首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The residues of pyrethroids in foods of animal origin are dangerous to the consumers, so this study presented a chemiluminescence sensor for determination of pyrethroids in chicken samples. A dual‐dummy‐template molecularly imprinted polymer capable of recognizing 10 pyrethroids was synthesized. The results of computation simulation showed that the specific 3D conformations of the templates had important influences on the polymer' recognition ability. The polymer was used to prepare a sensor on conventional 96‐well microplates, and the sample solution was added into the wells for direct absorption. The absorbed analytes were initiated with the bis(2,4,6‐trichlorophenyl)oxalate–H2O2–imidazole system, and the chemiluminescence intensity was used for analyte quantification. Results showed that one assay was finished within 12 min, and this sensor could be reused four times. The limits of detection for the 10 analytes were in the range o0.3–6.0 pg/ml, and the recoveries from the standards of fortified blank chicken samples were in the range 70.5–99.7%.  相似文献   

2.
A molecularly imprinted electrochemical quartz crystal microbalance (EQCM) sensor is fabricated here for taurine, a β ‐amino acid significant for functioning of almost all vital organs. The polymeric film of l ‐methionine was electrochemically deposited on gold‐coated EQCM electrode. Experimental parameters were optimized for controlling the performance of molecularly imprinted polymer (MIP)‐modified sensor such as ratio of monomer and template, number of electropolymerization cycles, mass deposited in each cycle, and pH. Thus, fabricated MIP‐EQCM sensor was successfully applied for estimation of taurine in solutions with varying matrices, such as aqueous, human blood plasma, milk from cow, buffalo, and milk powder. Under optimized parameters, response of MIP sensor to taurine was linearly proportional to its concentration with limit of detection as 0.12μM. Hence, a highly sensitive and selective piezoelectric sensor for taurine has been reported here via imprinting approach.  相似文献   

3.
Molecularly imprinted polymers (MIPs) are gaining great interest as tailor-made recognition materials for the development of biomimetic sensors. Various approaches have been adopted to interface MIPs with different transducers, including the use of pre-made imprinted particles and the in situ preparation of thin polymer layers directly on transducer surfaces. In this work we functionalized quartz crystal microbalance (QCM) sensor crystals by coating the sensing surfaces with pre-made molecularly imprinted nanoparticles. The nanoparticles were immobilized on the QCM transducers by physical entrapment in a thin poly(ethylene terephthalate) (PET) layer that was spin-coated on the transducer surface. By controlling the deposition conditions, it was possible to gain a high nanoparticle loading in a stable PET layer, allowing the recognition sites in nanoparticles to be easily accessed by the test analytes. In this work, different sensor surfaces were studied by micro-profilometry and atomic force microscopy and the functionality was evaluated using quartz crystal microbalance with dissipation (QCM-D). The molecular recognition capability of the sensors were also confirmed using radioligand binding analysis by testing their response to the presence of the test compounds, (R)- and (S)-propranolol in aqueous buffer.  相似文献   

4.
Conductive composite films comprised of single‐walled carbon nanotubes coated with molecularly imprinted poly‐4‐vinylphenol are produced and characterized using ultraviolet and infrared spectroscopies, confirming the successful molecular imprinting of the film with cotinine. The electrical resistance of the imprinted film changes significantly upon binding cotinine, by more than 30 kΩ, while the unimprinted film in comparison elicits little response. Additionally, once the cotinine template desorbs from the film, the resistance of the imprinted film returns to a value close to the pre‐adsorption baseline. Scanning electron microscopy is used to study the morphology of the film compared with the unimprinted control, and gas chromatography quantitatively confirms that the imprinted film selectively detects cotinine while discriminating against the structurally similar alkaloid, nicotine. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, a high fluorescence sensitivity and selectivity, molecularly imprinted nanofluorescent polymer sensor (MIP@SiO2@QDs) was prepared using a reverse microemulsion method. 2,4,6‐Trichlorophenol (2,4,6‐TCP) was detected using fluorescence quenching. Tetraethyl orthosilicate (TEOS), quantum dots (QDs) and 3‐aminopropyltriethoxysilane (APTS) were used as cross‐linker, signal sources and functional monomer respectively. The sensor (MIP@SiO2@QDs) and the non‐imprinted polymer sensor (NIP@SiO2@QDs) were characterized using infra‐red (IR) analysis, X‐ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The selectivity of MIP@SiO2@QDs was examined by comparing 2,4,6‐TCP with other similar functional substances including 2,4‐dichlorophenol (2,4‐DCP), 2,6‐dichlorophenol (2,6‐DCP) and 4‐chlorophenol (4‐CP). Results showed that MIP@SiO2@QDs had better selectivity for 2,4,6‐TCP than the other compounds. Fluorescence quenching efficiency displayed a good linear response at the 2,4,6‐TCP concentration range 5–1000 μmol/L. The limit of detection (LOD) was 0.9 μmol/L (3σ, n = 9). This method was equally applicable for testing actual samples with a recovery rate of 98.0–105.8%. The sensor had advantages of simple pretreatment, good sensitivity and selectivity, and wide linear range and could be applied for the rapid detection of 2,4,6‐TCP in actual samples.  相似文献   

