首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distinctive black and red wing pattern of six‐spot burnet moths (Zygaena filipendulae, L.) is a classic example of aposematism, advertising their potent cyanide‐based defences. While such warning signals provide a qualitatively honest signal of unprofitability, the evidence for quantitative honesty, whereby variation in visual traits could provide accurate estimates of individual toxicity, is more equivocal. Combining measures of cyanogenic glucoside content and wing color from the perspective of avian predators, we investigate the relationship between coloration and defences in Z. filipendulae, to test signal honesty both within and across populations. There were no significant relationships between mean cyanogenic glucoside concentration and metrics of wing coloration across populations in males, yet in females higher cyanogenic glucoside levels were associated with smaller and lighter red forewing markings. Trends within populations were similarly inconsistent with quantitative honesty, and persistent differences between the sexes were apparent: larger females, carrying a greater total cyanogenic glucoside load, displayed larger but less conspicuous markings than smaller males, according to several color metrics. The overall high aversiveness of cyanogenic glucosides and fluctuations in color and toxin levels during an individual's lifetime may contribute to these results, highlighting generally important reasons why signal honesty should not always be expected in aposematic species.  相似文献   

2.
Skelhorn J  Rowe C 《Current biology : CB》2007,17(17):1479-1483
Toxic prey advertise their unprofitability to predators via conspicuous aposematic coloration [1]. It is widely accepted that avoidance learning by naive predators is fundamental in generating selection for aposematism [2, 3] and mimicry [4, 5] (where species share the same aposematic coloration), and consequently this cognitive process underpins current evolutionary theory [5, 6]. However, this is an oversimplistic view of predator cognition and decision making. We show that predators that have learned to avoid chemically defended prey continue to attack defended individuals at levels determined by their current toxin burden. European starlings learned to discriminate between sequentially presented defended and undefended mealworms with different color signals. Once birds had learned to avoid the defended prey at a stable asymptotic level, we experimentally increased their toxin burdens, which reduced the number of defended prey that they ingested in the subsequent trial. This was due to the birds making strategic decisions to ingest defended prey on the basis of their visual signals. Birds are clearly able to learn about the nutritional benefits and defensive costs of eating defended prey, and they regulate their intake according to their current physiological state. This raises new perspectives on the evolution of aposematism, mimicry, and defense chemistry.  相似文献   

3.
Antipredator defenses and warning signals typically evolve in concert. However, the extensive variation across taxa in both these components of predator deterrence and the relationship between them are poorly understood. Here we test whether there is a predictive relationship between visual conspicuousness and toxicity levels across 10 populations of the color-polymorphic strawberry poison frog, Dendrobates pumilio. Using a mouse-based toxicity assay, we find extreme variation in toxicity between frog populations. This variation is significantly positively correlated with frog coloration brightness, a viewer-independent measure of visual conspicuousness (i.e., total reflectance flux). We also examine conspicuousness from the view of three potential predator taxa, as well as conspecific frogs, using taxon-specific visual detection models and three natural background substrates. We find very strong positive relationships between frog toxicity and conspicuousness for bird-specific perceptual models. Weaker but still positive correlations are found for crab and D. pumilio conspecific visual perception, while frog coloration as viewed by snakes is not related to toxicity. These results suggest that poison frog colors can be honest signals of prey unpalatability to predators and that birds in particular may exert selection on aposematic signal design.  相似文献   

4.
Predation risk is allegedly reduced in Batesian and Müllerian mimics, because their coloration resembles the conspicuous coloration of unpalatable prey. The efficacy of mimicry is thought to be affected by variation in the unpalatability of prey, the conspicuousness of the signals, and the visual system of predators that see them. Many frog species exhibit small colorful patches contrasting against an otherwise dark body. By measuring toxicity and color reflectance in a geographically variable frog species and the syntopic toxic species, we tested whether unpalatability was correlated with between‐species color resemblance and whether resemblance was highest for the most conspicuous components of coloration pattern. Heterospecific resemblance in colorful patches was highest between species at the same locality, but unrelated to concomitant variation in toxicity. Surprisingly, resemblance was lower for the conspicuous femoral patches compared to the inconspicuous dorsum. By building visual models, we further tested whether resemblance was affected by the visual system of model predators. As predicted, mimic‐model resemblance was higher under the visual system of simulated predators compared to no visual system at all. Our results indicate that femoral patches are aposematic signals and support a role of mimicry in driving phenotypic divergence or mimetic radiation between localities.  相似文献   

