAutoimmune hepatitis is a serious autoimmune liver disease that threatens human health worldwide, which emphasizes the urgent need to identify novel treatments. Stem cells from human exfoliated deciduous teeth (SHED), which are easy to obtain in a non-invasive manner, show pronounced proliferative and immunomodulatory capacities.AIMTo investigate the protective effects of SHED on concanavalin A (ConA)-induced hepatitis in mice, and to elucidate the associated regulatory mechanisms.METHODSWe used a ConA-induced acute hepatitis mouse model and an in vitro co-culture system to study the protective effects of SHED on ConA-induced autoimmune hepatitis, as well as the associated underlying mechanisms.RESULTSSHED infusion could prevent aberrant histopathological liver architecture caused by ConA-induced infiltration of CD3+, CD4+, tumor necrosis-alpha+, and interferon-gamma+ inflammatory cells. Alanine aminotransferase and aspartate aminotransferase were significantly elevated in hepatitis mice. SHED infusion could therefore block ConA-induced alanine aminotransferase and aspartate aminotransferase elevations. Mechanistically, ConA upregulated tumor necrosis-alpha and interferon-gamma expression, which was activated by the nuclear factor-kappa B pathway to induce hepatocyte apoptosis, resulting in acute liver injury. SHED administration protected hepatocytes from ConA-induced apoptosis. CONCLUSIONSHED alleviates ConA-induced acute liver injury via inhibition of hepatocyte apoptosis mediated by the nuclear factor-kappa B pathway. Our findings could provide a potential treatment strategy for hepatitis.  相似文献   

6.
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder characterized by impaired social interactions, restrictive interests, and repetitive stereotypic behaviors. Among the various mechanisms underlying the pathogenesis of ASD, dysfunctions of dopaminergic signaling and mitochondria have been hypothesized to explain the core symptoms of children with ASD. However, only a few studies focusing on the pathological association between dopaminergic neurons (DN) and mitochondria in ASD have been performed using patient-derived stem cells and in vitro differentiated neurons. Stem cells from human exfoliated deciduous teeth (SHED) are neural crest-derived mesenchymal stem cells present in the dental pulp of exfoliated deciduous teeth; these cells can differentiate into dopaminergic neurons (DN) in vitro. This study aimed to investigate the pathological association between development of DN and mitochondria in ASD by using SHED as a disease- or patient-specific cellular model. The SHED obtained from three children with ASD and three typically developing children were differentiated into DN, and the neurobiology of these cells was examined. The DN derived from children with ASD showed impaired neurite outgrowth and branching, associated with decreased mitochondrial membrane potential, ATP production, number of mitochondria within the neurites, amount of mitochondria per cell area and intracellular calcium level. In addition, impaired neurite outgrowth and branching of ASD-derived DN were not improved by brain-derived neurotrophic factor (BDNF), suggesting impairment of the BDNF signaling pathway in ASD. These results imply that intracerebral dopamine production may have decreased in these children. The earliest age at which deciduous teeth spontaneously exfoliate in humans, and SHED can be noninvasively collected, is approximately 6 years. Our results suggest that in vitro analysis of SHED-derived DN obtained from children with ASD provides neurobiological information that may be useful in determining treatment strategies in the early stages of ASD.  相似文献   

7.
8.

Background

This study explored the neural differentiation and therapeutic effects of stem cells from human exfoliated deciduous teeth (SHED) in a rat model of Parkinson's disease (PD).

Methods

The SHED were isolated from fresh dental pulp and were induced to differentiate to neurons and dopamine neurons by inhibiting similar mothers against dpp (SMAD) signaling with Noggin and increase conversion of dopamine neurons from SHED with CHIR99021, Sonic Hedgehog (SHH) and FGF8 in vitro. The neural-primed SHED were transplanted to the striatum of 6-hydroxydopamine (6-OHDA)–induced PD rats to evaluate their neural differentiation and functions in vivo.

Results

These SHED were efficiently differentiated to neurons (62.7%) and dopamine neurons (42.3%) through a newly developed method. After transplantation, the neural-induced SHED significantly improved recovery of the motor deficits of the PD rats. The grafted SHED were differentiated into neurons (61%), including dopamine neurons (22.3%), and integrated into the host rat brain by forming synaptic connections. Patch clamp analysis showed that neurons derived from grafted SHED have the same membrane potential profile as dopamine neurons, indicating these cells are dopamine neuron-like cells. The potential molecular mechanism of SHED transplantation in alleviating motor deficits of the rats is likely to be mediated by neuronal replacement and immune-modulation as we detected the transplanted dopamine neurons and released immune cytokines from SHED.