6.
Atrazine is a common agricultural pesticide which has been reported to occur widely in surface drinking water, making it an environmental pollutant of concern. In the quest for developing sensitive detection methods for pesticides, the use of quantum dots (QDs) as sensitive fluorescence probes has gained momentum in recent years. QDs have attractive and unique optical properties whilst coupling of QDs to molecularly imprinted polymers (MIPs) has been shown to offer excellent selectivity. Thus, the development of QD@MIPs based fluorescence sensors could provide an alternative for monitoring herbicides like atrazine in water. In this work, highly fluorescent CdSeTe/ZnS QDs were fabricated using the conventional organometallic synthesis approach and were then encapsulated with MIPs. The CdSeTe/ZnS@MIP sensor was characterized and applied for selective detection of atrazine. The sensor showed a fast response time (5 min) upon interaction with atrazine and the fluorescence intensity was linearly quenched within the 2–20 mol L?1 atrazine range. The detection limit of 0.80 × 10?7 mol L?1 is comparable to reported environmental levels. Lastly, the sensor was applied in real water samples and showed satisfactory recoveries (92–118%) in spiked samples, hence it is a promising candidate for use in water monitoring.  相似文献   

7.
The residues of phenothiazines and benzodiazepines in foods of animal origin are dangerous to consumers. For inspection of their abuses, this study for the first time reported on the use of a chemiluminescence array sensor for the simultaneous determination of four phenothiazines and five benzodiazepines in pig urine. Two molecularly imprinted polymers were coated in different wells of a conventional 96‐well microtiter plate as the recognition reagents. After sample loading, the absorbed analytes were initiated directly by using an imidazole enhanced bis(2,4,6‐trichlorophenyl)oxalate–hydrogen peroxide system to emit light. The assay process consisted of only one sample‐loading step prior to data acquisition, so one test was finished within 10 min. The limits of detection for the nine drugs in the pig urine were in a range of 0.1 to 0.6 pg/mL, and the recoveries from the fortified blank urine samples were in a range of 80.3 to 95%. Furthermore, the sensor could be reused six times. Therefore, this sensor could be used as a simple, rapid, sensitive and reusable tool for routine screening for residues of phenothiazines and benzodiazepines in pig urine.  相似文献   

8.
This study presents a novel, sensitive and selective molecularly imprinted solid‐phase extraction (MISPE)–spectrofluorimetric method for the removal and determination of atenolol from human urine. Molecularly imprinted and non‐imprinted polymers were synthesized thermally using a radical chain polymerization technique and used as solid‐phase extraction sorbents. Acrylic acid ethylene glycol dimethacrylate, dibenzoyl peroxide and dichloroethane were used as a functional monomer, cross‐linker, initiator and porogen, respectively. The calibration curve was in the range of 0.10–2.0 μg/ml for the developed method. Limit of detection and limit of quantification values were 0.032 and 0.099 μg/ml, respectively. Owing to the selectivity of the MISPE technique and the sensitivity of spectrofluorimetry, trace levels of atenolol have been successfully determined from both organic and aqueous media. Relatively high imprinting factor (4.18) and recovery results (74.5–75.3%) were obtained. In addition, intra‐ and interday precision values were 0.38–1.03% and 0.47–2.05%, respectively, proving the precision of the proposed method. Thus, a selective, sensitive and simple MISPE–spectrofluorimetric method has been developed and applied to the direct determination of atenolol from human urine.  相似文献   

