首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
In this paper, synephrine and phenylephrine compounds showed excellent inhibitory effects against human carbonic anhydrase (hCA) isoforms I and II, α‐amylase, α‐glycosidase, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE). Synephrine and phenylephrine had Ki values of 199.02 ± 16.01 and 65.01 ± 5.00 μM against hCA I and 336.02 ± 74.01 and 92.04  ±  18.03 μM against hCA II, respectively. On the other hand, their Ki values were found to be 169.10  ±  80.03 and 88.03  ±  5.01 nM against AChE and 177.06  ±  6.01 and 78.03  ±  3.05 nM against BChE, respectively. α‐Amylase and α‐glycosidase enzymes were easily inhibited by these compounds. α‐Glycosidase inhibitors, generally defined to as starch blockers, are anti‐diabetic drugs that help to decrease post comestible blood glucose levels.  相似文献   

2.
Natural products from food and plant sources have been used for medicinal usage for ages. Also, natural products with therapeutic significance are compounds derived from animals, plants, or any microorganism. In this study, chrysin, carvacrol, hesperidin, zingerone, and naringin as natural phenols showed excellent inhibitory effects against human (h) carbonic anhydrase (CA) isoforms I and II (hCA I and II), α‐glucosidase (α‐Gly), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE). These phenolic compounds were tested for the inhibition of α‐glycosidase, hCA I, hCA II, AChE, and BChE enzymes and demonstrated efficient inhibition profiles with Ki values in the range of 3.70 ± 0.92–79.66 ± 20.81 nM against hCA I, 2.98 ± 0.33–84.88 ± 40.32 nM against hCA II, 4.93 ± 2.01–593.60 ± 134.74 nM against α‐Gly, 0.52 ± 0.18–46.80 ± 17.15 nM against AChE, and 1.25 ± 0.22–32.08 ± 2.68 against BChE.  相似文献   

3.
During this investigation, N,N′‐bis‐azidomethylamines, N,N′‐bis‐cyanomethylamine, new alkoxymethylamine and chiral derivatives, which are considered to be a new generation of multifunctional compounds, were synthesized, functional properties were investigated, and anticholinergic and antidiabetic properties of those compounds were studied through the laboratory tests, and it was approved that they contain physiologically active compounds rather than analogues. Novel N‐bis‐cyanomethylamine and alkoxymethylamine derivatives were effective inhibitors of the α‐glycosidase, cytosolic carbonic anhydrase I and II isoforms, butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) with Ki values in the range of 0.15–13.31 nM for α‐glycosidase, 2.77–15.30 nM for human carbonic anhydrase isoenzymes I (hCA I), 3.12–21.90 nM for human carbonic anhydrase isoenzymes II (hCA II), 23.33–73.23 nM for AChE, and 3.84–48.41 nM for BChE, respectively. Indeed, the inhibition of these metabolic enzymes has been considered as a promising factor for pharmacologic intervention in a diversity of disturbances.  相似文献   

4.
Carbonic anhydrase (CA; EC 4.2.1.1) is used for remedial purposes for several years, as there is significant focus on expanding more new activators (CAAs) and high affinity inhibitors. Alzheimer′s disease and other similar ailments such as dementia and vascular dementia with Lewy bodies reduce cholinergic activity in the important areas involved in cognition and memory. Prevalent drugs for the symptomatic therapy of dementia are significant in increasing the associated cholinergic deficiency by inhibiting acetylcholinesterase (AChE). These six‐membered carbocycles showed nice inhibitory action against AChE and human carbonic anhydrase (hCA) II and I isoforms. The hCA I, II, and AChE were efficiently inhibited by these molecules, with Ki values in the range of 6.70–35.85 nM for hCA I, 18.77–60.84 nM for hCA II, and 0.74–4.60 for AChE, respectively.  相似文献   

5.
α‐Glycosidase is a catalytic enzyme and it destroys the complex carbohydrates into simple absorbable sugar units. The natural phenolic compounds were tested for their antidiabetic properties as α‐glycosidase and α‐amylase inhibitors. The phenolic compounds investigated in this study have been used as antidiabetic common medicines. This paper aimed to consider their capability to inhibit α‐amylase and α‐glycosidase, two significant enzymes defined in serum glucose adjustment. These examination recorded impressive inhibition profiles with IC50 values in the range of 137.36–737.23 nM against α‐amylase and 29.01–157.96 nM against α‐glycosidase.  相似文献   

