首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been found that long noncoding RNA HOTAIR, microRNA‐130a (miR‐130a) and insulin‐like growth factor 1 (IGF1) expression are associated with ovarian cancer, thus, we hypothesised that the HOTAIR/miR‐130a/IGF1 axis might associate with endocrine disorders and biological behaviours of ovarian granulosa cells in rat models of polycystic ovary syndrome (PCOS). PCOS rat models were established by injection of dehydro‐isoandrosterone, followed by treatment of si‐HOTAIR, oe‐HOTAIR, miR‐130a mimics or miR‐130a inhibitors. Serum hormonal levels were determined to evaluate endocrine conditions. The effect of HOTAIR and miR‐130a on activities of isolated ovarian granulosa cells was assessed, as well as the involvement of IGF1.In the ovarian tissues and granulosa cells of PCOS rat models, highly expressed HOTAIR and IGF1 and poorly expressed miR‐130a were identified. In response to oe‐HOTAIR, serum levels of E2, T and LH were increased and serum levels of FSH were reduced; the proliferation of granulosa cells was reduced and apoptosis was promoted; notably, expression of miR‐130a was reduced while expression of IGF1 was increased. The treatment of si‐HOTAIR reversed the situation. Furthermore, the binding of HOTAIR to miR‐130a and targeting relationship of miR‐130a and IGF1 were confirmed. LncRNA HOTAIR up‐regulates the expression of IGF1 and aggravates the endocrine disorders and granulosa cell apoptosis through competitive binding to miR‐130a in rat models of PCOS. Based on our finding, we predict that competitive binding of HOTAIR to miR‐130a may act as a novel target for the molecular treatment of PCOS.  相似文献   

2.
3.
The transforming growth factor β (TGF‐β) superfamily members are important molecules that regulate many ovarian functions under normal physiological and pathological conditions. TGF‐β1 and its receptors are highly expressed in the ovarian cells of many species. However, the effect of TGF‐β1 on the capacity of the avian germ cell reservoir remains unknown. In this study, 5‐day‐old chicks were injected with TGF‐β1 (2.5, 12.5, and 62.5 μg/kg body weight) for 3 days to assess the effect of TGF‐β1 on early follicle development. Morphological analysis showed that treatment with TGF‐β1 (12.5 μg/kg) increased the number of germ cell cysts and reduced the number of primordial and growing follicles. The diameter and area of oocytes and follicles were decreased after TGF‐β1 treatment. Immunohistochemical staining of the proliferating cell nuclear antigen revealed that the ratios of the positive somatic and granulosa cells were decreased by 16.2% and 2.48%, respectively. Furthermore, more apoptotic cells were observed in the TGF‐β1 group than those of the control by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. In addition, we cultured the 5d chicken ovaries for 3 days in vitro and found that treatment with TGF‐β1 (10 ng/mL) manifested similar results as the in vivo experiment. However, the negative effect of TGF‐β1 on early ovary development was rescued by treatment with a TGF‐βR1 inhibitor SD208, resulting in increased expression of steroidogenic enzymes and cell cycle‐regulating proteins. In conclusion, TGF‐β1 could maintain the germ cell reservoir by restraining follicle activation involving reduced cell proliferation and steroidogenic enzymes gene expression at the early stage of ovarian development.  相似文献   

4.
5.
6.
Bisphenol A induces apoptosis and G2-to-M arrest of ovarian granulosa cells   总被引:10,自引:0,他引:10  
We investigated the impact of bisphenol A (BPA) on murine ovarian granulosa cells. Ovarian granulosa cells were cultured with 100 fM to 100 microM BPA for 24 h to 72 h. BPA decreased granulosa cell viability in a dose- and time-dependent manner. The lowest concentration that induced a significant decrease was 100 pM (89.2 +/- 4.0% of the control). TUNEL analysis demonstrated that treatment with BPA increased apoptosis of granulosa cells in a dose- and time-dependent manner. In addition, flow cytometry analyses revealed that treatment with BPA resulted in G2-to-M arrest, which was most prominent at 48 h. BPA increased the expression of Bax and concomitantly decreased the expression of Bcl2 at both protein and mRNA levels of granulosa cells. These findings suggest that low, presumably environmentally relevant doses of BPA, decrease the viability of granulosa cells by inducing apoptosis and G2-to-M arrest. Up-regulation of Bax and down-regulation of Bcl2 were suggested to be involved in this apoptotic effect.  相似文献   