9.
In 2010 there has again been an increase in the number of papers published involving piezoelectric acoustic sensors, or quartz crystal microbalances (QCM), when compared to the last period reviewed 2006‐2009. The average number of QCM publications per annum was 124 in the period 2001‐2005, 223 in the period 2006‐9, and 273 in 2010. There are trends towards increasing use of QCM in the study of protein adsorption to surfaces (93% increase), homeostasis (67% increase), protein‐protein interactions (40% increase), and carbohydrates (43% increase). New commercial systems have been released that are driving the uptake of the technology for characterisation of binding specificities, affinities, kinetics and conformational changes associated with a molecular recognition event. This article highlights theoretical and practical aspects of the principals that underpin acoustic analysis, then reviews exemplary papers in key application areas involving small molecular weight ligands, carbohydrates, proteins, nucleic acids, viruses, bacteria, cells, and membrane interfaces. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Since the publication of the original review of piezoelectric acoustic sensors in this series there has been a consistent, gradual expansion in the number of published papers using 'quartz crystal microbalances' (QCM). Between 2001 and 2009, the number of QCM publications per annum has increased from 49 to 273, with a two-fold increase in papers per annum between 2004 and 2008. Within the field, comparing the time covered by the current to the previous review, there are trends towards increasing use of QCM in the study of protein adsorption to surfaces (93% increase), homeostasis (67% increase), protein-protein interactions (40% increase) and carbohydrates (43% increase). New commercial systems have been released that are driving the uptake of the technology for characterization of binding specificities, affinities, kinetics and conformational changes associated with a molecular recognition event. This paper highlights theoretical and practical aspects of the principles that underpin acoustic analysis, then reviews exemplary papers in key application areas involving small molecular weight ligands, carbohydrates, proteins, nucleic acids, viruses, bacteria, cells and membrane interfaces.  相似文献   

11.
Neisseria meningitidis, a human‐specific bacterial pathogen causes bacterial meningitis by invading the meninges (outer lining) of central nervous system. It is the polysaccharide present on the bacterial capsid that distinguishes various serogroups of N. meningitidis and can be utilized as antigens to elicit immune response. A computational approach identified candidate T‐cell epitopes from outer membrane proteins Por B of N. meningitidis (MC58): (273KGLVDDADI282 in loop VII and 170GRHNSESYH179 in loop IV) present on the exposed surface of immunogenic loops of class 3 outer membrane proteins allele of N. meningitidis. One of them, KGLVDDADI is used here for designing a diagnostic tool via molecularly imprinted piezoelectric sensor (molecularly imprinted polymer‐quartz crystal microbalance) for N. meningitidis strain MC58. Methacrylic acid, ethylene glycol dimethacrylate and azoisobutyronitrile were used as functional monomer, cross‐linker and initiator, respectively. The epitope can be simultaneously bound to methacrylic acid and fitted into the shape‐selective cavities. On extraction of epitope sequence from thus grafted polymeric film, shape‐selective and sensitive sites were generated on electrochemical quartz crystal microbalance crystal, ie, known as epitope imprinted polymers. Imprinting was characterized by atomic force microscopy images. The epitope‐imprinted sensor was able to selectively bind N. meningitidis proteins present in blood serum of patients suffering from brain fever. Thus, fabricated sensor can be used as a diagnostic tool for meningitis disease.  相似文献   

12.
Intrinsically disordered peptides (IDPs) have recently garnered much interest because of their role in biological processes such as molecular recognition and their ability to undergo stimulus-responsive conformational changes. The block V repeat-in-toxin motif of the Bordetella pertussis adenylate cyclase is an example of an IDP that undergoes a transition from a disordered state to an ordered beta roll conformation in the presence of calcium ions. In solution, a C-terminal capping domain is necessary for this transition to occur. To further explore the conformational behavior and folding requirements of this IDP, we have cysteine modified three previously characterized constructs, allowing for attachment to the gold surface of a quartz crystal microbalance (QCM). We demonstrate that, while immobilized, the C-terminally capped peptide exhibits similar calcium-binding properties to what have been observed in solution. In addition, immobilization on the solid surface appears to enable calcium-responsiveness in the uncapped peptides, in contrast to the behavior observed in solution. This work demonstrates the power of QCM as a tool to study the conformational changes of IDPs immobilized on surfaces and has implications for a range of potential applications where IDPs may be engineered and used including protein purification, biosensors, and other bionanotechnology applications.  相似文献   

