首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forkhead box class O6 (FOXO6) is an important member of FOXO family, which has been demonstrated to be implicated in tumor development. However, the role of FOXO6 in colorectal cancer (CRC) is still unclear. The study aimed to investigate the potential roles of FOXO6 in the development of CRC. Our results showed that FOXO6 was overexpressed in CRC tissues and cell lines. FOXO6 knockdown inhibited cell proliferation, as well as repressed the migration and invasion of CRC cells. Additionally, we found that FOXO6 knockdown altered cellular metabolism by inhibiting glycolysis and promoting mitochondrial respiration. Furthermore, FOXO6 knockdown inhibited the activation of PI3K/Akt/mTOR pathway in CRC cells. The results herein indicated that FOXO6 knockdown inhibited cell proliferation, migration, invasion, and glycolysis in CRC cells. PI3K/Akt/mTOR pathway was involved in the effects of FOXO6 on CRC cells. These findings suggested that FOXO6 might be a potential target for the CRC therapy.  相似文献   

2.
The neural cell adhesion molecule (NCAM) plays critical roles in multiple cellular processes in neural cells, mesenchymal stem cells, and various cancer cells. However, the effect and mechanism of NCAM in human melanoma cells are still unclear. In this study, we found that NCAM regulated the proliferation, apoptosis, autophagy, migration, and epithelial-to-mesenchymal transition of human melanoma cells by determining the biological behavior of NCAM knockdown A375 and M102 human melanoma cells. Further studies revealed that NCAM knockdown impaired the organization of actin cytoskeleton and reduced the phosphorylation of cofilin, an actin-cleaving protein. When cells were transfected with cofilin S3A (dephosphorylated cofilin), biological behavior similar to that of NCAM knockdown cells was observed. Research on the underlying molecular mechanism showed that NCAM knockdown suppressed activation of the Src/Akt/mTOR pathway. Specific inhibitors of Src and PI3K/Akt were employed to further verify the relationship between Src/Akt/mTOR signaling and cofilin, and the results showed that the phosphorylation level of cofilin decreased following inhibition of the Src/Akt/mTOR pathway. These results indicated that NCAM may regulate the proliferation, apoptosis, autophagy, migration, and epithelial-to-mesenchymal transition of human melanoma cells via the Src/Akt/mTOR/cofilin pathway-mediated dynamics of actin cytoskeleton.  相似文献   

3.
Prostate cancer (PCa) is one of the most common malignancies in men. Ribosomal protein L22-like1 (RPL22L1), a component of the ribosomal 60 S subunit, is associated with cancer progression, but the role and potential mechanism of RPL22L1 in PCa remain unclear. The aim of this study was to investigate the role of RPL22L1 in PCa progression and the mechanisms involved. Bioinformatics and immunohistochemistry analysis showed that the expression of RPL22L1 was significantly higher in PCa tissues than in normal prostate tissues. The cell function analysis revealed that RPL22L1 significantly promoted the proliferation, migration and invasion of PCa cells. The data of xenograft tumour assay suggested that the low expression of RPL22L1 inhibited the growth and invasion of PCa cells in vivo. Mechanistically, the results of Western blot proved that RPL22L1 activated PI3K/Akt/mTOR pathway in PCa cells. Additionally, LY294002, an inhibitor of PI3K/Akt pathway, was used to block this pathway. The results showed that LY294002 remarkably abrogated the oncogenic effect of RPL22L1 on PCa cell proliferation and invasion. Taken together, our study demonstrated that RPL22L1 is a key gene in PCa progression and promotes PCa cell proliferation and invasion via PI3K/Akt/mTOR pathway, thus potentially providing a new target for PCa therapy.  相似文献   

4.
The mechanism of cisplatin resistance in cancer cells is not fully understood. Here, we show that the Akt/mTOR survival pathway plays an important role in cisplatin resistance in human ovarian cancer cells. Specifically, we found that cisplatin treatment activates the Akt/mTOR survival pathway and that inhibition of this pathway by the PI3 K inhibitor LY294002 or knockdown of Akt sensitizes ovarian cancer cells to cisplatin. Furthermore, we generated cisplatin-resistant cells and found that resistant cells express a higher level of activated Akt as compared to their cisplatin sensitive counterparts. Importantly, inhibition of Akt or mTOR sensitized resistant cells to cisplatin-induced apoptosis. Taken together, our data indicate that activation of the Akt/mTOR pathway prevents cisplatin-induced apoptosis, leading to cisplatin resistance. Therefore, our study suggests that cisplatin resistance can be overcome by targeting the Akt/mTOR survival pathway in human ovarian cancer cells.  相似文献   

