首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Should I stay or should I go? Ephs and ephrins in neuronal migration   总被引:1,自引:0,他引:1  
In neuroscience, Ephs and ephrins are perhaps best known for their role in axon guidance. It was first shown in the visual system that graded expression of these proteins is instrumental in providing molecular coordinates that define topographic maps, particularly in the visual system, but also in the auditory, vomeronasal and somatosensory systems as well as in the hippocampus, cerebellum and other structures. Perhaps unsurprisingly, the role of these proteins in regulating cell-cell interactions also has an impact on cell mobility, with evidence that Eph-ephrin interactions segregate cell populations based on contact-mediated attraction or repulsion. Consistent with these studies, evidence has accumulated that Ephs and ephrins play important roles in the migration of specific cell populations in the developing and adult brain. This review focusses on two examples of neuronal migration that require Eph/ephrin signalling - radial and tangential migration of neurons in cortical development and the migration of newly generated neurons along the rostral migratory stream to the olfactory bulb in the adult brain. We discuss the challenge involved in understanding how cells determine whether they respond to signals by migration or axon guidance.  相似文献   

2.
Army ant colonies do not have permanent nests but frequently move to new patches. Local food depletion is considered the ultimate cause of this nomadic behaviour, but the proximate causes are not well understood. We tested if and how patch departure time of the aboveground-hunting army ant Dorylus molestus under field conditions is influenced by food availability and nest attacks by predators. In the first food supplement experiment, colonies receiving additional food throughout an entire nest stay did not reside in their nests for longer periods than control colonies. However, the distances travelled by colonies after nest stays during which colonies obtained food were shorter than those before these nest stays, indicating that colonies do assess food availability and avoid moving too far away from patches of high food availability. In the second food supplement experiment, in which colonies were given even larger amounts of food in the second half of their nest stay to mimic a rich unpredictable food source that these highly polyphagous predators are likely to encounter sometimes, patch departure times likewise did not differ between treated and control colonies. Either patch departure time is independent of food availability or there is another, as yet unappreciated proximate cause of colony movements in this species which we were unable to control for in our field experiments. One possibility is that encounters between neighbouring colonies influence patch departure time. In the experiment on the effect of predation, colonies responded to simulated nest attacks by mammals by leaving nests almost instantaneously and thus much earlier than control colonies. Rapid nest evacuation is likely a response to minimize the probability of repeat attacks by predators which cannot be repelled in other ways. Future studies will be necessary to definitively determine whether food availability influences patch departure times and to elucidate the consequences of colony encounters.  相似文献   

3.
Our increasing comprehension of neural crest cell development has reciprocally advanced our understanding of cadherin expression, regulation, and function. As a transient population of multipotent stem cells that significantly contribute to the vertebrate body plan, neural crest cells undergo a variety of transformative processes and exhibit many cellular behaviors, including epithelial‐to‐mesenchymal transition (EMT), motility, collective cell migration, and differentiation. Multiple studies have elucidated regulatory and mechanistic details of specific cadherins during neural crest cell development in a highly contextual manner. Collectively, these results reveal that gradual changes within neural crest cells are accompanied by often times subtle, yet important, alterations in cadherin expression and function. The primary focus of this review is to coalesce recent data on cadherins in neural crest cells, from their specification to their emergence as motile cells soon after EMT, and to highlight the complexities of cadherin expression beyond our current perceptions, including the hypothesis that the neural crest EMT is a transition involving a predominantly singular cadherin switch. Further advancements in genetic approaches and molecular techniques will provide greater opportunities to integrate data from various model systems in order to distinguish unique or overlapping functions of cadherins expressed at any point throughout the ontogeny of the neural crest.  相似文献   

4.
Seed dispersal and mycorrhizal associations are key mutualisms for the functioning and regeneration of plant communities; however, these processes have seldom been explored together. We hypothesised that obligatory mycorrhizal plants will be less likely to have long‐distance dispersal (LDD) syndromes since the probability of finding suitable mycorrhizal partners is likely to decrease with distance to the mother plant. We contrasted the mycorrhizal status and LDD syndromes for 1960 European plant species, using phylogenetically corrected log‐linear models. Contrary to our expectation, having specialised structures for LDD is more frequent in obligate mycorrhizal plants than in non‐mycorrhizal plants, revealing that lack of compatible mutualists does not constrain investment in LDD structures in the European Flora. Ectomycorrhizal plants associated with wind‐dispersing fungi are also more likely to have specialised structures for wind dispersal. Habitat specificity and narrower niche of non‐mycorrhizal plants might explain the smaller investment in specialised structures for seed dispersal.  相似文献   