5.
Chemically defended insects advertise their unpalatability to avian predators using conspicuous aposematic coloration that predators learn to avoid. Insects utilize a wide variety of different compounds in their defences, and intraspecific variation in defence chemistry is common. We propose that polymorphisms in insect defence chemicals may be beneficial to insects by increasing survival from avian predators. Birds learn to avoid a colour signal faster when individual prey possesses one of two unpalatable chemicals rather than all prey having the same defence chemical. However, for chemical polymorphisms to evolve within a species, there must be benefits that allow rare chemical morphs to increase in frequency. Using domestic chicks as predators and coloured crumbs for prey, we provide evidence that birds taste and reject proportionally more of the individuals with rare defence chemicals than those with common defence chemicals. This indicates that the way in which birds attack and reject prey could enhance the survival of rare chemical morphs and select for chemical polymorphism in aposematic species. This is the first experiment to demonstrate that predators can directly influence the form taken by prey's chemical defences.  相似文献   

6.
Aposematism and crypsis are often viewed as two extremes of a continuum of visual conspicuousness to predators. Theory predicts that behavioral and coloration conspicuousness should vary in tandem along the conspicuousness spectrum for antipredator strategies to be effective. Here we used visual modeling of contrast and behavioral observations to examine the conspicuousness of four populations of the granular poison frog, Oophaga granulifera, which exhibits almost continuous variation in dorsal color. The patterns of geographic variation in color, visual contrast, and behavior support a gradient of overall conspicuousness along the distribution of O. granulifera. Red and green populations, at the extremes of the color distribution, differ in all elements of color, contrast, and behavior, strongly reflecting aposematic and cryptic strategies. However, there is no smooth cline in any elements of behavior or coloration between the two extremes. Instead populations of intermediate colors attain intermediate conspicuousness by displaying different combinations of aposematic and cryptic traits. We argue that coloration divergence among populations may be linked to the evolution of a gradient of strategies to balance the costs of detection by predators and the benefits of learned aversion.  相似文献   

7.
Aposematic herbivores are under selection pressure from their host plants and predators. Although many aposematic herbivores exploit plant toxins in their own secondary defense, dealing with these harmful compounds might underlay costs. We studied whether the allocation of energy to detoxification and/or sequestration of host plant defense chemicals trades off with warning signal expression. We used a generalist aposematic herbivore Parasemia plantaginis (Arctiidae), whose adults and larvae show extensive phenotypic and genetic variation in coloration. We reared larvae from selection lines for small and large larval warning signals on Plantago lanceolata with either low or high concentration of iridoid glycosides (IGs). Larvae disposed of IGs effectively; their body IG content was low irrespective of their diet. Detoxification was costly as individuals reared on the high IG diet produced fewer offspring. The IG concentration of the diet did not affect larval coloration (no trade-off) but the wings of females were lighter orange (vs. dark red) when reared on the high IG diet. Thus, the difference in plant secondary chemicals did not induce variation in the chemical defense efficacy of aposematic individuals but caused variation in reproductive output and warning signals of females.  相似文献   

8.
Conspicuous warning signals of unprofitable prey are a defense against visually hunting predators. They work because predators learn to associate unprofitability with bright coloration and because strong signals are detectable and memorable. However, many species that can be considered defended are not very conspicuous; they have weak warning signals. This phenomenon has previously been ignored in models and experiments. In addition, there is significant within- and among-species variation among predators in their search behavior, in their visual, cognitive, and learning abilities, and in their resistance to defenses. In this article we explore the effects of variable predators on models that combine positive frequency-dependent, frequency-independent, and negative frequency-dependent predation and show that weak signaling of aposematic species can evolve if predators vary in their tendency to attack defended prey.  相似文献   

9.
Toxic prey that signal their defences to predators using conspicuous warning signals are called ‘aposematic’. Predators learn about the toxic content of aposematic prey and reduce their attacks on them. However, through regulating their toxin intake, predators will include aposematic prey in their diets when the benefits of gaining the nutrients they contain outweigh the costs of ingesting the prey''s toxins. Predators face a problem when managing their toxin intake: prey sharing the same warning signal often vary in their toxicities. Given that predators should avoid uncertainty when managing their toxin intake, we tested whether European starlings (Sturnus vulgaris) preferred to eat fixed-defence prey (where all prey contained a 2% quinine solution) to mixed-defence prey (where half the prey contained a 4% quinine solution and the other half contained only water). Our results support the idea that predators should be more ‘risk-averse’ when foraging on variably defended prey and suggest that variation in toxicity levels could be a form of defence.  相似文献   

