首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The phase and amplitude of rhythms in physiology and behavior are generated by circadian oscillators and entrained to the 24-h day by exposure to the light-dark cycle and feedback from the sleep-wake cycle. The extent to which the phase and amplitude of multiple rhythms are similarly affected during altered timing of light exposure and the sleep-wake cycle has not been fully characterized.

Methodology/Principal Findings

We assessed the phase and amplitude of the rhythms of melatonin, core body temperature, cortisol, alertness, performance and sleep after a perturbation of entrainment by a gradual advance of the sleep-wake schedule (10 h in 5 days) and associated light-dark cycle in 14 healthy men. The light-dark cycle consisted either of moderate intensity ‘room’ light (∼90–150 lux) or moderate light supplemented with bright light (∼10,000 lux) for 5 to 8 hours following sleep. After the advance of the sleep-wake schedule in moderate light, no significant advance of the melatonin rhythm was observed whereas, after bright light supplementation the phase advance was 8.1 h (SEM 0.7 h). Individual differences in phase shifts correlated across variables. The amplitude of the melatonin rhythm assessed under constant conditions was reduced after moderate light by 54% (17–94%) and after bright light by 52% (range 12–84%), as compared to the amplitude at baseline in the presence of a sleep-wake cycle. Individual differences in amplitude reduction of the melatonin rhythm correlated with the amplitude of body temperature, cortisol and alertness.

Conclusions/Significance

Alterations in the timing of the sleep-wake cycle and associated bright or moderate light exposure can lead to changes in phase and reduction of circadian amplitude which are consistent across multiple variables but differ between individuals. These data have implications for our understanding of circadian organization and the negative health outcomes associated with shift-work, jet-lag and exposure to artificial light.  相似文献   

2.
Human expeditions to Mars will require adaptation to the 24.65-h Martian solar day-night cycle (sol), which is outside the range of entrainment of the human circadian pacemaker under lighting intensities to which astronauts are typically exposed. Failure to entrain the circadian time-keeping system to the desired rest-activity cycle disturbs sleep and impairs cognitive function. Furthermore, differences between the intrinsic circadian period and Earth's 24-h light-dark cycle underlie human circadian rhythm sleep disorders, such as advanced sleep phase disorder and non-24-hour sleep-wake disorders. Therefore, first, we tested whether exposure to a model-based lighting regimen would entrain the human circadian pacemaker at a normal phase angle to the 24.65-h Martian sol and to the 23.5-h day length often required of astronauts during short duration space exploration. Second, we tested here whether such prior entrainment to non-24-h light-dark cycles would lead to subsequent modification of the intrinsic period of the human circadian timing system. Here we show that exposure to moderately bright light ( approximately 450 lux; approximately 1.2 W/m(2)) for the second or first half of the scheduled wake episode is effective for entraining individuals to the 24.65-h Martian sol and a 23.5-h day length, respectively. Estimations of the circadian periods of plasma melatonin, plasma cortisol, and core body temperature rhythms collected under forced desynchrony protocols revealed that the intrinsic circadian period of the human circadian pacemaker was significantly longer following entrainment to the Martian sol as compared to following entrainment to the 23.5-h day. The latter finding of after-effects of entrainment reveals for the first time plasticity of the period of the human circadian timing system. Both findings have important implications for the treatment of circadian rhythm sleep disorders and human space exploration.  相似文献   

3.
Light is an important environmental stimulus for the entrainment of the circadian clock and for increasing alertness. The intrinsically photosensitive ganglion cells in the retina play an important role in transferring this light information to the circadian system and they are elicited in particular by short-wavelength light. Exposure to short wavelengths is reduced, for instance, in elderly people due to yellowing of the ocular lenses. This reduction may be involved in the disrupted circadian rhythms observed in aged subjects. Here, we tested the effects of reduced blue light exposure in young healthy subjects (n?=?15) by using soft orange contact lenses (SOCL). We showed (as expected) that a reduction in the melatonin suppressing effect of light is observed when subjects wear the SOCL. However, after chronic exposure to reduced (short wavelength) light for two consecutive weeks we observed an increase in sensitivity of the melatonin suppression response. The response normalized as if it took place under a polychromatic light pulse. No differences were found in the dim light melatonin onset or in the amplitude of the melatonin rhythms after chronic reduced blue light exposure. The effects on sleep parameters were limited. Our results demonstrate that the non-visual light system of healthy young subjects is capable of adapting to changes in the spectral composition of environmental light exposure. The present results emphasize the importance of considering not only the short-term effects of changes in environmental light characteristics.  相似文献   