5.
MicroRNAs (miRNAs/miRs) have aroused increasing attention in colorectal cancer (CRC) therapy. This study is designed for a detailed analysis of the roles of miR-16-5p and forkhead box K1 (FOXK1) in cell angiogenesis and proliferation during CRC in addition to their underlying mechanisms. CRC tissues and colon cancer cell lines (SW620 and HCT8) were investigated. qRT-PCR and Western blot were utilized to evaluate miR-16-5p and FOXK1 expression. Following gain- and loss-of-function assays on miR-16-5p or FOXK1, the effects of miR-16-5p and FOXK1 were assessed on cell angiogenesis and proliferation in CRC cells. A dual-luciferase reporter assay was employed to evaluate the binding relationship of miR-16-5p and FOXK1. Western blot was used to determine the effects of miR-16-5p and FOXK1 on key molecules of the PI3K/Akt/mTOR pathway. Highly expressed FOXK1 and lowly expressed miR-16-5p were observed in CRC cells and tissues. miR-16-5p overexpression or FOXK1 knockdown reduced CRC cell proliferation and angiogenesis of human umbilical vein endothelial cells co-cultured with the supernatant of CRC cells, whereas miR-16-5p silencing or FOXK1 upregulation caused opposite trends. Additionally, miR-16-5p negatively modulated FOXK1 expression. The blockade of the PI3K/Akt/mTOR pathway was triggered by miR-16-5p overexpression or FOXK1 silencing. In conclusion, miR-16-5p hampers cell angiogenesis and proliferation during CRC by targeting FOXK1 to block the PI3K/Akt/mTOR pathway.Key words: microRNA-16-5p, forkhead box K1, PI3K/Akt/mTOR pathway, colorectal cancer, proliferation, angiogenesis  相似文献   

6.
Prostate cancer (PCa) is one of the most common malignancies in men. Ribosomal protein L22‐like1 (RPL22L1), a component of the ribosomal 60 S subunit, is associated with cancer progression, but the role and potential mechanism of RPL22L1 in PCa remain unclear. The aim of this study was to investigate the role of RPL22L1 in PCa progression and the mechanisms involved. Bioinformatics and immunohistochemistry analysis showed that the expression of RPL22L1 was significantly higher in PCa tissues than in normal prostate tissues. The cell function analysis revealed that RPL22L1 significantly promoted the proliferation, migration and invasion of PCa cells. The data of xenograft tumour assay suggested that the low expression of RPL22L1 inhibited the growth and invasion of PCa cells in vivo. Mechanistically, the results of Western blot proved that RPL22L1 activated PI3K/Akt/mTOR pathway in PCa cells. Additionally, LY294002, an inhibitor of PI3K/Akt pathway, was used to block this pathway. The results showed that LY294002 remarkably abrogated the oncogenic effect of RPL22L1 on PCa cell proliferation and invasion. Taken together, our study demonstrated that RPL22L1 is a key gene in PCa progression and promotes PCa cell proliferation and invasion via PI3K/Akt/mTOR pathway, thus potentially providing a new target for PCa therapy.  相似文献   

7.
目的探讨肿瘤转移相关因子RhoGDI2与PI3K/Akt/mTOR信号通路在肺癌侵袭转移过程中的作用及相关机制。方法利用PI3K/Akt/mTOR信号通路上特异性的抑制剂,采用MTT法,伤口愈合实验及侵袭实验观察不同浓度药物对肺癌95D细胞生长侵袭转移能力的影响,通过Western Blot方法观察RhoGDI2蛋白水平的变化。结果PI3K抑制剂LY294002及mTOR抑制剂Rapamycin都能抑制肺癌细胞95D的侵袭转移能力,联合应用抑制作用更强。PI3K抑制剂LY294002处理组RhoGDI2蛋白的表达量增加,且随浓度增加RhoGDI2蛋白表达也增加。mTOR抑制剂Rapamycin组,在低浓度时增加RhoGDI2蛋白的表达,但增大Rapamycin的浓度,RhoGDI2蛋白的表达反而降低。低浓度LY294002组和Rapa-mycin组联合应用可以明显增加RhoGDI2蛋白的表达。结论PI3K/Akt/mTOR信号通路中Akt的活化与RhoGDI2密切相关,RhoGDI2可能直接或间接通过与Akt的相互作用参与调节肺癌的侵袭转移的过程。  相似文献   