5.
6.
It is commonly recognized that large uncertainties exist in modelled biofuel‐induced indirect land‐use change, but until now, spatially explicit quantification of such uncertainties by means of error propagation modelling has never been performed. In this study, we demonstrate a general methodology to stochastically calculate direct and indirect land‐use change (dLUC and iLUC) caused by an increasing demand for biofuels, with an integrated economic – land‐use change model. We use the global Computable General Equilibrium model MAGNET, connected to the spatially explicit land‐use change model PLUC. We quantify important uncertainties in the modelling chain. Next, dLUC and iLUC projections for Brazil up to 2030 at different spatial scales and the uncertainty herein are assessed. Our results show that cell‐based (5 × 5 km2) probabilities of dLUC range from 0 to 0.77, and of iLUC from 0 to 0.43, indicating that it is difficult to project exactly where dLUC and iLUC will occur, with more difficulties for iLUC than for dLUC. At country level, dLUC area can be projected with high certainty, having a coefficient of variation (cv) of only 0.02, while iLUC area is still uncertain, having a cv of 0.72. The latter means that, considering the 95% confidence interval, the iLUC area in Brazil might be 2.4 times as high or as low as the projected mean. Because this confidence interval is so wide that it is likely to straddle any legislation threshold, our opinion is that threshold evaluation for iLUC indicators should not be implemented in legislation. For future studies, we emphasize the need for provision of quantitative uncertainty estimates together with the calculated LUC indicators, to allow users to evaluate the reliability of these indicators and the effects of their uncertainty on the impacts of land‐use change, such as greenhouse gas emissions.  相似文献   

7.
Abstract. Data referring to changes in vegetation composition resulting from cattle exclosure and ploughing in a Portuguese pasture dominated by annuals were used to test hypotheses regarding the biology of species favoured or eliminated by disturbance in semi-natural herbaceous communities. These hypotheses were tested in two ways. First we compared the distribution of six a priori groups – grasses, small rosettes, large rosettes, small species with leafy stems, large species with leafy stems, legumes – across grazed, ploughed and undisturbed plots. In a second set of analyses we examined changes in the frequencies of individual biological attributes in response to grazing and ploughing. These analyses were carried out separately for grasses and dicot forbs. Overall, the species composition showed little response to either grazing or ploughing, though species dominance changed. This lack of responsiveness of species composition was attributed to the long history of intensive land use which has resulted in the loss of disturbance-intolerant species over entire landscapes. When considering a priori groups, small rosettes were indifferent to disturbance. grazing and ploughing showed that dominated. Large rosettes, large species with leafy stems and legumes were generally intolerant to both grazing and ploughing, though individual species may increase in response to disturbance. Small species with leafy stems were the only group favoured by grazing whereas ploughing favoured grasses. As to individual traits, grazing excluded large grass species with heavy seeds and promoted a flat rosette canopy structure and a small size, along with a moderate dormancy and protected inflorescences. In forbs, grazing favoured small species, as expected, while it excluded tall species, and, in contrast to earlier results, a rosette canopy. These attributes were consistent with responses of the a priori groups, though it would not have been possible to reconstruct groups directly from the attribute list. Ploughing had no effect on any of the forb traits. As to grass traits, flat- and short-statured species increased and heavy-seeded species decreased. Our analysis revealed two advantages of establishing plant functional classifications within life forms. Subgroups within forbs had contrasting types of behaviour. For the same trait patterns could differ within the grass group from within the forb group. Finally, this analysis emphasizes the need for plant functional classifications aiming at the identification of syndromes of co-occurring attributes rather than of lists of isolated traits of which actual combinations are not specified.  相似文献   

8.
Actin- and microtubule-based motors can propel different cargos along filaments. Within cells, they control the distribution of membrane-bound compartments by performing complementary tasks. Organelles make long journeys along microtubules, with class V myosins ensuring their capture and their dispersal in actin-rich regions. Myosin Va is recruited on to diverse organelles, such as melanosomes and secretory vesicles, by a mechanism involving Rab GTPases. The role of myosin Va in the recruitment of secretory vesicles at the plasma membrane reveals that the cortical actin network cannot merely be seen as a physical barrier hindering vesicle access to release sites. In neurons, myosin Va controls the targeting of IP(3) (inositol 1,4,5-trisphosphate)-sensitive Ca(2+) stores to dendritic spines and the transport of mRNAs. These defects probably account for the severe neurological symptoms observed in Griscelli syndrome due to mutations in the MYO5A gene.  相似文献   