4.
Daily exposure to environmental light is the most important zeitgeber in humans, and all studied characteristics of light pattern (timing, intensity, rate of change, duration, and spectrum) influence the circadian system. However, and due to lack of current studies on environmental light exposure and its influence on the circadian system, the aim of this work is to determine the characteristics of a naturalistic regimen of light exposure and its relationship with the functioning of the human circadian system. Eighty-eight undergraduate students (18–23 yrs) were recruited in Murcia, Spain (latitude 38°01′N) to record wrist temperature (WT), light exposure, and sleep for 1 wk under free-living conditions. Light-exposure timing, rate of change, regularity, intensity, and contrast were calculated, and their effects on the sleep pattern and WT rhythm were then analyzed. In general, higher values for interdaily stability, relative amplitude, mean morning light, and light quality index (LQI) correlated with higher interdaily stability and relative amplitude, and phase advance in sleep plus greater stability in WT and phase advance of the WT circadian rhythm. On the other hand, a higher fragmentation of the light-exposure rhythm was associated with more fragmented sleep. Naturalistic studies using 24-h ambulatory light monitoring provide essential information about the main circadian system input, necessary for maintaining healthy circadian tuning. Correcting light-exposure patterns accordingly may help prevent or even reverse health problems associated with circadian disruption. (Author correspondence: )  相似文献   

5.
Sleep inertia is the impaired cognitive performance immediately upon awakening, which decays over tens of minutes. This phenomenon has relevance to people who need to make important decisions soon after awakening, such as on-call emergency workers. Such awakenings can occur at varied times of day or night, so the objective of the study was to determine whether or not the magnitude of sleep inertia varies according to the phase of the endogenous circadian cycle. Twelve adults (mean, 24 years; 7 men) with no medical disorders other than mild asthma were studied. Following 2 baseline days and nights, subjects underwent a forced desynchrony protocol composed of seven 28-h sleep/wake cycles, while maintaining a sleep/wakefulness ratio of 1:2 throughout. Subjects were awakened by a standardized auditory stimulus 3 times each sleep period for sleep inertia assessments. The magnitude of sleep inertia was quantified as the change in cognitive performance (number of correct additions in a 2-min serial addition test) across the first 20 min of wakefulness. Circadian phase was estimated from core body temperature (fitted temperature minimum assigned 0 degrees ). Data were segregated according to: (1) circadian phase (60 degrees bins); (2) sleep stage; and (3) 3rd of the night after which awakenings occurred (i.e., tertiary 1, 2, or 3). To control for any effect of sleep stage, the circadian rhythm of sleep inertia was initially assessed following awakenings from Stage 2 (62% of awakening occurred from this stage; n = 110). This revealed a significant circadian rhythm in the sleep inertia of cognitive performance (p = 0.007), which was 3.6 times larger during the biological night (circadian bin 300 degrees , approximately 2300-0300 h in these subjects) than during the biological day (bin 180 degrees , approximately 1500-1900 h). The circadian rhythm in sleep inertia was still present when awakenings from all sleep stages were included (p = 0.004), and this rhythm could not be explained by changes in underlying sleep drive prior to awakening (changes in sleep efficiency across circadian phase or across the tertiaries), or by the proportion of the varied sleep stages prior to awakenings. This robust endogenous circadian rhythm in sleep inertia may have important implications for people who need to be alert soon after awakening.  相似文献   

