首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemokine fractalkine (CX(3)CL1) is constitutively expressed by central neurons, regulating microglial responses including chemotaxis, activation, and toxicity. Through the activation of its own specific receptor, CX(3)CR1, CX(3)CL1 exerts both neuroprotection against glutamate (Glu) toxicity and neuromodulation of the glutamatergic synaptic transmission in hippocampal neurons. Using cultured hippocampal neuronal cell preparations, obtained from CX(3)CR1(-/-) (CX(3)CR1(GFP/GFP)) mice, we report that these same effects are mimicked by exposing neurons to a medium conditioned with CX(3)CL1-treated mouse microglial cell line BV2 (BV2-st medium). Furthermore, CX(3)CL1-induced neuroprotection from Glu toxicity is mediated through the adenosine receptor 1 (AR(1)), being blocked by neuronal cell preparations treatment with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), a specific inhibitor of AR(1), and mimicked by both adenosine and the specific AR(1) agonist 2-chloro-N(6)-cyclopentyladenosine. Similarly, experiments from whole-cell patch-clamped hippocampal neurons in culture, obtained from CX(3)CR1(+/+) mice, show that CX(3)CL1-induced depression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid- (AMPA-) type Glu receptor-mediated current (AMPA-current), is associated with AR(1) activity being blocked by DPCPX and mimicked by adenosine. Furthermore, BV2-st medium induced a similar AMPA-current depression in CX(3)CR1(GFP/GFP) hippocampal neurons and this depression was again blocked by DPCPX. We also report that CX(3)CL1 induced a significant release of adenosine from microglial BV2 cells, as measured by HPLC analysis. We demonstrate that (i) CX(3)CL1, along with AR(1), are critical players for counteracting Glu-mediated neurotoxicity in the brain and (ii) AR(1) mediates neuromodulatory action of CX(3)CL1 on hippocampal neurons.  相似文献   

2.
Human oral squamous cell carcinoma (OSCC) has been associated with a relatively low survival rate over the years and is characterized by a poor prognosis. C-X3-C motif chemokine ligand 1 (CX3CL1) has been involved in advanced migratory cells. Overexpressed CX3CL1 promotes several cellular responses related to cancer metastasis, including cell movement, migration and invasion in tumour cells. However, CX3CL1 controls the migration ability, and its molecular mechanism in OSCC remains unknown. The present study confirmed that CX3CL1 increased cell movement, migration and invasion. The CX3CL1-induced cell motility is upregulated through intercellular adhesion molecule-1 (ICAM-1) expression in OSCC cells. These effects were significantly suppressed when OSCC cells were pre-treated with CX3CR1 monoclonal antibody (mAb) and small-interfering RNA (siRNA). The CX3CL1-CX3CR1 axis activates promoted PLCβ/PKCα/c-Src phosphorylation. Furthermore, CX3CL1 enhanced activator protein-1 (AP-1) activity. The CX3CR1 mAb and PLCβ, PKCα, c-Src inhibitors reduced CX3CL1-induced c-Jun phosphorylation, c-Jun translocation into the nucleus and c-Jun binding to the ICAM-1 promoter. The present results reveal that CX3CL1 induces the migration of OSCC cells by promoting ICAM-1 expression through the CX3CR1 and the PLCβ/PKCα/c-Src signal pathway, suggesting that CX3CL1-CX3CR1-mediated signalling is correlated with tumour motility and appealed to be a precursor for prognosis in human OSCC.  相似文献   

3.
Epithelial ovarian carcinoma (EOC) is a deadly disease, and little is known about the mechanisms underlying its metastatic progression. Using human specimens and established cell lines, we determined that the G-protein-coupled seven-transmembrane fractalkine receptor (CX(3)CR1) is expressed in primary and metastatic ovarian carcinoma cells. Ovarian carcinoma cells robustly migrated toward CX(3)CL1, a specific ligand of CX(3)CR1, in a CX(3)CR1-dependent manner. Silencing of CX(3)CR1 reduced migration toward human ovarian carcinoma ascites fluid by approximately 70%. Importantly, adhesion of ovarian carcinoma cells to human peritoneal mesothelial cells was dependent on CX(3)CL1/CX(3)CR1 signaling. In addition, CX(3)CL1 was able to induce cellular proliferation. Together, our data suggest that the fractalkine network may function as a major contributor to the progression of EOC, and further attention to its role in the metastasis of this deadly malignancy is warranted.  相似文献   