6.
7.
The thiolation reaction was carried out in a benzene solution at 80°C and p‐substituted ketones and mercaptoacetic acid in a molar ratio (1:4) of in the presence of a catalytic amount of toluene sulfonic acids. The enzyme inhibition activities of the novel amides of 1,1‐bis‐(carboxymethylthio)‐1‐arylethanes derivatives were investigated. These novel amides of 1,1‐bis‐(carboxymethylthio)‐1‐arylethanes derivatives showed good inhibitory action against acetylcholinesterase (AChE) butyrylcholinesterase (BChE), and human carbonic anhydrase I and II isoforms (hCA I and II). AChE inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. Many clinically established drugs are carbonic anhydrase inhibitors, and it is highly anticipated that many more will eventually find their way into the market. The novel synthesized compounds inhibited AChE and BChE with Ki values in the range of 0.64–1.47 nM and 9.11–48.12 nM, respectively. On the other hand, hCA I and II were effectively inhibited by these compounds, with Ki values between 63.27–132.34 and of 29.63–127.31 nM, respectively.  相似文献   

8.
Carbonic anhydrases (CAs, E.C.4.2.1.1) play a critical role in many important physiological events and treatment of some diseases. Flavonoids or phenolic compounds have been discovered as novel CAs inhibitors instead of the traditional sulfonamides, with different binding to CAs, pro‐drug activities, and new inhibition mechanisms. Here, we investigated the inhibition effects of some flavonoids including malvin, callistephin, oenin, pelargonin, silychristin, and 1‐(4‐methoxyphenyl)‐2‐methyl‐3‐nitro‐1‐H‐indol‐6‐ol (ID‐8) against hCA I and II, which purified from human erythrocytes by affinity column chromatography. Both hCA isoenzymes were inhibited by flavonoids, with IC50 and Ki values in the range of 2.34 nM to 346.5 μM and 51.01–99.55 μM for hCA I and 86.60–750.00 μM for hCA II, respectively. These results showed that flavonoids especially malvin and oenin effectively inhibited hCA I and II isoenzymes. Hence, they may be used as an effective CA inhibitor in medical applications for treatment of certain diseases such as glaucoma, in the future.  相似文献   

9.
Carbonic anhydrase (CA) is an important metabolic enzyme family closely related to many physiological and pathological processes. Currently, carbonic anhydrase inhibitors are the target molecules in the treatment and diagnosis of many diseases. In present study, we investigated the inhibitory effects of some indazole molecules on the CA‐I and CA‐II isoenzymes isolated from human erythrocytes. We showed that human CA‐I and CA‐II activities were reduced by of some indazoles at low concentrations. IC50 values, Ki constants, and inhibition types for each indazole molecule were determined. The indazoles showed Ki constants in a range of 0.383 ± 0.021 to 2.317 ± 0.644 mM, 0.409 ± 0.083 to 3.030 ± 0.711 mM against CA‐I and CA‐II, respectively. Each indazole molecule exhibited a noncompetitive inhibition effect. Bromine‐ and chlorine‐bonded indazoles were found to be more potent inhibitory effects on carbonic anhydrase isoenzymes. In conclusion, we conclude that these results may be useful in the synthesis of carbonic anhydrase inhibitors.  相似文献   

10.
The aim of this study was to evaluate biologically active novel molecules having potentials to be drugs by their antitumor properties and by activities of apoptotic caspase and topoisomerase. Following syntheses of novel eight bis(α‐aminoalkyl)phosphinic acid derivatives ( 4a–h ) as a result of array of reactions, compounds were evaluated by cytotoxic effects in vitro on human breast cancer (MCF‐7) and normal endothelial (HUVEC) cell lines. All phosphinic acid derivatives were effective for cytotoxicity on both MCF‐7 and HUVEC lines, while 4c , 4e , and 4f compounds were found significantly more effective. For the evaluation of antitumor properties of compounds in a highly sensitive method, their effects on inhibiting topoisomerases I and II were investigated. Also, some of the bis(α‐aminoalkyl)phosphinic acid derivatives ( 4a, 4e–h ) showed nice inhibitory action against acetylcholinesterase and human carbonic anhydrase isoforms I and II.  相似文献   

11.
Compounds containing nitrogen and sulfur atoms can be widely used in various fields, including industry, medicine, biotechnology, and chemical technology. Among them, amides of acids and heterocyclic compounds have an important place. These amides and thiazolidine‐4‐ones showed good inhibitory action against butyrylcholinesterase (BChE), acetylcholinesterase (AChE), and human carbonic anhydrase isoforms. AChE exists at high concentrations in the brain and red blood cells. BChE is an important enzyme that is plentiful in the liver, and it is released into the blood in a soluble form. They were demonstrated to have effective inhibition profiles with Ki values of 23.76–102.75 nM against hCA I, 58.92–136.64 nM against hCA II, 1.40–12.86 nM against AChE, and 9.82–52.77 nM against BChE. On the other hand, acetazolamide showed Ki value of 482.63 ± 56.20 nM against hCA I, and 1019.60 ± 163.70 nM against hCA II. Additionally, Tacrine inhibited AChE and BChE, showing Ki values of 397.03 ± 31.66 and 210.21 ± 15.98 nM, respectively.  相似文献   