6.
Blue light plays an important role in circadian photoentrainment by stimulating the melanopsin-expressing photosensitive retinal ganglion cells. Age-related cataract causes progressive loss of blue light transmission, which may lead to changes in circadian rhythm and sleep quality. In theory, increased light transmission by cataract surgery may improve circadian misalignment and sleep quality, while the effect of cataract surgery on circadian rhythm is not well understood. In this study, we assessed 30 binocular age-related nuclear cataract patients (aged 72.5 ± 7.2, 16 female) who were eligible for cataract surgery. All the patients underwent phacoemulsification cataract extraction and neutral ultraviolet-only blocking intraocular lens (IOLs) implantation. Visual functions including best-corrected visual acuity (BCVA), color perception and dark adaptation were assessed. Salivary samples were collected at 1-hour interval from 19:00 to 23:00 48 hours before and after surgery. Salivary melatonin concentration was measured and dim light melatonin onset (DLMO) was calculated subsequently. Sleep quality and daytime alertness were assessed before and a month after surgery using Pittsburgh Sleep Quality Index (PSQI) and Epworth Sleepiness Scale (ESS). All the operated eyes demonstrated significant improvements in BCVA, color perception and dark adaptation after cataract surgery. Salivary melatonin concentration at 23:00 was significantly increased after surgery (P < 0.001). However, the average DLMO did not change significantly after surgery. In addition, PSQI and ESS scores were significantly decreased a month after surgery (P = 0.027, P < 0.001, respectively). In conclusion, cataract surgery promotes blue-light transmission; consequently, it may lead to the increase in nighttime melatonin concentration and improvement in sleep quality as well as daytime alertness.  相似文献   

7.
Ocular light exposure has important influences on human health and well-being through modulation of circadian rhythms and sleep, as well as neuroendocrine and cognitive functions. Prevailing patterns of light exposure do not optimally engage these actions for many individuals, but advances in our understanding of the underpinning mechanisms and emerging lighting technologies now present opportunities to adjust lighting to promote optimal physical and mental health and performance. A newly developed, international standard provides a SI-compliant way of quantifying the influence of light on the intrinsically photosensitive, melanopsin-expressing, retinal neurons that mediate these effects. The present report provides recommendations for lighting, based on an expert scientific consensus and expressed in an easily measured quantity (melanopic equivalent daylight illuminance (melaponic EDI)) defined within this standard. The recommendations are supported by detailed analysis of the sensitivity of human circadian, neuroendocrine, and alerting responses to ocular light and provide a straightforward framework to inform lighting design and practice.

Light exposure influences human health and wellbeing by modulating circadian rhythms and sleep. This Consensus View outlines the first expert scientific consensus recommendations for appropriate daily patterns of light exposure to promote health and wellbeing and inform lighting design and practice.  相似文献   

8.
Human physiology and behavior are characterized by a daily internal temporal dimension. This so-called circadian rhythmicity is present for almost all variables studied to date, persists in the absence of external cycles, and is synchronized to the external 24-h world by an internally generated circadian rhythm of light sensitivity. The light-sensitive circadian pacemaker, presumably also in humans located in the suprachiasmatic nucleus of the hypothalamus, drives the endogenous circadian component of rhythmicity for a number of variables including plasma melatonin, alertness, sleep propensity and sleep structure. Overt rhythmicity and the consolidation of vigilance states are generated by a fine-tuned interaction of this circadian process with other regulatory processes such as sleep homeostasis.  相似文献   

9.
Daily exposure to environmental light is the most important zeitgeber in humans, and all studied characteristics of light pattern (timing, intensity, rate of change, duration, and spectrum) influence the circadian system. However, and due to lack of current studies on environmental light exposure and its influence on the circadian system, the aim of this work is to determine the characteristics of a naturalistic regimen of light exposure and its relationship with the functioning of the human circadian system. Eighty-eight undergraduate students (18-23 yrs) were recruited in Murcia, Spain (latitude 38°01'N) to record wrist temperature (WT), light exposure, and sleep for 1 wk under free-living conditions. Light-exposure timing, rate of change, regularity, intensity, and contrast were calculated, and their effects on the sleep pattern and WT rhythm were then analyzed. In general, higher values for interdaily stability, relative amplitude, mean morning light, and light quality index (LQI) correlated with higher interdaily stability and relative amplitude, and phase advance in sleep plus greater stability in WT and phase advance of the WT circadian rhythm. On the other hand, a higher fragmentation of the light-exposure rhythm was associated with more fragmented sleep. Naturalistic studies using 24-h ambulatory light monitoring provide essential information about the main circadian system input, necessary for maintaining healthy circadian tuning. Correcting light-exposure patterns accordingly may help prevent or even reverse health problems associated with circadian disruption.  相似文献   