Conclusion

Using neural-primed SHED to treat PD showed significant restorations of motor deficits in 6-OHDA–induced rats. These observations provide further evidence that SHED can be used for cell-based therapy of PD.  相似文献   

9.
It is well known that interactions between epithelial components and mesenchymal components are essential for tooth development. Therefore, it has been postulated that both types of stem cells might be involved in the regeneration of dental hard tissues. Recently, mesenchymal dental pulp stem cells that have odontogenic potential were identified from human dental pulp. However, the existence of epithelial cells has never been reported in human dental pulp. In the present study, we isolated and characterized epithelial cell-like cells from human deciduous dental pulp. They had characteristic epithelial morphology and expressed epithelial markers. Moreover, they expressed epithelial stem cell-related genes such as ABCG2, Bmi-1, ΔNp63, and p75. Taken together, our findings suggest that epithelial stem cell-like cells might exist in human deciduous dental pulp and might play a role as an epithelial component for the repair or regeneration of teeth.  相似文献   

10.
In addition to bone, the dentin‐pulp complex is also influenced by menopause, showing a decreased regenerative capacity. High levels of follicle‐stimulating hormone (FSH) during menopause could directly regulate bone metabolism. Here, the role of FSH in the odontogenic differentiation of the dentin‐pulp complex was investigated. Dental pulp stem cells (DPSCs) were isolated. CCK‐8 assays, cell apoptosis assays, Western blotting (WB), real‐time RT‐PCR, alkaline phosphatase activity assays, and Alizarin Red S staining were used to clarify the effects of FSH on the proliferation, apoptosis and odontogenic differentiation of the DPSCs. MAPK pathway‐related factors were explored by WB assays. FSH and its inhibitor were used in OVX rats combined with a direct pulp‐capping model. HE and immunohistochemistry were used to detect reparative dentin formation and related features. The results indicated that FSH significantly decreased the odontogenic differentiation of the DPSCs without affecting cell proliferation and apoptosis. Moreover, FSH significantly activated the JNK signalling pathway, and JNK inhibitor partly rescued the inhibitory effect of FSH on DPSC differentiation. In vivo, FSH treatment attenuated the dentin bridge formation and mineralization‐related protein expression in the OVX rats. Our findings indicated that FSH reduced the odontogenic capacity of the DPSCs and was involved in reparative dentinogenesis during menopause.  相似文献   

11.
Dental stem cells can differentiate into different types of cells. Dental pulp stem cells, stem cells from human exfoliated deciduous teeth, periodontal ligament stem cells, stem cells from apical papilla, and dental follicle progenitor cells are five different types of dental stem cells that have been identified during different stages of tooth development. The availability of dental stem cells from discarded or removed teeth makes them promising candidates for tissue engineering. In recent years, three-dimensional (3D) tissue scaffolds have been used to reconstruct and restore different anatomical defects. With rapid advances in 3D tissue engineering, dental stem cells have been used in the regeneration of 3D engineered tissue. This review presents an overview of different types of dental stem cells used in 3D tissue regeneration, which are currently the most common type of stem cells used to treat human tissue conditions.  相似文献   

12.
Previous studies have revealed that long noncoding RNA (lncRNA) and microRNA play a crucial role in autism, which is a childhood neurodevelopmental disorder with complicated genetic origins. Hence, the study concerns whether lncRNA C21orf121/bone morphogenetic proteins 2 (BMP2)/miR-140-5p gene network affects directed differentiation of stem cells from human exfoliated deciduous teeth (SHED) to neuronal cells in rats with autism. Autism models were successfully established. The neuron cells that differentiated from SHED cell were identified. The expression of lncRNA C21orf121, miR-140-5p, BMP2, Nestin, βIII-tubulin, and microtubule-associated protein 2 (MAP2) and the expression of neuron-specific enolase (NSE) were examined. Besides, the gap junction (GJ) function of SHED, the intracellular free Ca 2+ concentration, and the social behavior and repetitive stereotyped movements of rats in autism were detected. The target relationship between lncRNA C21orf121 and miR-140-5p and that between miR-140-5p and BMP2 were also verified. Firstly, we successfully isolated SHED and identified the differentiated neurons of SHED. Besides, the expression of BMP2, MAP2, Nestin, βIII-tubulin, NSE positive rate, GJ function, and intracellular free Ca 2+ concentration were increased with the upregulation of C21orf121 and downregulation of miR-140-5p, and accumulated time of repetitive stereotyped movements decreased and the frequency of social behavior increased. The results indicate that lncRNA C21orf121 as a competing endogenous RNA competes with BMP2 binding to miR-140-5p, thereby promoting SHED to differentiate into neuronal cells via upregulating BMP2 expression.  相似文献   