8.
9.
The mammalian target of rapamycin (mTOR) is an atypical serine/threonine protein kinases involved in the regulation of cell growth, proliferation, and differentiation through the PI3K/Akt/mTOR/P70S6 K signalling pathway. P70S6 K as a downstream molecule of mTOR is activated by phosphorylation and subsequently promotes the synthesis of ribosomal and translational proteins. In this study, we investigated the role of PI3K, Akt, and P70S6 K in human periodontal tissue remodelling during orthodontic loading. The prepared tissue specimens taken from 4 extracted premolars were processed for immunolabelling. The changes in the expression of PI3K, Akt, and P70S6 K in the periodontal tissues were detected by real‐time quantitative‐polymerase chain reaction and Western blot analysis. The results from real‐time quantitative‐polymerase chain reaction and Western blot both showed that the expression of PI3K, Akt, and P70S6 K in the experimental group began to increase at 3 days and increased significantly at 10 days, then decreased approaching the control group level at 28 days. Our findings showed that the expression of PI3K, Akt, and P70S6 K in human periodontal ligament demonstrated a variability during the orthodontic loading, which suggested that the PI3K/Akt/mTOR/P70S6 K signal pathway was involved in orthodontic tooth movement and played a role in the process of periodontium remodelling.  相似文献   

10.
11.
哺乳动物雷帕霉素靶(mTOR)和蛋白激酶B(Akt/PKB)与肿瘤发生的密切关系已被广泛地认可.mTOR是一种丝/苏氨酸激酶,可以通过影响mRNA转录、代谢、自噬等方式调控细胞的生长.它既是PI3K的效应分子,也可以是PI3K的反馈调控因子.mTORC1 和mTORC2是mTOR的两种不同复合物. 对雷帕霉素敏感的mTORC1受到营养、生长因子、能量和应激4种因素的影响.生长因子通过PI3K/Akt信号通路调控mTORC1是最具特征性调节路径.而mTORC2最为人熟知的是作为Akt473磷酸化位点的上游激酶. 同样,Akt/PKB在细胞增殖分化、迁移生长过程中发挥着重要作用. 随着Thr308和Ser473两个位点激活,Akt/PKB也得以全面活化.因此,mTORC2-Akt-mTORC1的信号通路在肿瘤形成和生长中是可以存在的.目前临床肿瘤治疗中,PI3K/Akt/mTOR是重要的靶向治疗信号通路.然而,仅抑制mTORC1活性,不是所有的肿瘤都能得到预期控制.雷帕霉素虽然能抑制mTORC1,但也能反馈性地增加PI3K信号活跃度,从而影响治疗预后.近来发现的第二代抑制剂可以同时抑制mTORC1/2和PI3K活性,这种抑制剂被认为在肿瘤治疗上颇具前景.本综述着重阐述了PI3K/Akt/mTOR信号通路的传导、各因子之间的相互调控以及相关抑制剂的发展.  相似文献   

12.
Epidemiological studies have indicated that obesity is associated with colorectal cancer. The obesity hormone leptin is considered as a key mediator for cancer development and progression. The present study aims to investigate regulatory effects of leptin on colorectal carcinoma. The expression of leptin and its receptor Ob-R was examined by immunohistochemistry in 108 Chinese patients with colorectal carcinoma. The results showed that leptin/Ob-R expression was significantly associated with T stage, TNM stage, lymph node metastasis, distant metastasis, differentiation and expression of p-mTOR, p-70S6 kinase, and p-Akt. Furthermore, the effects of leptin on proliferation and apoptosis of HCT-116 colon carcinoma cells were determined. The results showed that leptin could stimulate the proliferation and inhibit the apoptosis of HCT-116 colon cells through the PI3K/Akt/mTOR pathway. Ly294002 (a PI3K inhibitor) and rapamycin (an mTOR inhibitor) could prevent the regulatory effects of leptin on the proliferation and apoptosis of HCT-116 cells via abrogating leptin-mediated PI3K/Akt/mTOR pathway. All these results indicated that leptin could regulate proliferation and apoptosis of colorectal carcinoma through the PI3K/Akt/mTOR signalling pathway.  相似文献   