10.
Significant disruptions in sleep–wake cycles have been found in advanced cancer patients in prior research. However, much remains to be known about specific sleep–wake cycle variables that are impaired in patients with a significantly altered performance status. More studies are also needed to explore the extent to which disrupted sleep–wake cycles are related to physical and psychological symptoms, time to death, maladaptive sleep behaviors, quality of life and 24-h light exposure. This study conducted in palliative cancer patients was aimed at characterizing patients’ sleep–wake cycles using various circadian parameters (i.e. amplitude, acrophase, mesor, up-mesor, down-mesor, rhythmicity coefficient). It also aimed to compare rest–activity rhythm variables of participants with a performance status of 2 vs. 3 on the Eastern Cooperative Oncology Group scale (ECOG) and to evaluate the relationships of sleep–wake cycle parameters with several possible correlates. The sample was composed of 55 community-dwelling cancer patients receiving palliative care with an ECOG of 2 or 3. Circadian parameters were assessed using an actigraphic device for seven consecutive 24-h periods. A light recording and a daily pain diary were completed for the same period. A battery of self-report scales was also administered. A dampened circadian rhythm, a low mean activity level, an early mean time of peak activity during the day, a late starting time of activity during the morning and an early time of decline of activity during the evening were observed. In addition, a less rhythmic sleep–wake cycle was associated with a shorter time to death (from the first home visit) and with a lower 24-h light exposure. Sleep–wake cycles are markedly disrupted in palliative cancer patients, especially, near the end of life. Effective non-pharmacological interventions are needed to improve patients’ circadian rhythms, including perhaps bright light therapy.  相似文献   

11.
Light strongly influences the circadian timing system in humans via non-image-forming photoreceptors in the retinal ganglion cells. Their spectral sensitivity is highest in the short-wavelength range of the visible light spectrum as demonstrated by melatonin suppression, circadian phase shifting, acute physiological responses, and subjective alertness. We tested the impact of short wavelength light (460 nm) on sleep EEG power spectra and sleep architecture. We hypothesized that its acute action on sleep is similar in magnitude to reported effects for polychromatic light at higher intensities and stronger than longer wavelength light (550 nm). The sleep EEGs of eight young men were analyzed after 2-h evening exposure to blue (460 nm) and green (550 nm) light of equal photon densities (2.8 x 10(13) photons x cm(-2) x s(-1)) and to dark (0 lux) under constant posture conditions. The time course of EEG slow-wave activity (SWA; 0.75-4.5 Hz) across sleep cycles after blue light at 460 nm was changed such that SWA was slightly reduced in the first and significantly increased during the third sleep cycle in parietal and occipital brain regions. Moreover, blue light significantly shortened rapid eye movement (REM) sleep duration during these two sleep cycles. Thus the light effects on the dynamics of SWA and REM sleep durations were blue shifted relative to the three-cone visual photopic system probably mediated by the circadian, non-image-forming visual system. Our results can be interpreted in terms of an induction of a circadian phase delay and/or repercussions of a stronger alerting effect after blue light, persisting into the sleep episode.  相似文献   

12.
Sleep disruption is a commonly encountered clinical feature in schizophrenic patients, and one important concern is to determine the extent of this disruption under "real" life situations. Simultaneous wrist actigraphy, diary records, and repeated urine collection for urinary 6-sulphatoxymelatonin (aMT6s) profiles are appropriate tools to assess circadian rhythms and sleep patterns in field studies. Their suitability for long-term recordings of schizophrenic patients living in the community has not been evaluated. In this case report, we document long-term simultaneous wrist actigraphy, light detection, repeated urine collection, and diary records as a suitable combination of non-invasive techniques to quantify and assess changes in sleep-wake cycles, light exposure, and melatonin profiles in a schizophrenic patient. The actigraph was well-tolerated by the patient, and compliance to diary records and 48 h urine collection was particularly good with assistance from family members. The data obtained by these techniques are illustrated, and the results reveal remarkable abnormal patterns of rest-activity patterns, light exposure, and melatonin production. We observed various rest-activity patterns, including phase-shifts, highly delayed sleep on- and offsets, and irregular rest-activity phases. The period of the rest-activity rhythm, light-dark cycle, and melatonin rhythm was longer than 24 h. These circadian abnormalities may reinforce the altered sleep patterns and the problems of cognitive function and social engagement associated with schizophrenic.  相似文献   