12.
Human carbonic anhydrase I and II isoenzymes (hCA I and II) and acetylcholinesterase (AChE) are important metabolic enzymes that are closely associated with various physiological and pathological processes. In this study, we investigated the inhibition effects of some sulfonamides on hCA I, hCA II, and AChE enzymes. Both hCA isoenzymes were purified by Sepharose‐4B‐L‐Tyrosine‐5‐amino‐2‐methylbenzenesulfonamide affinity column chromatography with 1393.44 and 1223.09‐folds, respectively. Also, some inhibition parameters including IC50 and Ki values were determined. Sulfonamide compounds showed IC 50 values of in the range of 55.14 to 562.62 nM against hCA I, 55.99 to 261.96 nM against hCA II, and 98.65 to 283.31 nM against AChE. Ki values were in the range of 23.40 ± 9.10 to 365.35 ± 24.42 nM against hCA I, 45.87 ± 5.04 to 230.08 ± 92.23 nM against hCA II, and 16.00 ± 45.53 to 157.00 ± 4.02 nM against AChE. As a result, sulfonamides had potent inhibition effects on these enzymes. Therefore, we believe that these results may contribute to the development of new drugs particularly in the treatment of some disorders.  相似文献   

13.
The conversion of carbon dioxide (CO2) and bicarbonate (HCO3) to each other is very important for living metabolism. Carbonic anhydrase (CA, E.C.4.2.1.1), a metalloenzyme familly, catalyzes the interconversion of these ions (CO2 and HCO3) and are very common in living organisms. In this study, a series of novel 2‐amino‐3‐cyanopyridines supported with some functional groups was synthesized and tested as potential inhibition effects against both cytosolic human CA I and II isoenzymes (hCA I and II) using by Sepharose‐4B‐l ‐tyrosine‐sulfanilamide affinity chromatography. The structural elucidations of novel 2‐amino‐3‐cyanopyridines were achieved by NMR, IR, and elemental analyses. K i values of the novel synthesized compounds were found in range of 2.84–112.44 μM against hCA I and 2.56–31.17 μM against hCA II isoenzyme. While compound 7d showed the best inhibition activity against hCA I (K i: 2.84 μM), the compound 7b demonstrated the best inhibition profile against hCA II isoenzyme (K i: 2.56 μM).  相似文献   

14.
The carbonic anhydrases (CAs, EC 4.2.1.1) represent a superfamily of widespread enzymes, which catalyze a crucial biochemical reaction, the reversible hydration of carbon dioxide to bicarbonate and protons. Human CA isoenzymes I and II (hCA I and hCA II) are ubiquitous cytosolic isoforms. In this study, a series of hydroperoxides, alcohols, and acetates were tested for the inhibition of the cytosolic hCA I and II isoenzymes. These compounds inhibited both hCA isozymes in the low nanomolar ranges. These compounds were good hCA I inhibitors (Kis in the range of 24.93–97.99?nM) and hCA II inhibitors (Kis in the range of 26.04–68.56?nM) compared to acetazolamide as CA inhibitor (Ki: 34.50?nM for hCA I and Ki: 28.93?nM for hCA II).  相似文献   

15.
Carbonic anhydrases (CAs, EC 4.2.1.1) had six genetically distinct families described to date in various organisms. There are 16 known CA isoforms in humans. Human CA isoenzymes I and II (hCA I and hCA II) are ubiquitous cytosolic isoforms. Acetylcholine esterase (AChE. EC 3.1.1.7) is a hydrolase that hydrolyzes the neurotransmitter acetylcholine relaying the signal from the nerve. In this study, some trimethoxyindane derivatives were investigated as inhibitors against the cytosolic hCA I and II isoenzymes, and AChE enzyme. Both hCA isozymes were inhibited by trimethoxyindane derivatives in the low nanomolar range. These compounds were good hCA I inhibitors (Kis in the range of 1.66–4.14?nM) and hCA II inhibitors (Kis of 1.37–3.12?nM) and perfect AChE inhibitors (Kis in the range of 1.87–7.53?nM) compared to acetazolamide as CA inhibitor (Ki: 6.76?nM for hCA I and Ki: 5.85?nM for hCA II) and Tacrine as AChE inhibitor (Ki: 7.64?nM).  相似文献   