13.
BF12 [(2E)‐3‐[6‐Methoxy‐2‐(3,4,5‐trimethoxybenzoyl)‐1‐benzofuran‐5‐yl]prop‐2‐enoic acid], a novel derivative of combretastatin A‐4 (CA‐4), was previously found to inhibit tumor cell lines, with a particularly strong inhibitory effect on cervical cancer cells. In this study, we investigated the microtubule polymerization effects and apoptosis signaling mechanism of BF12. BF12 showed a potent efficiency against cervical cancer cells, SiHa and HeLa, with IC50 values of 1.10 and 1.06 μm , respectively. The cellular mechanism studies revealed that BF12 induced G2/M phase arrest and apoptosis in SiHa and HeLa cells, which were associated with alterations in the expression of the cell G2/M cycle checkpoint‐related proteins (cyclin B1 and cdc2) and alterations in the levels of apoptosis‐related proteins (P53, caspase‐3, Bcl‐2, and Bax) of these cells, respectively. Western blot analysis showed that BF12 inhibited the PI3 K/Akt/mTOR signaling pathway and induced apoptosis in human cervical cancer cells. BF12 was identified as a tubulin polymerization inhibitor, evidenced by the effective inhibition of tubulin polymerization and heavily disrupted microtubule networks in living SiHa and HeLa cells. By inhibiting the PI3 K/Akt/mTOR signaling pathway and inducing apoptosis in human cervical cancer cells, BF12 shows promise for use as a microtubule inhibitor.  相似文献   

14.
15.
目的 研究紫丁香苷的抗乳腺癌作用及分子机制,为紫丁香苷的临床应用提供理论依据。方法 MTT检测紫丁香苷对乳腺癌细胞增殖的抑制作用;台盼蓝、TUNEL和Annexin V-FITC/PI染色检测细胞的凋亡状况,Western bolt检测Caspase-3的活化情况,判断细胞凋亡是否发生;检测凋亡相关蛋白B淋巴细胞瘤2(Bcl-2)的表达,结合JC-1染色探讨紫丁香苷对线粒体凋亡途径的影响;运用PI3K激动剂Recilisib做对比,qRT-PCR和Western bolt检测紫丁香苷调控PI3K/Akt/mTOR通路诱导癌细胞凋亡的作用。结果 紫丁香苷对乳腺癌细胞的增殖具有时间和剂量依赖的抑制作用,能诱导癌细胞发生凋亡。进一步研究发现,紫丁香苷处理后,细胞内Caspase-3被激活,Bcl-2表达下降,线粒体膜电位明显丧失,PI3K、Akt和mTOR的mRNA与蛋白质水平表达无明显变化,但蛋白质磷酸化水平明显下降;Recilisib处理后部分抵消了紫丁香苷对乳腺癌细胞凋亡的作用。结论 紫丁香苷对乳腺癌细胞MDA-MB-231和MCF-7具有良好的抑制作用,其通过抑制PI3K/Akt/mTOR信号通路的活化来抑制细胞增殖并诱导细胞发生线粒体途径的凋亡。紫丁香苷是具有开发潜力的抗乳腺癌药物。  相似文献   