13.
Studies in Polar Base stations, where personnel have no access to sunlight during winter, have reported circadian misalignment, free-running of the sleep-wake rhythm, and sleep problems. Here we tested light as a countermeasure to circadian misalignment in personnel of the Concordia Polar Base station during the polar winter. We hypothesized that entrainment of the circadian pacemaker to a 24-h light-dark schedule would not occur in all crew members (n = 10) exposed to 100–300 lux of standard fluorescent white (SW) light during the daytime, and that chronic non-time restricted daytime exposure to melanopsin-optimized blue-enriched white (BE) light would establish an a stable circadian phase, in participants, together with increased cognitive performance and mood levels. The lighting schedule consisted of an alternation between SW lighting (2 weeks), followed by a BE lighting (2 weeks) for a total of 9 weeks. Rest-activity cycles assessed by actigraphy showed a stable rest-activity pattern under both SW and BE light. No difference was found between light conditions on the intra-daily stability, variability and amplitude of activity, as assessed by non-parametric circadian analysis. As hypothesized, a significant delay of about 30 minutes in the onset of melatonin secretion occurred with SW, but not with BE light. BE light significantly enhanced well being and alertness compared to SW light. We propose that the superior efficacy of blue-enriched white light versus standard white light involves melanopsin-based mechanisms in the activation of the non-visual functions studied, and that their responses do not dampen with time (over 9-weeks). This work could lead to practical applications of light exposure in working environment where background light intensity is chronically low to moderate (polar base stations, power plants, space missions, etc.), and may help design lighting strategies to maintain health, productivity, and personnel safety.  相似文献   

14.
The human sleep-wake cycle is generated by a circadian process, originating from the suprachiasmatic nuclei, in interaction with a separate oscillatory process: the sleep homeostat. The sleep-wake cycle is normally timed to occur at a specific phase relative to the external cycle of light-dark exposure. It is also timed at a specific phase relative to internal circadian rhythms, such as the pineal melatonin rhythm, the circadian sleep-wake propensity rhythm, and the rhythm of responsiveness of the circadian pacemaker to light. Variations in these internal and external phase relationships, such as those that occur in blindness, aging, morning and evening, and advanced and delayed sleep-phase syndrome, lead to sleep disruptions and complaints. Changes in ocular circadian photoreception, interindividual variation in the near-24-h intrinsic period of the circadian pacemaker, and sleep homeostasis can contribute to variations in external and internal phase. Recent findings on the physiological and molecular-genetic correlates of circadian sleep disorders suggest that the timing of the sleep-wake cycle and circadian rhythms is closely integrated but is, in part, regulated differentially.  相似文献   

15.
The periodic light-dark cycle is the dominant environmental synchronizer used by humans to entrain to the geophysical 24-h day. Entrainment is a fundamental property of circadian systems by which the period of the internal clock (tau) is synchronized to the period of the entraining stimuli (T cycle). An important aspect of entrainment in humans is the maintenance of an appropriate phase relationship between the circadian system, the timing of sleep and wakefulness, and environmental time (a.k.a. the phase angle of entrainment) to maintain wakefulness throughout the day and consolidated sleep at night. In this article, we review these concepts and the methods for assessing circadian phase and period in humans, as well as discuss findings on the phase angle of entrainment in healthy adults. We review findings from studies that examine how the phase, intensity, duration, and spectral characteristics of light affect the response of the human biological clock and discuss studies on entrainment in humans, including recent studies of the minimum light intensity required for entrainment. We briefly review conditions and disorders in which failure of entrainment occurs. We provide an integrated perspective on circadian entrainment in humans with respect to recent advances in our knowledge of circadian period and of the effects of light on the biological clock in humans.  相似文献   