7.
8.
It is less known about miRNA3127‐5p induced up‐regulation of PD‐L1, immune escape and drug resistance caused by increased PD‐L1 in lung cancer. In this study, lentivirus was transduced into lung cancer cells, and quantitative PCR and Western blot were used to detect the expression of PD‐L1. Then immunofluorescence assay was applied to detect autophagy, finally we explored the relationship between PD‐L1 expressions and chemoresistance in patients. As a result, we found that microRNA‐3127‐5p promotes pSTAT3 to induce the expression of PD‐L1; microRNA‐3127‐5p promotes STAT3 phosphorylation through suppressing autophagy, and autophagy could retaine pSTAT3 into the nucleus in miRNA‐3127‐5p knocked cells, and immune escape induced by elevated level of PD‐L1 results in chemoresistance of lung cancer. In conclusion, microRNA‐3127‐5p induces PD‐L1 elevation through regulating pSTAT3 expression. We also demonstrate that immune escape induced by PD‐L1 can be dismissed by corresponding monoclonal antibody.  相似文献   

9.
Decidualization is a crucial precedent to embryo implantation, as its impairment is a major contributor to female infertility and pregnancy complications. Unraveling the molecular mechanisms involved in the impairment of decidualization has been a subject of interest in the field of reproductive medicine. Evidence from several experimental settings show that exposure to bisphenol A (BPA), an endocrine‐disrupting chemical, affects the expression of several molecules that are involved in decidualization. Both low and high doses of BPA impair decidualization through the dysregulation of estrogen (ER) and progesterone (PR) receptors. Exposure to low doses of BPA leads to decreased levels and activities of several antioxidant enzymes, increased activity of endothelial nitric oxide synthase (eNOS), and increased production of nitric oxide (NO) via the upregulation of ER and PR. Consequently, oxidative stress is induced and decidualization becomes impaired. On the other hand, exposure to high doses of BPA downregulates ER and PR and impairs decidualization through two distinct pathways. One is through the upregulation of early growth response‐1 (EGR1) via increased phosphorylation of extracellular signal‐regulated protein kinases 1 and 2; and the other is through a reduced serum glucocorticoid‐induced kinase‐1 (SGK1)‐mediated downregulation of epithelial sodium channel‐α and the induction of oxidative stress. Thus, regardless of the dose, BPA can impair decidualization to trigger infertility and pregnancy complications. This warrants the need to adopt lifestyles that will decrease the tendency of getting exposed to BPA.  相似文献   

10.
Bisphenol A (BPA) is an endocrine disruptor chemical, which is commonly used in everyday products. Adverse effects of its exposure are reported even at picomolar doses. Effects of picomolar and nanomolar concentrations of BPA on cytotoxicity, nitric oxide (NO) levels, acetylcholinesterase (AChE) gene expression and activity, and tumor necrosis factor‐α (TNF‐α) and caspase‐8 levels were determined in SH‐SY5Y cells. The current study reveals that low‐dose BPA treatment induced cytotoxicity, NO, and caspase‐8 levels in SH‐SY5Y cells. We also evaluated the mechanism underlying BPA‐induced cell death. Ours is the first report that receptor‐interacting serine/threonine‐protein kinase 1–mediated necroptosis is induced by nanomolar BPA treatment in SH‐SY5Y cells. This effect is mediated by altered AChE and decreased TNF‐α levels, which result in an apoptosis‐necroptosis switch. Moreover, our study reveals that BPA is an activator of AChE.  相似文献   