10.
A group of medium sized carnivores possesses conspicuously colored facial markings or masks. This facial coloration is most compatible with the aposematic warning hypothesis and functions to deter predation by larger carnivores. Other hypotheses addressing ecological or social functions are not supported by the data. Facial masks may be a recent character derived from an ancestral contrast in body coloration of carnivores that functioned to warn potential predators of a disproportionate danger in attacking the smaller guild member. This danger may be predicated either on the relative ferocity of the smaller carnivore (wolverine/badger-type) or that the smaller carnivore is equipped with a defensive nauseous discharge that is directly harmful to larger would-be predators. Facial masks in themselves appear to function as an aposematic warning of aggressive defensive behavior that could be harmful to predators.  相似文献   

11.
Antagonistic interactions between predators and prey often lead to co‐evolution. In the case of toxic prey, aposematic colours act as warning signals for predators and play a protective role. Evolutionary convergence in colour patterns among toxic prey evolves due to positive density‐dependent selection and the benefits of mutual resemblance in spreading the mortality cost of educating predators over a larger prey assemblage. Comimetic species evolve highly similar colour patterns, but such convergence may interfere with intraspecific signalling and recognition in the prey community, especially for species involved in polymorphic mimicry. Using spectrophotometry measures, we investigated the variation in wing coloration among comimetic butterflies from distantly related lineages. We focused on seven morphs of the polymorphic species Heliconius numata and the seven corresponding comimetic species from the genus Melinaea. Significant differences in the yellow, orange and black patches of the wing were detected between genera. Perceptions of these cryptic differences by bird and butterfly observers were then estimated using models of animal vision based on physiological data. Our results showed that the most strikingly perceived differences were obtained for the contrast of yellow against a black background. The capacity to discriminate between comimetic genera based on this colour contrast was also evaluated to be higher for butterflies than for birds, suggesting that this variation in colour, likely undetectable to birds, might be used by butterflies for distinguishing mating partners without losing the benefits of mimicry. The evolution of wing colour in mimetic butterflies might thus be shaped by the opposite selective pressures exerted by predation and species recognition.  相似文献   

12.
Abstract Although signal reliability is of fundamental importance to the understanding of animal communication, the extent of signal honesty in relation to antipredator warning signals has received relatively little attention. A recent theoretical model that assumed a physiological linkage between pigmentation and toxicity suggested that (aposematic) warning signals may often be reliable, in the sense that brightness and toxicity are positively correlated within prey populations. Two shortcomings of the model were (1) the requirement among predators for an innate aversion to brightly colored prey and (2) the assumption that prey can generate only bright coloration and not cryptic coloration. We evaluated the generality of predictions of reliable signaling when these shortcomings were removed. Without innate avoidance of bright prey, we found a positive brightness-toxin correlation when conspicuous prey coloration provided an additional fitness benefit unrelated to predation. Initially, this correlation could evolve for reasons unrelated to prey signaling; hence, aposematism might represent a striking example of exaptation. Given a choice between using pigmentation for bright or for cryptic coloration, crypsis was favored only in conditions of very low or very high resource levels. In the latter case, toxicity correlated positively with degree of cryptic coloration. Predictions of toxin-signal correlation appear robust, but we can identify interesting conditions in which signal reliability is not predicted.  相似文献   

13.
Because variation in warning signals slows down the predator education process, aposematic theory predicts that animal warning signals should be monomorphic. Yet, warning color polytypisms are not uncommon in aposematic species. In cases where warning signal variants are separated geographically, adaptation to local predators could explain this variation. However, this cannot explain the persistence of sympatric polymorphisms in aposematic taxa. The strawberry poison frog (Oophaga pumilio) exhibits both allopatric and sympatric warning color variation in and around the Bocas del Toro archipelago of Panama. One explanation that has been proposed for the rapid diversification of O. pumilio coloration in this archipelago is low predation; if island populations have few predators, stabilizing selection would be relaxed opening the door for diversification via selection or genetic drift. Using a combination of mark-recapture and clay model studies, we tested for differences in survival and predation among sympatric red and yellow color morphs of O. pumilio from Bastimentos Island. We found no evidence for differential survival or predation in this population, despite the fact that one morph (red) is more common and widely distributed than the other (yellow). Even in an area of the island where the yellow morph is not found, predator attack rates were similar among morphs. Visual modeling suggests that yellow and red morphs are distinguishable and conspicuous against a variety of backgrounds and by viewers with different visual systems. Our results suggest that general avoidance by predators of red and yellow, both of which are typical warning colors used throughout the animal kingdom, may be contributing to the apparent stability of this polymorphism.  相似文献   