16.
Chronic circadian misalignment between the internal and environmental rhythms, which is typically related to night-shift work and clock-gene variants, is associated with disruption of suprachiasmatic nucleus function and increased risk of insomnia. Under controlled laboratory conditions, light at night (LAN) suppresses melatonin secretion, delays the internal biological rhythm, and reduces sleepiness. Therefore, LAN exposure may cause circadian misalignment and insomnia, though it remains unclear in real-life situations whether LAN exposure is associated with insomnia. To evaluate an association between LAN exposure and sleep quality in home settings, we conducted a cross-sectional community-based study in 857 elderly individuals (mean age, 72.2 years). We evaluated bedroom light intensity using a light meter and subjectively and objectively measured sleep quality using the Pittsburgh Sleep Quality Index and an actigraph, respectively, along with urinary 6-sulfatoxymelatonin excretion. Compared with the lowest quartile group of LAN intensity, the highest quartile group revealed a significantly higher odds ratio (OR) for subjective insomnia in a multivariate model adjusted for age, gender, body mass index, daytime physical activity, urinary 6-sulfatoxymelatonin excretion, bedtime, rising time, and day length (adjusted OR, 1.61, 95% confidence interval, 1.05–2.45, p?=?0.029). In addition, higher OR for subjective insomnia was significantly associated with the increase in quartiles of LAN intensity (ptrend?=?0.043). Consistently, we observed significant association trends between the increase in quartiles of LAN intensity and poorer actigraphic sleep quality, including decreased sleep efficiency, prolonged sleep-onset latency, increased wake-after-sleep onset, shortened total sleep time, and delayed sleep-mid time in multivariate models adjusted for the covariates mentioned above (all ptrend?<?0.001). In conclusion, we demonstrated that LAN exposure in home settings is significantly associated with both subjectively and objectively measured sleep quality in a community-based elderly population.  相似文献   

17.
A 47‐yr‐old male was admitted to the Institute for Fatigue and Sleep Medicine complaining of severe fatigue and daytime sleepiness. His medical history included diagnosis of depression and chronic fatigue syndrome. Antidepressant drugs failed to improve his condition. He described a gradual evolvement of an irregular sleep‐wake pattern within the past 20 yrs, causing marked distress and severe impairment of daily functioning. He had to change to a part‐time position 7 yrs ago, because he was unable to maintain a regular full‐time job schedule. A 10‐day actigraphic record revealed an irregular sleep-wake pattern with extensive day‐to‐day variability in sleep onset time and sleep duration, and a 36 h sampling of both melatonin level and oral temperature (12 samples, once every 3 h) showed abnormal patterns, with the melatonin peak around noon and oral temperature peak around dawn. Thus, the patient was diagnosed as suffering from irregular sleep‐wake pattern. Treatment with melatonin (5 mg, 2 h before bedtime) did not improve his condition. A further investigation of the patient's daily habits and environmental conditions revealed two important facts. First, his occupation required work under a daylight intensity lamp (professional diamond‐grading equipment of more than 8000 lux), and second, since the patient tended to work late, the exposure to bright light occurred mostly at night. To recover his circadian rhythmicity and stabilize his sleep‐wake pattern, we recommended combined treatment consisting of evening melatonin ingestion combined with morning (09:00 h) bright light therapy (0800 lux for 1 h) plus the avoidance of bright light in the evening. Another 10‐day actigraphic study done only 1 wk after initiating the combined treatment protocol revealed stabilization of the sleep‐wake pattern with advancement of sleep phase. In addition, the patient reported profound improvement in maintaining wakefulness during the day. This case study shows that chronic exposure to bright light at the wrong biological time, during the nighttime, may have serious effects on the circadian sleep‐wake patterns and circadian time structure. Therefore, night bright light exposure must be considered to be a risk factor of previously unrecognized occupational diseases of altered circadian time structure manifested as irregularity of the 24 h sleep‐wake cycle and melancholy.  相似文献   

18.
The acute disruption in sleep quality, vigilance levels, and cognitive and athletic performance observed after transmeridian flights is presumed to be the result of a transient misalignment between the endogenous circadian pacemaker and the shifted sleep schedule. Several laboratory and field experiments have demonstrated that exposure to bright artificial light can accelerate circadian entrainment to a shifted sleep-wake schedule. In the present study, the authors investigated whether the schedule of exposure to indoor room light, to which urban dwellers are typically exposed, can substantially affect circadian adaptation to a simulated eastward voyage. We enrolled 15 healthy young men in a laboratory simulation of a Montreal-to-London voyage. Subjects were exposed to 6 h of room light (mean +/- SD: 379+/-10) prior to bedtime (n = 7) or when on a progressively advancing schedule (n = 8) early in the day. The remaining 10 hours of wakefulness were spent in dim light (4+/-1 lux). Circadian assessments, performed via the constant routine procedure, evaluated the phase of the endogenous circadian rhythms of core body temperature and plasma melatonin before and after 1 week on the shifted schedule. At the end of the study, only subjects exposed to room light on the advancing schedule expressed oscillations of the endogenous circadian pacemaker in phase with the new sleep-wake cycle. In this group, a mean advance shift of the nadir of core body temperature of +5:22+/-0:15 h was observed, with parallel shifts in plasma melatonin concentration and subjective alertness. The circadian rhythms of subjects exposed to room light later in the day remained much more adjusted to the departure than to the destination time zone. These results demonstrate that the schedule of exposure to room light can substantially affect circadian adaptation to a shifted sleep-wake schedule.  相似文献   