11.
Immune escape of breast cancer cells contributes to breast cancer pathogenesis. Tumour microenvironment stresses that disrupt protein homeostasis can produce endoplasmic reticulum (ER) stress. The miRNA‐mediated translational repression of mRNAs has been extensively studied in regulating immune escape and ER stress in human cancers. In this study, we identified a novel microRNA (miR)‐27a‐3p and investigated its mechanistic role in promoting immune evasion. The binding affinity between miR‐27a‐3p and MAGI2 was predicted using bioinformatic analysis and verified by dual‐luciferase reporter assay. Ectopic expression and inhibition of miR‐27a‐3p in breast cancer cells were achieved by transduction with mimics and inhibitors. Besides, artificial modulation of MAGI2 and PTEN was done to explore their function in ER stress and immune escape of cancer cells. Of note, exosomes were derived from cancer cells and co‐cultured with macrophages for mechanistic studies. The experimental data suggested that ER stress biomarkers including GRP78, PERK, ATF6, IRE1α and PD‐L1 were overexpressed in breast cancer tissues relative to paracancerous tissues. Endoplasmic reticulum stress promoted exosome secretion and elevated exosomal miR‐27a‐3p expression. Elevation of miR‐27a‐3p and PD‐L1 levels in macrophages was observed in response to exosomes‐overexpressing miR‐27a‐3p in vivo and in vitro. miR‐27a‐3p could target and negatively regulate MAGI2, while MAGI2 down‐regulated PD‐L1 by up‐regulating PTEN to inactivate PI3K/AKT signalling pathway. Less CD4+, CD8+ T cells and IL‐2, and T cells apoptosis were observed in response to co‐culture of macrophages and CD3+ T cells. Conjointly, exosomal miR‐27a‐3p promotes immune evasion by up‐regulating PD‐L1 via MAGI2/PTEN/PI3K axis in breast cancer.  相似文献   

12.
13.
14.
Hypothalamic neurons, which produce the kisspeptin family of peptide hormones (Kp), are critical for initiating puberty and maintaining estrous cyclicity by stimulating gonadotropin-releasing hormone (GnRH) release. Conversely, RFamide-related peptide-3 (RFRP3) neurons inhibit GnRH activity. It has previously been shown that neonatal exposure to bisphenol A (BPA) can alter the timing of female pubertal onset and induce irregular estrous cycles or premature anestrus. Here we tested the hypothesis that disrupted ontogeny of RFamide signaling pathways may be a mechanism underlying advanced puberty. To test this, we used a transgenic strain of Wistar rats whose GnRH neurons express enhanced green fluorescent protein. Pups were exposed by daily subcutaneous injection to vehicle, 17beta-estradiol (E2), 50 μg/kg BPA, or 50 mg/kg BPA, from Postnatal Day (PND) 0 through PND 3, and then cohorts were euthanized on PNDs 17, 21, 24, 28, and 33 (5-8 animals per age per exposure; males were collected on PNDs 21 and 33). Vaginal opening was advanced by E2 and 50 μg/kg BPA. On PND 28, females exposed to E2 and 50 μg/kg BPA had decreased RFRP-3 fiber density and contacts on GnRH neurons. RFRP3 perikarya were also decreased in females exposed to 50 μg/kg BPA. Data suggest that BPA-induced premature puberty results from decreased inhibition of GnRH neurons.  相似文献   

15.
16.
17.
《Reproductive biology》2020,20(1):33-36
The objective of our study was to examine the direct effects of the medicinal plant Tribulus terrestris L. (puncturevine) on the basic functions of ovarian cells, including their proliferation, apoptosis, and response to the physiological hormonal stimulator ghrelin. In the first series of experiments, porcine ovarian granulosa cells were cultured with or without puncturevine extracts at concentrations of 0, 1, 10, or 100 μg/ml. In the second series of experiments, these cells were cultured with ghrelin at concentrations of 0, 1, 10, or 100 ng/ml, either alone or in combination with puncturevine (10 μg/ml). The expression levels of the proliferation marker PCNA and the apoptosis marker bax were analyzed via quantitative immunocytochemical methods. Puncturevine was found to stimulate the accumulation of both proliferation and apoptotic markers. Additionally, ghrelin alone could promote the proliferation and apoptosis of ovarian cells. The presence of puncturevine reversed ghrelin-stimulated apoptosis and instead induced apoptotic inhibition. However, puncturevine did not modify the proliferation-inducing effect of ghrelin. These observations demonstrated that (1) puncturevine directly promotes cell proliferation and apoptosis, turnover, of ovarian cells; (2) ghrelin is involved in the regulation of ovarian cell apoptosis and proliferation, consistent with existing evidence; (3) puncturevine antagonizes and even reverses the effects of the hormonal regulator, ghrelin, on ovarian cell apoptosis, but not proliferation; and (4) puncturevine affects not only the basic functions of ovarian cells but also their responses to upstream hormonal regulators.  相似文献   