16.
The conversion reactions of pyrimidine‐thiones with nucleophilic reagent were studied during this scientific research. For this purpose, new compounds were synthesized by the interaction between 1,2‐epoxy propane, 1,2‐epoxy butane, and 4‐chlor‐1‐butanol and pyrimidine‐thiones. These pyrimidine‐thiones derivatives ( A–K ) showed good inhibitory action against acetylcholinesterase (AChE), and human carbonic anhydrase (hCA) isoforms I and II. AChE inhibition was in the range of 93.1 ± 33.7–467.5 ± 126.9 nM. The hCA I and II were effectively inhibited by these compounds, with Ki values in the range of 4.3 ± 1.1–9.1 ± 2.7 nM for hCA I and 4.2 ± 1.1–14.1 ± 4.4 nM for hCA II. On the other hand, acetazolamide clinically used as CA inhibitor showed Ki value of 13.9 ± 5.1 nM against hCA I and 18.1 ± 8.5 nM against hCA II. The antioxidant activity of the pyrimidine‐thiones derivatives ( A–K ) was investigated by using different in vitro antioxidant assays, including Cu2+ and Fe3+ reducing, 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH?) radical scavenging, and Fe2+ chelating activities.  相似文献   

17.
18.
In this study, we aimed to determine the inhibition effects of novel synthesized sulfamates ( 2a–g ), sulfonamides ( 3b–f ), carbonyl sulfonamides ( 3h and i ), and carbonyl sulfamates ( 4h and 4i ), which were tested against two human cytosolic carbonic anhydrase I and II isozymes (hCA I and II) and acetylcholinesterase (AChE) enzyme. For inhibition properties of allylic sulfamates, the half maximal inhibitory concentration (IC50) and inhibition constant (Ki) were calculated for each novel compounds. The allylic sulfamates showed that Ki values are in the range of 187.33–510.31 pM for hCA I, 104.22–290.09 pM against hCA II, and 12.73–103.63 pM against AChE. The results demonstrated that all newly synthesized compounds had shown effective inhibition against hCA I and II isoenzymes and AChE enzyme.  相似文献   

19.
Some novel derivatives of thiosemicarbazide and 1,2,4‐triazole‐3‐thiol were synthesized and evaluated for their biological activities. The title compounds were prepared starting from readily available pyridine‐2,5‐dicarboxylic acid. The reaction carboxylic acid with absolute ethanol afforded the corresponding dimethyl pyridine‐2,5‐dicarboxylate ( 1 ). The reaction of dimethyl‐2,5‐pyridinedicarboxylate ( 1 ) with hydrazine hydrate good yielded pyridine‐2,5‐dicarbohydrazide ( 2 ). Refluxing compound 2 with alkyl/aryl isothiocyanate derivatives for 3–8 h afforded 1,4‐disubstituted thiosemicarbazides ( 3a–e ). Base‐catalyzed intra‐molecular dehydrative cyclization of these intermediates furnished the 4,5‐disubstituted bis‐mercaptotriazoles ( 4a–e ) in good yield (85%–95%). Among the target compounds, 2,2′‐(pyridine‐2,5‐diyldicarbonyl)bis[N‐(p‐methoxyphenyl)hydrazinecarbothioamide] ( 3c ) showed very high activity with value of 72.93% against 1,1‐diphenyl‐2‐picrylhydrazyl free radical at the concentration of 25 μg/mL. The inhibitory effects of the target compounds against acetylcholinesterase (AChE), hCA I, and II were studied. AChE, cytosolic hCA I and II isoforms were potently inhibited by synthesized these derivatives with Kis in the range of 3.07 ± 0.76–87.26 ± 29.25 nM against AChE, in the range of 1.47 ± 0.37–10.06 ± 2.96 nM against hCA I, and in the range of 3.55 ± 0.57–7.66 ± 2.06 nM against hCA II, respectively.  相似文献   

20.
Novel substituted thiophene derivatives ( 1, 2a‐e, 3, and 4 ) were synthesized and their structures were characterized by infrared radiation, nuclear magnetic resonance, and mass analysis. These novel substituted thiophene derivatives were effective inhibitor compounds of the carbonic anhydrase I and II isozymes (hCA I and II), and acetylcholinesterase (AChE) enzyme with K i values in the range of 447.28 to 1004.65 nM for hCA I, 309.44 to 935.93 nM for hCA II, and 0.28 to 4.01 nM for AChE, respectively. Novel substituted thiophene derivatives can be good candidate drugs for the treatment of some diseases like neurological disorders, epilepsy, glaucoma, gastric and duodenal ulcers, mountain sickness, or osteoporosis as carbonic anhydrase isozymes inhibitors, and for the treatment of Alzheimer’s and Parkinson’s diseases as acetylcholinesterase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号