13.
A novel fluorescent nanosensor using molecularly imprinted silica nanospheres embedded CdTe quantum dots (CdTe@SiO2@MIP) was developed for detection and quantification of chloramphenicol (CAP). The imprinted sensor was prepared by synthesis of molecularly imprinting polymer (MIP) on the hydrophilic CdTe quantum dots via reverse microemulsion method using small amounts of solvents. The resulting CdTe@SiO2@MIP nanoparticles were characterized by fluorescence, UV–vis absorption and FT‐IR spectroscopy and transmission electron microscopy. They preserved 48% of fluorescence quantum yield of the parent quantum dots. CAP remarkably quenched the fluorescence of prepared CdTe@SiO2@MIP, probably via electron transfer mechanism. Under the optimal conditions, the relative fluorescence intensity of CdTe@SiO2@MIP decreased with increasing CAP by a Stern–Volmer type equation in the concentration range of 40–500 µg L–1. The corresponding detection limit was 5.0 µg L–1. The intra‐day and inter‐day values for the precision of the proposed method were all <4%. The developed sensor had a good selectivity and was applied to determine CAP in spiked human and bovine serum and milk samples with satisfactory results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A biosensor for estrogenic substances using the quartz crystal microbalance   总被引:1,自引:0,他引:1  
This article describes a biosensor that detects estrogenic substances using a quartz crystal microbalance with a genetically engineered construct of the hormone-binding domain of the alpha-estrogen receptor. The receptor was immobilized to a piezoelectric quartz crystal via a single exposed cysteine, forming a uniform orientation on the crystal surface. Our results illustrate that this sensor responds to a variety of ligands that are known to bind to the estrogen receptor. No response was observed for nonbinding substances such as testosterone and progesterone. The sensitive response of this biosensor to estrogenic substances results from changes in the structural rigidity of the immobilized receptor that occurs with ligand binding. Agonist and antagonist show different responses.  相似文献   

15.
The novel reductive graphene oxide‐based magnetic molecularly imprinted poly(ethylene‐co‐vinyl alcohol) polymers (rGO@m‐MIPs) were successfully synthesized as adsorbents for six kinds of polychlorinated biphenyls (PCBs) in fish samples. rGO@m‐MIPs was prepared by surface molecular imprinting technique. Besides, Fe3O4 nanoparticles (NPs) were employed as magnetic supporters, and rGO@Fe3O4 was in situ synthesis. Different from functional monomer and cross‐linker in traditional molecularly imprinted polymer, here, 3,4‐dichlorobenzidine was employed as dummy molecular and poly(ethylene‐co‐vinyl alcohol) was adopted as the imprinted polymers. After morphology and inner structure of the magnetic adsorbent were characterized, the adsorbent was employed for disperse solid phase extraction toward PCBs and exhibited great selectivity and high adsorption efficiency. This material was verified by determination of PCBs in fish samples combined with gas chromatography‐mass spectrometry (GC‐MS) method. According to the detection, the low detection limits (LODs) of PCBs were 0.0035–0.0070 µg l−1 and spiked recoveries ranged between 79.90 and 94.23%. The prepared adsorbent can be renewable for at least 16 times and expected to be a new material for the enrichment and determination of PCBs from contaminated fish samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Quartz crystal microbalance (QCM) sensors are widely used for determining liquid properties or probing interfacial processes. For some applications the sensitivity of the QCM sensors typically used (5–20 MHz) is limited compared with other biosensor methods. In this study ultrasensitive QCM sensors with resonant frequencies from 39 to 110 MHz for measurements in the liquid phase are presented. The fundamental sensor effect of a QCM is the decrease of the resonant frequency of an oscillating quartz crystal due to the binding of mass on a coated surface during the measurement. The sensitivity of QCM sensors increases strongly with an increasing resonant frequency and, therefore, with a decreasing thickness of the sensitive area. The new kind of ultrasensitive QCM sensors used in this study is based on chemically milled shear mode quartz crystals which are etched only in the center of the blank, forming a thin quartz membrane with a thick, mechanically stable outer ring. An immunoassay using a virus specific monoclonal antibody and a M13-Phage showed an increase in the signal to noise ratio by a factor of more than 6 for 56 MHz quartz crystals compared with standard 19 MHz quartz crystals, the detection limit was improved by a factor of 200. Probing of acoustic properties of glycerol/water mixtures resulted in an increase in sensitivity, which is in very good agreement with theory. Chemically milled QCM sensors strongly improve the sensitivity in biosensing and probing of acoustic properties and, therefore, offer interesting new application fields for QCM sensors.  相似文献   