9.
10.
11.
Droz Y  Sottas B 《人类》1997,37(142):69-88
"Subsequent to population growth, land scarcity and the diminishing yields, Kikuyu started a search for arable land. This migration has been extended toward areas which are unsuitable for agriculture, where survival strategies of Kikuyu migrants have been analysed. Results of the extended data collection have shown that a range of social practices within the mainly patrimonial families enable them to survive in the semi-arid savannah on the Laikipia plain (Kenya). Two strategies could be distinguished: on the levels of the individuals the mobility may be described as personal transhumance, and on the level of the domestic units as steps on the various islands of a vertical archipelago; both are characteristics of a family circulation that constitutes a migratory scheme prevailing among the Kikuyu. The study concludes with a model of migratory practices which associates individual tactics and the strategies applied by domestic units." (EXCERPT)  相似文献   

12.
13.
According to life-history theory, long-lived birds should favor their survival over the current reproductive attempt, when breeding becomes too costly. In seabirds, incubation is often associated with spontaneous long-term fasting. Below a threshold in body reserves, hormonal and metabolic shift characteristics of a switch from lipid to protein utilization (phase III, PIII) occur. These metabolic changes are paralleled by nest abandonment and stimulation of refeeding behavior. Parental behavior is then under control of two hormones with opposite effects: corticosterone (CORT) and prolactin which stimulate foraging and incubation behavior, respectively.The aim of this study was to determine the respective role of these two hormones in nest abandonment by Adélie penguins. To this end, plasma hormone levels were measured before egg-laying and at departure from the colony (i.e. when birds were relieved by their partner or abandoned their nest), and related to nutritional state and incubation success.We found that males abandoning their nest in PIII presented high CORT levels and low prolactin levels. Interestingly, males which presented high plasma levels of prolactin in PIII did not abandon. We show that although CORT is the first hormone to be affected by prolonged energy constraints, the combined effects of high CORT and low prolactin levels are necessary for parents to favor self-maintenance and abandon the nest. We provide insights into time-course changes of the endocrine profile as PIII proceeds and report that reaching proteolytic late fasting is not sufficient to induce nest abandonment in a long-lived bird.  相似文献   

14.
This study evaluates whether the target breeding trait of superior leaf level transpiration efficiency is still appropriate under increasing carbon dioxide levels of a future climate using a semi‐arid cropping system as a model. Specifically, we investigated whether physiological traits governing leaf level transpiration efficiency, such as net assimilation rates (Anet), stomatal conductance (gs) or stomatal sensitivity were affected differently between two Triticum aestivum L. cultivars differing in transpiration efficiency (cv. Drysdale, superior; cv. Hartog, low). Plants were grown under Free Air Carbon dioxide Enrichment (FACE, approximately 550 µmol mol?1 or ambient CO2 concentrations (approximately 390 µmol mol?1). Mean Anet (approximately 15% increase) and gs (approximately 25% decrease) were less affected by elevated [CO2] than previously found in FACE‐grown wheat (approximately 25% increase and approximately 32% decrease, respectively), potentially reflecting growth in a dry‐land cropping system. In contrast to previous FACE studies, analyses of the Ball et al. model revealed an elevated [CO2] effect on the slope of the linear regression by 12% indicating a decrease in stomatal sensitivity to the combination of [CO2], photosynthesis rate and humidity. Differences between cultivars indicated greater transpiration efficiency for Drysdale with growth under elevated [CO2] potentially increasing the response of this trait. This knowledge adds valuable information for crop germplasm improvement for future climates.  相似文献   