13.
Recent reports have described that NCSCs (neural crest-derived stem cells) are not only present in the embryonic neural crest but also in the adult tissues. Dental pulp is one of mesenchymal soft tissues origin from cranial neural crest cells, and thought to be a source of adult stem cells. Here, we investigated the existence of NCSC-like cells in apical pulp of human developing tooth. Human impacted third molars with immature apex freshly extracted were obtained. The cells derived from the apical pulp tissue not framed by dentin or the coronal pulp tissues were cultured by primary explant culture. APDCs (apical pulp-derived cells) and CPCs (coronal pulp cells) formed spheres under neurosphere culture condition. The number of spheres from APDCs was larger than that from CPCs. The sphere-forming cells derived from APDCs had self-renewal capacity, and expressed neural crest-associated markers (p75, Snail and Slug) and NSC (neural stem cell) markers (Nestin and Musashi1). The expression pattern of mesenchymal stem cell markers, CD105 and CD166, on the surface of sphere-forming cells derived APDCs was different from that of APDCs. These sphere-forming cells could differentiate into multiple mesenchymal lineages (osteoblasts, adipocytes, chondrocytes and smooth muscle cells) and neural lineage (neurons) in vitro, and generated ectopic bone tissues on the border of HA (hydroxyapatite) scaffold in vivo. The results of this study suggest that APDCs contain cells with characteristics of NCSCs reported previously in mice. Humans developing tooth with immature apex is an effective source of cells for neural crest lineage tissue regeneration.  相似文献   

14.
15.
Multipotent stem cells derived from periodontal ligaments (PDLSC) and pulp of human exfoliated deciduous teeth (SHED) represent promising cell sources for bone regeneration. Recent studies have demonstrated that retinoic acid (RA) and dexamethasone (Dex) induce osteogenesis of postnatal stem cells. The objective of this study was to examine the effects of RA and Dex on the proliferation and osteogenic differentiation of SHED and PDLSC and to compare the osteogenic characteristics of SHED and PDLSC under RA treatment. SHED and PDLSC were treated with serum-free medium either alone or supplemented with RA or Dex for 21 days. The proliferation of SHED and PDLSC was significantly inhibited by both RA and Dex. RA significantly upregulated gene expression and the activity of alkaline phosphatase in SHED and PDLSC. Positive Alizarin red and von Kossa staining of calcium deposition was seen on the RA-treated SHED and PDLSC after 21 days of culture. The influences of RA on the osteogenic differentiation of SHED and PDLSC were significantly stronger than with Dex. Supplemention with insulin enhanced RA-induced osteogenic differentiation of SHED. Thus, RA is an effective inducer of osteogenic differentiation of SHED and PDLSC, whereas RA treatment in combination with insulin supplementation might be a better option for inducing osteogenic differentiation. Significantly higher cell proliferation of PDLSC results in greater calcium deposition after 3-week culture, suggesting that PDLSC is a better osteogenic stem cell source. This study provides valuable information for efficiently producing osteogenically differentiated SHED or PDLSC for in vivo bone regeneration.  相似文献   

16.
Clinically reported reparative benefits of mesenchymal stromal cells (MSCs) are majorly attributed to strong immune‐modulatory abilities not exactly shared by fibroblasts. However, MSCs remain heterogeneous populations, with unique tissue‐specific subsets, and lack of clear‐cut assays defining therapeutic stromal subsets adds further ambiguity to the field. In this context, in‐depth evaluation of cellular characteristics of MSCs from proximal oro‐facial tissues: dental pulp (DPSCs) and periodontal ligament (PDLSCs) from identical donors provides an opportunity to evaluate exclusive niche‐specific influences on multipotency and immune‐modulation. Exhaustive cell surface profiling of DPSCs and PDLSCs indicated key differences in expression of mesenchymal (CD105) and pluripotent/multipotent stem cell–associated cell surface antigens: SSEA4, CD117, CD123 and CD29. DPSCs and PDLSCs exhibited strong chondrogenic potential, but only DPSCs exhibited adipogenic and osteogenic propensities. PDLSCs expressed immuno‐stimulatory/immune‐adhesive ligands like HLA‐DR and CD50, upon priming with IFNγ, unlike DPSCs, indicating differential response patterns to pro‐inflammatory cytokines. Both DPSCs and PDLSCs were hypo‐immunogenic and did not elicit robust allogeneic responses despite exposure to IFNγ or TNFα. Interestingly, only DPSCs attenuated mitogen‐induced lympho‐proliferative responses and priming with either IFNγ or TNFα enhanced immuno‐modulation capacity. In contrast, primed or unprimed PDLSCs lacked the ability to suppress polyclonal T cell blast responses. This study indicates that stromal cells from even topographically related tissues do not necessarily share identical MSC properties and emphasizes the need for a thorough functional testing of MSCs from diverse sources with respect to multipotency, immune parameters and response to pro‐inflammatory cytokines before translational usage.  相似文献   