17.
A convenient and simple approach for the preparation of molecularly imprinted polymers (MIPs) based on polyamide (nylon‐6) was developed. The polymer matrix formation occurred during the transition of nylon from dissolved to solid state in the presence of template molecules in the initial solution. 2,2,2‐Trifluoroethanol (TFE) was chosen as a main solvent for the polyamide. It provides a high solubility of nylon and does not significantly change the structure of biopolymers. The alteration of the polymer matrix structure after the addition of different types of porogens in the nylon/TFE solution was investigated. The structured polymers in the form of films and microparticles were prepared in the chosen optimal conditions. Different model biomolecular templates (of low‐ and high‐molecular weight) were used for the preparation of MIPs, which were shown to specifically recognize these molecules upon binding experiments. The binding of the template molecules to MIPs was monitored using spectrophotometric, radioisotopic, or fluorometric detection. The selectivity coefficients of the MIPs were estimated to be 1.4–4.6 depending on the type of templates and conditions of the polymer matrix formation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Proinsulin C-peptide was electroimmobilized to a quartz crystal microbalance sensor chip, localizing this low-pI peptide for covalent attachment to activated surface carboxyl groups. The resulting chip was used in a continuous flow biosensor to capture anti-C-peptide antibodies, which could subsequently be eluted in 5% formic acid between air bubbles for efficient recovery and mass spectrometric identification. The method is reproducible through repeated cycles, providing affinity purification of proteins under real-time monitoring of the binding and elution processes.  相似文献   

19.
This study presents the development of a QCM immunosensor for the detection of Listeria monocytogenes. A self-assembled monolayer (SAM) of thiosalicylic acid is incorporated for the covalent attachment of antibodies to the gold surface of the piezoelectric crystal. A non-Sauerbrey increase in frequency is observed upon exposure of such a crystal to specific antigen cells. This unexpected response is consistent with the obtained results and is shown to be specific. The sensor can detect L. monocytogenes cells in real time in solution to 1 × 107 cells/ml. The sensor is reusable more than 10 times without detectable loss in activity and shows negligible response to a non-specific pathogen, Bacillus cereus. The lifetime of the thiolated crystal was also investigated.  相似文献   

20.
The cystine‐bridged cyclic peptide hormones (CBCPHs) represent signature structural feature as well as unique biological activity. In this study, three CBCPHs have been identified and characterized, namely, oxytocin, atrial natriuretic peptides (ANPs), and brain natriuretic peptides (BNPs). Because research has shown that ANPs and BNPs are powerful diagnostic biomarkers for heart disease, a highly laudable endeavor would be to develop a novel sensor for detecting ANP or BNP levels. Therefore, an amphiphilic monomer Acr‐His‐NHNH‐Fmoc was synthesized to form molecularly imprinted polymers (MIPs) for targeted CBCPH detection. First, oxytocin, a cardiovascular hormone and a CBCPH, was used as a template to fabricate MIPs on quartz crystal microbalance (QCM) chips. On the other hand, fabricated selected ANP segment or BNP segment as an epitope is able to construct epitope‐mediated MIPs (EMIPs) for ANP or BNP. The developed oxytocin or ANP sensor reached a detection limitation of 0.1nM with the dissociation constants being 30pM for oxytocin and 20pM for ANP. Moreover, BNP sensor achieved a detection limitation of 2.89pM with an even lower Kd value as 2pM. Compared with the performance of EMIPs, the imprinted films showed high affinity and selectivity in special binding to CBCPHs. The developed MIPs‐QCM biosensors thus provide an improved sensing platform using an amphiphilic monomer and may be useful for applications toward cyclotides, cystine knot motifs, or insulin‐like peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号