14.
Many aposematic species show variation in their color patterns even though selection by predators is expected to stabilize warning signals toward a common phenotype. Warning signal variability can be explained by trade‐offs with other functions of coloration, such as thermoregulation, that may constrain warning signal expression by favoring darker individuals. Here, we investigated the effect of temperature on warning signal expression in aposematic Amata nigriceps moths that vary in their black and orange wing patterns. We sampled moths from two flight seasons that differed in the environmental temperatures and also reared different families under controlled conditions at three different temperatures. Against our prediction that lower developmental temperatures would reduce the warning signal size of the adult moths, we found no effect of temperature on warning signal expression in either wild or laboratory‐reared moths. Instead, we found sex‐ and population‐level differences in wing patterns. Our rearing experiment indicated that ~70% of the variability in the trait is genetic but understanding what signaling and non‐signaling functions of wing coloration maintain the genetic variation requires further work. Our results emphasize the importance of considering both genetic and plastic components of warning signal expression when studying intraspecific variation in aposematic species.  相似文献   

15.
The conspicuous displays that warn predators of defenses carried by potential prey have been of interest to evolutionary biologists from the time of Wallace and Darwin to the present day. Although most studies implicitly assume that these "aposematic" warning signals simply indicate the presence of some repellent defense such as a toxin, it has been speculated that the intensity of the signal might reliably indicate the strength of defense so that, for example, the nastiest prey might "shout loudest" about their unprofitability. Recent phylogenetic and empirical studies of Dendrobatid frogs provide contradictory views, in one instance showing a positive correlation between toxin levels and conspicuousness, in another showing a breakdown of this relationship. In this paper we present an optimization model, which can potentially account for these divergent results. Our model locates the optimal values of defensive traits that are influenced by a range of costs and benefits. We show that optimal aposematic conspicuousness can be positively correlated with optimal prey toxicity, especially where population sizes and season lengths vary between species. In other cases, optimal aposematic conspicuousness may be negatively correlated with toxicity; this is especially the case when the marginal costs of aposematic displays vary between members of different populations. Finally, when displays incur no allocation costs there may be no single optimum value for aposematic conspicuousness, rather a large array of alternative forms of a display may have equal fitness.  相似文献   

16.
Prevailing theory contends that aposematic coloration evolves in tandem with toxicity so that the evolution of increased toxicity will accompany the evolution of greater conspicuousness. Although variation in aposematic coloration within single species should be selectively constrained, because individuals varying from a predator-recognized warning signal will incur greater risk of predation, several species of poison-dart frogs display remarkable phenotypic variation. This variation may have evolved to match different levels of toxicity, and these species provide excellent opportunities to examine the evolution of aposematic coloration. Here, I test whether increased conspicuousness in the granular poison-dart frog evolved in tandem with increased toxicity. Contrary to classical predictions, toxicity assays, spectral reflectance measurements, and phylogenetic reconstruction reveal that the less conspicuous color morphs are actually significantly more toxic than the brightest, most conspicuous phenotypes and that the more toxic, less-conspicuous form evolved from a less toxic, more conspicuous ancestor. Through gas chromatography--mass spectrometry analysis of toxin profiles, I traced the increase in toxicity in the less-conspicuous populations to an acquisition of specific alkaloids, some of which are proven convulsants. These results challenge the tenet that increased conspicuousness always evolves with increased toxicity and support the idea that once aposematism has been established in a species, phenotypic variation may evolve from brightness and toxicity becoming decoupled.  相似文献   