19.
Light exposure elicits numerous effects on human physiology and behavior, such as better cognitive performance and mood. Here we investigated the role of morning light exposure as a countermeasure for impaired cognitive performance and mood under sleep restriction (SR). Seventeen participants took part of a 48h laboratory protocol, during which three different light settings (separated by 2?wks) were administered each morning after two 6-h sleep restriction nights: a blue monochromatic LED (light-emitting diode) light condition (BL; 100?lux at 470?nm for 20?min) starting 2?h after scheduled wake-up time, a dawn-simulating light (DsL) starting 30?min before and ending 20?min after scheduled wake-up time (polychromatic light gradually increasing from 0 to 250?lux), and a dim light (DL) condition for 2?h beginning upon scheduled wake time (<8?lux). Cognitive tasks were performed every 2?h during scheduled wakefulness, and questionnaires were administered hourly to assess subjective sleepiness, mood, and well-being. Salivary melatonin and cortisol were collected throughout scheduled wakefulness in regular intervals, and the effects on melatonin were measured after only one light pulse. Following the first SR, analysis of the time course of cognitive performance during scheduled wakefulness indicated a decrease following DL, whereas it remained stable following BL and significantly improved after DsL. Cognitive performance levels during the second day after SR were not significantly affected by the different light conditions. However, after both SR nights, mood and well-being were significantly enhanced after exposure to morning DsL compared with DL and BL. Melatonin onset occurred earlier after morning BL exposure, than after morning DsL and DL, whereas salivary cortisol levels were higher at wake-up time after DsL compared with BL and DL. Our data indicate that exposure to an artificial morning dawn simulation light improves subjective well-being, mood, and cognitive performance, as compared with DL and BL, with minimal impact on circadian phase. Thus, DsL may provide an effective strategy for enhancing cognitive performance, well-being, and mood under mild sleep restriction.  相似文献   

20.
ABSTRACT

Fatigue is recognized as an important safety concern in the transportation industry. In this study, our goal was to investigate how circadian and sleep–wake dependent factors influence St-Lawrence River pilots’ sleep–wake cycle, alertness and psychomotor performance levels at work. A total of 18 male St-Lawrence River ship pilots were recruited to a 16–21-day field study. Pilots’ chronotype, sleepiness and insomnia levels were documented using standardized questionnaires. Their sleep–wake cycle was documented by a sleep–wake log and wrist-worn activity monitoring. Subjective alertness and objective psychomotor performances were assessed ~5×/day for each work and rest day. Ship transits were distributed throughout the 24-h day and lasted on average (± SEM) 5.93 ± 0.67 h. Main sleep periods occurred mainly at night, and objectively lasted 6.04 ± 1.02 h before work days. When going to bed at the end of work days, pilots subjectively reported sleeping 7.64 ± 1.64 h in the prior 24 h. Significant diurnal and wake-dependent effects were observed for subjective alertness and objective psychomotor performance, with minimum levels occurring between 09:00 and 10:00. Thus, despite their irregular work schedule, ship pilots presented, as a group, a diurnal variation of alertness and psychomotor performance indicative of a day-oriented circadian system. Important inter-individual differences were observed on psychomotor performance mesor and phase. In individuals, earlier phases in psychomotor performance were correlated with earlier chronotype. This study indicates that both circadian and homeostatic processes modulate alertness and psychomotor performance levels with worst levels reached when long shifts ended in the morning. This work has potential applications as it indicates fatigue countermeasures considering both processes are scientifically based.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号