16.
The Ras/Raf/MEK/ERK and PI3K/PTEN/AKT signaling cascades play critical roles in the transmission of signals from growth factor receptors to regulate gene expression and prevent apoptosis. Components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf, PI3K, PTEN, Akt). Also, mutations occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., BCR-ABL) which transmit their signals through these cascades. These pathways interact with each other to regulate growth and in some cases tumorigenesis. For example, in some cells, PTEN mutation may contribute to suppression of the Raf/MEK/ERK cascade due to the ability of elevated activated Akt levels to phosphorylate and inactivate Raf-1. We have investigated the genetic structures and functional roles of these two signaling pathways in the malignant transformation and drug resistance of hematopoietic, breast and prostate cancer cells. Although both of these pathways are commonly thought to have anti-apoptotic and drug resistance effects on cells, they display different cell-lineage-specific effects. Induced Raf expression can abrogate the cytokine dependence of certain hematopoietic cell lines (FDC-P1 and TF-1), a trait associated with tumorigenesis. In contrast, expression of activated PI3K or Akt does not abrogate the cytokine dependence of these hematopoietic cell lines, but does have positive effects on cell survival. However, activated PI3K and Akt can synergize with activated Raf to abrogate the cytokine dependence of another hematopoietic cell line (FL5.12) which is not transformed by activated Raf expression by itself. Activated Raf and Akt also confer a drug-resistant phenotype to these cells. Raf is more associated with proliferation and the prevention of apoptosis while Akt is more associated with the long-term clonogenicity. In breast cancer cells, activated Raf conferred resistance to the chemotherapeutic drugs doxorubicin and paclitaxel. Raf induced the expression of the drug pump Mdr-1 (a.k.a., Pgp) and the Bcl-2 anti-apoptotic protein. Raf did not appear to induce drug resistance by altering p53/p21Cip−1 expression, whose expression is often linked to regulation of cell cycle progression and drug resistance. Deregulation of the PI3K/PTEN/Akt pathway was associated with resistance to doxorubicin and 4-hydroxyl tamoxifen, a chemotherapeutic drug and estrogen receptor antagonist used in breast cancer therapy. In contrast to the drug-resistant breast cancer cells obtained after overexpression of activated Raf, cells expressing activated Akt displayed altered (decreased) levels of p53/p21Cip−1. Deregulated expression of the central phosphatase in the PI3K/PTEN/Akt pathway led to breast cancer drug resistance. Introduction of mutated forms of PTEN, which lacked lipid phosphatase activity, increased the resistance of the MCF-7 cells to doxorubicin, suggesting that these lipid phosphatase deficient PTEN mutants acted as dominant negative mutants to suppress wild-type PTEN activity. Finally, the PI3K/PTEN/Akt pathway appears to be more prominently involved in prostate cancer drug resistance than the Raf/MEK/ERK pathway. Some advanced prostate cancer cells express elevated levels of activated Akt which may suppress Raf activation. Introduction of activated forms of Akt increased the drug resistance of advanced prostate cancer cells. In contrast, introduction of activated forms of Raf did not increase the drug resistance of the prostate cancer cells. In contrast to the results observed in hematopoietic cells, Raf may normally promote differentiation in prostate cells which is suppressed in advanced prostate cancer due to increased expression of activated Akt arising from PTEN mutation. Thus in advanced prostate cancer it may be advantageous to induce Raf expression to promote differentiation, while in hematopoietic cancers it may be beneficial to inhibit Raf/MEK/ERK-induced proliferation. These signaling and anti-apoptotic pathways can have different effects on growth, prevention of apoptosis and induction of drug resistance in cells of various lineages which may be due to the expression of lineage-specific factors.  相似文献   

17.
Tumor malignancy is associated with several cellular properties including proliferation and ability to metastasize. Endothelin-1 (ET-1) the most potent vasoconstrictor plays a crucial role in migration and metastasis of human cancer cells. We found that treatment of human chondrosarcoma (JJ012 cells) with ET-1 increased migration and expression of matrix metalloproteinase (MMP)-13. ET-1-mediated cell migration and MMP-13 expression were reduced by pretreatment with inhibitors of focal adhesion kinase (FAK), phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR), as well as the NF-κB inhibitor and the IκB protease inhibitor. In addition, ET-1 treatment induced phosphorylation of FAK, PI3K, AKT, and mTOR, and resulted in increased NF-κB-luciferase activity that was inhibited by a specific inhibitor of PI3K, Akt, mTOR, and NF-κB cascades. Taken together, these results suggest that ET-1 activated FAK/PI3K/AKT/mTOR, which in turn activated IKKα/β and NF-κB, resulting in increased MMP-13 expression and migration in human chondrosarcoma cells.  相似文献   