17.
Aposematic theory has historically predicted that predators should select for warning signals to converge on a single form, as a result of frequency‐dependent learning. However, widespread variation in warning signals is observed across closely related species, populations and, most problematically for evolutionary biologists, among individuals in the same population. Recent research has yielded an increased awareness of this diversity, challenging the paradigm of signal monomorphy in aposematic animals. Here we provide a comprehensive synthesis of these disparate lines of investigation, identifying within them three broad classes of explanation for variation in aposematic warning signals: genetic mechanisms, differences among predators and predator behaviour, and alternative selection pressures upon the signal. The mechanisms producing warning coloration are also important. Detailed studies of the genetic basis of warning signals in some species, most notably Heliconius butterflies, are beginning to shed light on the genetic architecture facilitating or limiting key processes such as the evolution and maintenance of polymorphisms, hybridisation, and speciation. Work on predator behaviour is changing our perception of the predator community as a single homogenous selective agent, emphasising the dynamic nature of predator–prey interactions. Predator variability in a range of factors (e.g. perceptual abilities, tolerance to chemical defences, and individual motivation), suggests that the role of predators is more complicated than previously appreciated. With complex selection regimes at work, polytypisms and polymorphisms may even occur in Müllerian mimicry systems. Meanwhile, phenotypes are often multifunctional, and thus subject to additional biotic and abiotic selection pressures. Some of these selective pressures, primarily sexual selection and thermoregulation, have received considerable attention, while others, such as disease risk and parental effects, offer promising avenues to explore. As well as reviewing the existing evidence from both empirical studies and theoretical modelling, we highlight hypotheses that could benefit from further investigation in aposematic species. Finally by collating known instances of variation in warning signals, we provide a valuable resource for understanding the taxonomic spread of diversity in aposematic signalling and with which to direct future research. A greater appreciation of the extent of variation in aposematic species, and of the selective pressures and constraints which contribute to this once‐paradoxical phenomenon, yields a new perspective for the field of aposematic signalling.  相似文献   

18.
Aposematic animals advertise their unprofitability to potential predators with conspicuous coloration, occasionally in combination with other life-history traits. Theory posits that selection on functionally interrelated aposematic characters promotes the unidirectional evolution of these characters, resulting in an increase or decrease in the effectiveness of the signal. To test whether this prediction applies on a microevolutionary scale, the intra- and interpopulational variations in aposematic coloration, behaviour (which enhances the effectiveness of the coloration) and body size of newts, Cynops pyrrhogaster (Urodela: Salamandridae), were investigated. A parallel geographical mosaic of variation in aposematic coloration and behaviour among populations, independent of body size, was found. Newts on islands displayed more conspicuous aposematic traits than those on the mainland, both morphologically and behaviourally. There was no significant relationship between variation in coloration and behaviour within populations. Male newts displayed more conspicuous coloration than females. Surveys of potential predators suggest that variable natural selection at a local scale, such as predation pressure, may primarily be responsible for the microevolution of variable aposematic traits in newts.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 613–622.  相似文献   

19.
Aposematic species use brightly coloured signals to warn potential predators of their unpalatability. The function of these signals is largely believed to be frequency-dependent. All else being equal, stabilizing selection is expected to constrain the evolution of novel signals. However, despite the expected frequency-dependent function of aposematic signals, interpopulation variation in aposematic signals is ubiquitous in nature. Here, we used clay models of the poison frog Dendrobates tinctorius to test the nature of selection in regions containing varying frequencies of frogs possessing the local aposematic signal. Our findings support a role for stabilizing selection in maintaining the local signal type in a region of high signal frequency; however, we observe a lack of stabilizing selection at one site coincident with a decrease in the density of frogs possessing the local signal. Spatial variation in local aposematic signal frequencies may facilitate the evolution of novel signal types by altering the adaptive landscape for divergent aposematic phenotypes. Our results provide evidence for spatial variation in the selective regime acting on aposematic signals within an established aposematic system and highlight the need for further study of the nature of selection acting across different spatial scales in diverse aposematic systems.  相似文献   

20.
Aposematic species combine a conspicuous signal with a secondary defence, the majority of which are studied in the context of a visual signal. While multimodality of the aposematic signal appears to be common in invertebrate species, we know very little about the presence or absence of multimodality in vertebrates. Here, we examine the possibility of multimodality of aposematism in the green-and-black poison frog, Dendrobates auratus. Using a non-visual predator (the cat-eyed snake, Leptodeira annulata) and extractions of chemicals in frog skins, we test whether there is sufficient non-visual information for predators to avoid this aposematic species without using visual cues. We found that experienced predators avoid chemicals in this poison frog's skin by olfactory cues alone in trials with live frogs and extracts from captive poison frogs, whereas extracts from wild poison frogs did not lead to avoidance behaviours in predators. Further, in our limited sampling, naïve predators demonstrate no avoidance. This not only indicates that predators can make informed decisions from the frog's odour, but also indicates that avoidance based on olfactory cue is a learned response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号