17.
The α1 subunit (Cav1.2) of the L‐type calcium channel (LTCC), which is presently existing in both excitatory cells and non‐excitatory cells, is involved in the differentiation and proliferation of mesenchymal stem cells (MSCs). Dental pulp stem cells (DPSCs), MSCs derived from dental pulp, exhibit multipotent characteristics similar to those of MSCs. The aim of the present study was to examine the contribution of Cav1.2 and its distal C‐terminus (DCT) to the commitment of rat DPSCs (rDPSCs) toward chondrocytes and adipocytes in vitro. The expression of Cav1.2 was obviously elevated in chondrogenic differentiation but did not differ significantly in adipogenic differentiation. The chondrogenic differentiation but not adipogenic of rDPSCs was inhibited by either blocking LTCC using nimodipine or knockdown of Cav1.2 via short hairpin RNA (shRNA). Overexpression of DCT rescued the inhibition by Cav1.2‐shRNA during chondrogenic differentiation, indicating that DCT is essential for the chondrogenic differentiation of rDPSCs. However, the protein level of DCT decreased after chondrogenic differentiation in wild‐type cells, and overexpression of DCT in rDPSCs inhibited the phenotype. These data suggest that DCT is indispensable for chondrogenic differentiation of rDPSCs but that superfluous DCT inhibits this process. Through the analysis of differentially expressed genes using RNA‐seq data, we speculated that the regulation of DCT might be mediated by the mitogen‐activated protein kinase/extracellular‐regulated kinase and c‐Jun N‐terminal kinase signaling pathways, or Chondromodulin‐1.  相似文献   

18.
ObjectivesTo compare and analyze the secretome profile of stem cells obtained from the deciduous tooth (SHEDs), young (yDPSCs), and old permanent tooth (oDPSCs).MethodsAll the stem cells were assessed for mesenchymal stem cell markers. The stem cells were differentiated into osteoblasts and chondrocytes using lineage-specific differentiation media. Conditioned media was collected from growing stem cells, and a cytometric bead array was performed to estimate secreted cytokines and growth factor levels by flow cytometry. Gene expresseion levels were assessed by real-time quantitative polymerase chain reaction.ResultsAge did not affect the mesenchymal characteristics of dental stem cells from various age groups. The secretomes of SHEDs and young yDPSCs exhibit more growth factors and lesser pro-inflammatory cytokines than oDPSCs. Osteo and chondrogenic differentiation potential were higher in SHEDs and young yDPSCs than in the oDPSCs. TLR1, TLR2, TLR3 show decreased expression levels with age and TLR5, TLR6 show increased expression with age.ConclusionThe superior regenerative potential of SHEDs and yDPSCs may be due to the higher growth factors and lower pro-inflammatory cytokine profile.  相似文献   

19.
20.
In the present study, we examined the effects of sequential exposure to bacterial lipopolysaccharide (LPS) and heat stress on dental pulp cells. LPS induced the proliferation of pulp cells through the activation of p38 MAPK. HSP27 was expressed in cells with or without LPS during the entire period of heat stress, while transiently phosphorylated by short-term heat stress. In LPS-treated cells, short-term heat stress also induced the phosphorylation of HSF1. The immediate phosphorylation of HSF1 and HSP27 in LPS-treated cells by short-term heat stress occurred dependent on the activation of p38 MAPK. However, with long-term heat stress, the activation of HSF1 and induction of HSP27 occurred independent of p38 MAPK. Further, full activation of Akt in LPS-treated cells was immediately induced by short-term heat stress and lasted during the entire period of heat stress. IkappaB alpha was induced and phosphorylated throughout sequential exposure to LPS and heat stress. These results suggest that LPS has the unique effects on the cytoprotection and the cell death of pulp cells during heat stress through the modification and the activation of heat stress responsive molecules, HSF1 and HSP27, and cell survival molecules, Akt and NF-kappaB/IkappaB alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号