15.
Dissolution of cell-cell adhesive contacts and increased cell-extracellular matrix adhesion are hallmarks of the migratory and invasive phenotype of cancer cells. These changes are facilitated by growth factor binding to receptor protein tyrosine kinases (RTKs). In normal cells, cell-cell adhesion molecules (CAMs), including some receptor protein tyrosine phosphatases (RPTPs), antagonize RTK signaling by promoting adhesion over migration. In cancer, RTK signaling is constitutive due to mutated or amplified RTKs, which leads to growth factor independence or autonomy. An alternative route for a tumor cell to achieve autonomy is to inactivate cell-cell CAMs such as RPTPs. RPTPs directly mediate cell adhesion and regulate both cadherin-dependent adhesion and signaling. In addition, RPTPs antagonize RTK signaling by dephosphorylating molecules activated following ligand binding. Both RPTPs and cadherins are downregulated in tumor cells by cleavage at the cell surface. This results in shedding of the extracellular, adhesive segment and displacement of the intracellular segment, altering its subcellular localization and access to substrates or binding partners. In this commentary we discuss the signals that are altered following RPTP and cadherin cleavage to promote cell migration. Tumor cells both step on the gas (RTKs) and disconnect the brakes (RPTPs and cadherins) during their invasive and metastatic journey.Key words: receptor protein tyrosine kinase, receptor-like protein tyrosine phosphatase, cadherins, cell adhesion, signal transduction, phospholipase C gamma, protein kinase C, catenins, IQGAP1 protein, regulated intramembrane proteolysis  相似文献   

16.
17.
18.
Hypoxia represents a significant challenge to most fish, forcing the development of behavioural, physiological and biochemical adaptations to survive. It has been previously shown that inanga (Galaxias maculatus) display a complex behavioural repertoire to escape aquatic hypoxia, finishing with the fish voluntarily emerging from the water and aerially respiring. In the present study we evaluated the physiological, metabolic and biochemical consequences of both aquatic hypoxia and emersion in inanga. Inanga successfully tolerated up to 6?h of aquatic hypoxia or emersion. Initially, this involved enhancing blood oxygen-carrying capacity, followed by the induction of anaerobic metabolism. Only minor changes were noted between emersed fish and those maintained in aquatic hypoxia, with the latter group displaying a higher mean cell haemoglobin content and a reduced haematocrit after 6?h. Calculations suggest that inanga exposed to both aquatic hypoxia and air reduced oxygen uptake and also increased anaerobic contribution to meet energy demands, but the extent of these changes was small compared with hypoxia-tolerant fish species. Overall, these findings add to previous studies suggesting that inanga are relatively poorly adapted to survive aquatic hypoxia.  相似文献   

19.
Brain size relative to body size is smaller in migratory than in nonmigratory birds. Two mutually nonexclusive hypotheses had been proposed to explain this association. On the one hand, the “energetic trade‐off hypothesis” claims that migratory species were selected to have smaller brains because of the interplay between neural tissue volume and migratory flight. On the other hand, the “behavioral flexibility hypothesis” argues that resident species are selected to have higher cognitive capacities, and therefore larger brains, to enable survival in harsh winters, or to deal with environmental seasonality. Here, I test the validity and setting of these two hypotheses using 1466 globally distributed bird species. First, I show that the negative association between migration distance and relative brain size is very robust across species and phylogeny. Second, I provide strong support for the energetic trade‐off hypothesis, by showing the validity of the trade‐off among long‐distance migratory species alone. Third, using resident and short‐distance migratory species, I demonstrate that environmental harshness is associated with enlarged relative brain size, therefore arguably better cognition. My study provides the strongest comparative support to date for both the energetic trade‐off and the behavioral flexibility hypotheses, and highlights that both mechanisms contribute to brain size evolution, but on different ends of the migratory spectrum.  相似文献   

20.
Milena Holmgren 《Oikos》2000,90(1):67-78
It has been hypothesised that many natural plant distribution patterns can be explained by a trade-off between shade and drought tolerance which would make plants more sensitive to shade under dry conditions. On the other hand, shading by nurse plants is often observed to enhance growth and survival of smaller plants in dry areas. This paper describes an experiment designed to address the interactive effects of drought and shade on growth and physiology of tulip poplar seedlings ( Liriodendron tulipifera ) grown in shade houses under different combinations of irradiance (1%, 5%, 12%, 17%, and 27% of ambient PAR) and soil water content (5–9%, 11–15%, and>20%). The results show no evidence that higher PAR levels compensate for the negative effects of drought on photosynthesis and growth. Rather, rates of estimated daily shoot carbon gain decreased with PAR under dry conditions. Daily xylem sapflow patterns indicated that this was associated with a strong reduction in stomatal conductance in plants growing in dry soil and high PAR conditions. Whole-shoot light compensation points were higher for plants raised under higher PAR conditions, but were not significantly influenced by the water treatments. Shoot dark respiration rates decreased under drier conditions. These results do not support the hypothesis of a trade-off between shade and drought tolerance. Instead, they indicate mechanisms that can lead to positive effects of shading by neighbouring plants under dry conditions. Indeed, such facilitation is thought to be important in many plant communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号