18.
CXCL12/CXCR4 plays an important role in metastasis of gastric carcinoma. Rapamycin has been reported to inhibit migration of gastric cancer cells. However, the role of mTOR pathway in CXCL12/CXCR4-mediated cell migration and the potential of drugs targeting PI3K/mTOR pathway remains unelucidated. We found that CXCL12 activated PI3K/Akt/mTOR pathway in MKN-45 cells. Stimulating CHO-K1 cells expressing pEGFP-C1-Grp1-PH fusion protein with CXCL12 resulted in generation of phosphatidylinositol (3,4,5)-triphosphate, which provided direct evidence of activating PI3K by CXCL12. Down-regulation of p110β by siRNA but not p110α blocked phosphorylation of Akt and S6K1 induced by CXCL12. Consistently, p110β-specific inhibitor blocked the CXCL12-activated PI3K/Akt/mTOR pathway. Moreover, CXCR4 immunoprecipitated by anti-p110β antibody increased after CXCL12 stimulation and G(i) protein inhibitor pertussis toxin abrogated CXCL12-induced activation of PI3K. Further studies demonstrated that inhibitors targeting the PI3K/mTOR pathway significantly blocked the chemotactic responses of MKN-45 cells triggered by CXCL12, which might be attributed primarily to inhibition of mTORC1 and related to prevention of F-actin reorganization as well as down-regulation of active RhoA, Rac1, and Cdc42. Furthermore, rapamycin inhibited the secretion of CXCL12 and the expression of CXCR4, which might form a positive feedback loop to further abolish upstream signaling leading to cell migration. Finally, we found cells expressing high levels of cxcl12 were sensitive to rapamycin in its activity inhibiting migration as well as proliferation. In summary, we found that the mTOR pathway played an important role in CXCL12/CXCR4-mediated cell migration and proposed that drugs targeting the mTOR pathway may be used for the therapy of metastatic gastric cancer expressing high levels of cxcl12.  相似文献   

19.
Cervical cancer continues to be among the most frequent gynaecologic cancers worldwide. The phosphoinositide 3‐kinase (PI3K)/protein kinase B (AKT) pathway is constitutively activated in cervical cancer. Inositol polyphosphate 4‐phosphatase type II (INPP4B) is a phosphoinositide phosphatase and considered a negative regulatory factor of the PI3K/AKT pathway. INPP4B has diverse roles in various tumours, but its role in cervical cancer is largely unknown. In this study, we investigated the role of INPP4B in cervical cancer. Overexpression of INPP4B in HeLa, SiHa and C33a cells inhibited cell proliferation, metastasis and invasiveness in CCK‐8, colony formation, anchorage‐independent growth in soft agar and Transwell assay. INPP4B reduced the expression of some essential proteins in the PI3K/AKT/SGK3 pathway including p‐AKT, p‐SGK3, p‐mTOR, phospho‐p70S6K and PDK1. In addition, overexpression of INPP4B decreased xenograft tumour growth in nude mice. Loss of INPP4B protein expression was found in more than 60% of human cervical carcinoma samples. In conclusion, INPP4B impedes the proliferation and invasiveness of cervical cancer cells by inhibiting the activation of two downstream molecules of the PI3K pathway, AKT and SGK3. INPP4B acts as a tumour suppressor in cervical cancer cells.  相似文献   

20.
The phosphatidylinositol 3-kinase (PI3 K)/Akt/mammalian target of rapamycin (mTOR) signaling axis plays a central role in cell proliferation, growth and survival under physiological conditions. However, aberrant PI3 K/Akt/mTOR signaling has been implicated in many human cancers, including human triple negative breast cancer. Therefore, dual inhibitors of PI3 K/Akt and mTOR signaling could be valuable agents for treating breast cancer. The objective of this study was to investigate the effect of piperlongumine (PPLGM), a natural alkaloid on PI3 K/Akt/mTOR signaling, Akt mediated regulation of NF-kB and apoptosis evasion in human breast cancer cells. Using molecular docking studies, we found that PPLGM physically interacts with the conserved domain of PI3 K and mTOR kinases and the results were comparable with standard dual inhibitor PF04691502. Our results demonstrated that treatment of different human triple-negative breast cancer cells with PPLGM resulted in concentration- and time-dependent growth inhibition. The inhibition of cancer cell growth was associated with G1-phase cell cycle arrest and down-regulation of the NF-kB pathway leads to activation of the mitochondrial apoptotic pathway. It was also found that PPLGM significantly decreased the expression of p-Akt, p70S6K1, 4E-BP1, cyclin D1, Bcl-2, p53 and increased expression of Bax, cytochrome c in human triple-negative breast cancer cells. Although insulin treatment increased the phosphorylation of Akt (Ser473), p70S6K1, 4E-BP1, PPLGM abolished the insulin mediated phosphorylation, it clearly indicates that PPLGM acts through PI3 k/Akt/mTOR axis. Our results suggest that PPLGM may be an effective therapeutic agent for the treatment of human triple negative breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号