18.
Folic acid deficiency during pregnancy is believed to be a high‐risk factor for neural tube defects (NTDs). Disturbed epigenetic modifications, including miRNA regulation, have been linked to the pathogenesis of NTDs in those with folate deficiency. However, the mechanism by which folic acid‐regulated miRNA influences this pathogenesis remains unclear. It is believed that DNA methylation is associated with dysregulated miRNA expression. To clarify this issue, here we measured the methylation changes of 22 miRNAs in 57 human NTD cases to explore whether such changes are involved in miRNA regulation in NTD cases through folate metabolism. In total, eight of the 22 miRNAs tested reduced their methylation modifications in NTD cases, which provide direct evidence of the roles of interactions between DNA methylation and miRNA level in these defects. Among the findings, there was a significant association between folic acid concentration and hsa‐let‐7 g methylation level in NTD cases. Hypomethylation of hsa‐let‐7 g increased its own expression level in both NTD cases and cell models, which indicated that hsa‐let‐7 g methylation directly regulates its own expression. Overexpression of hsa‐let‐7 g, along with its target genes, disturbed the migration and proliferation of SK‐N‐SH cells, implying that hsa‐let‐7 g plays important roles in the prevention of NTDs by folic acid. In summary, our data suggest a relationship between aberrant methylation of hsa‐let‐7 g and disturbed folate metabolism in NTDs, implying that improvements in nutrition during early pregnancy may prevent such defects, possibly via the donation of methyl groups for miRNAs.  相似文献   

19.
20.
The effects of weekly injections of a gonadotropin-releasing hormone (GnRH) antagonist (GnRHa) ([N-acetyl-DβNal1-D-pCl-Phe2-D-Phe3-D-Arg6-Phe7-Arg8D-Ala10] NH2 GnRH) on pituitary and ovarian function were examined in the marmoset monkey, Callithrix jacchus. In experiment 1, five cyclic females were given weekly injections of vehicle (50% propylene glycol in saline) for 6 weeks followed by GnRHa for 20 weeks, animals receiving either 200 μg GnRHa/injection (n = 2) or 67 μg GnRHa/injection (n = 3) for 10 weeks, after which the treatment was reversed. Bioactive luteinizing hormone (LH) and progesterone (Po) were measured in blood samples (0.2–0.4 ml) collected twice weekly until at least 8 weeks after the last GnRHa injection. GnRHa treatment, timed to begin in the midluteal phase, caused a rapid decline in LH and Po and luteal regression after a single injection (both doses). Po levels were consistently low (<10 ng/ml), and ovulation was inhibited throughout 200 μg treatment in all animals. Short periods of elevated Po (>10 ng/ml) were, however, occasionally seen during 67 μg treatment, indicating incomplete ovarian suppression. Mean LH levels were significantly lower during GnRHa treatment compared with the period of vehicle injection (all animals 200 μg; three animals 67 μg), and there were significant differences in LH levels between GnRHa treatments (200 μg vs. 67 μg) in four animals. Four animals resumed normal ovarian cycles after the end of GnRHa treatment (15/16 days, three animals; 59 days, one animal); the fifth animal died of unknown causes 32 days after the last GnRHa injection. In a second experiment, pituitary responsiveness to exogenous GnRH was tested 1 day after a single injection of vehicle or antagonist (200 or 67 μg). Measurement of bioactive LH indicated that pituitary response to 200 ng native GnRH was significantly suppressed in animals receiving the antagonist, the degree of suppression being dose related. A third experiment examined the effect of four weekly injections of 200 μg GnRHa on follicular size and granulosa cell responsiveness to human follicle-stimulating hormone (hFSH) in vitro. Follicular development beyond 1 mm was inhibited by GnRHa treatment (preovulatory follicles normally 2-4 mm) although granulosa cell responsiveness to FSH during 48 hr of culture was not impaired. These results suggest that the GnRHa-induced suppression of follicular development and ovulation was mediated primarily by an inhibition of pituitary gonadotropin secretion and not by a direct action at the level of the ovary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号