4.
5.
The membrane-anchored form of CX3CL1 has been proposed as a novel adhesion protein for leukocytes. This functional property of CX3CL1 is mediated through CX3CR1, a chemokine receptor expressed predominantly on circulating white blood cells. Thus far, it is still uncertain at what stage of the trafficking process CX3CR1 becomes importantly involved and how the CX3CR1-dependent adhesion of leukocytes is regulated during inflammation. The objective of this study was to examine the functional effects of chemokine stimulation on CX3CR1-mediated adhesion of human monocytes. Consistent with previous reports, our data indicate that the activity of CX3CR1 on resting monocytes is sufficient to mediate cell adhesion to CX3CL1. However, the basal, nonstimulated adhesion activity is low, and we hypothesized that like the integrins, CX3CR1 may require a preceding activation step to trigger firm leukocyte adhesion. Compatible with this hypothesis, stimulation of monocytes with MCP-1 significantly increased their adhesion to immobilized CX3CL1, under both static and physiological flow conditions. The increase of the adhesion activity was mediated through CCR2-dependent signaling and obligatory activation of the p38 MAPK pathway. Stimulation with MCP-1 also induced a rapid increase of CX3CR1 protein on the cell surface. Inhibition of the p38 MAPK pathway prevented this increase of CX3CR1 surface expression and blunted the effect of MCP-1 on cell adhesion, indicating a causal link between receptor surface density and adhesion activity. Together, our data suggest that a chemokine signal is required for firm CX3CR1-dependent adhesion and demonstrate that CCR2 is an important regulator of CX3CL1-dependent leukocyte adhesion.  相似文献   

6.
Peng  Yawen  Guo  Genhua  Shu  Bin  Liu  Daiqiang  Su  Peng  Zhang  Xuming  Gao  Feng 《Neurochemical research》2017,42(11):3254-3267

CX3CL1 (fractalkine), the sole member of chemokine CX3C family, is implicated in inflammatory and neuropathic pain via activating its receptor CX3CR1 on neural cells in spinal cord. However, it has not been fully elucidated whether CX3CL1 or CX3CR1 contributes to the development of morphine tolerance. In this study, we found that chronic morphine exposure did not alter the expressions of CX3CL1 and CX3CR1 in spinal cord. And neither exogenous CX3CL1 nor CX3CR1 inhibitor could affect the development of morphine tolerance. The cellular localizations of spinal CX3CL1 and CX3CR1 changed from neuron and microglia, respectively, to all the neural cells during the development of morphine tolerance. A microarray profiling revealed that 15 members of chemokine family excluding CX3CL1 and CX3CR1 were up-regulated in morphine-treated rats. Our study provides evidence that spinal CX3CL1 and CX3CR1 may not be involved in the development of morphine tolerance directly.

  相似文献   

7.
In its native form, the chemokine CX3CL1 is a firmly adhesive molecule promoting leukocyte adhesion and migration and hence involved, along with its unique receptor CX3CR1, in various inflammatory processes. Here we investigated the role of molecular aggregation in the CX3CL1 adhesiveness. Assays of bioluminescence resonance energy transfer (BRET) and homogeneous time-resolved fluorescence (HTRF) in transfected cell lines and in primary cells showed specific signals indicative of CX3CL1 clustering. Truncation experiments showed that the transmembrane domain played a central role in this aggregation. A chimera with mutations of the 12 central transmembrane domain residues had significantly reduced BRET signals and characteristics of a non-clustering molecule. This mutant was weakly adhesive according to flow and dual pipette adhesion assays and was less glycosylated than CX3CL1, although, as we demonstrated, loss of glycosylation did not affect the CX3CL1 adhesive potency. We postulate that cell surfaces express CX3CL1 as a constitutive oligomer and that this oligomerization is essential for its adhesive potency. Inhibition of CX3CL1 self-assembly could limit the recruitment of CX3CR1-positive cells and may be a new pathway for anti-inflammatory therapies.  相似文献   

8.
9.
The chemokine CX3CL1 regulates NK cell activity in vivo   总被引:1,自引:0,他引:1  
In vitro, chemokines can both activate and induce migration of NK cells. However, little is known about how chemokines influence NK cell activity in vivo. We studied the role of CX(3)CL1 and its receptor, CX(3)CR1, in modulating NK cell activity in an established in vivo model of tumour cell clearance. Radiolabelled YAC-1 target cells intravenously injected into C57BL/6 mice rapidly localize to the lungs and are cleared by NK cells. In mice pre-treated with blocking anti-CX(3)CL1 or anti-CX(3)CR1 Ab, target cell clearance decreased by four- to fivefold (p<0.001). In vitro, we found no effect of anti-CX(3)CL1 or anti-CX(3)CR1 Ab on NK lysis of target cells. We further examined adhesion of NK cells to Py-4-1 endothelial cells. NK cell binding to activated endothelial monolayers was significantly inhibited by anti-CX(3)CR1 Ab or soluble CX(3)CL1 (p<0.001). These studies identify a critical role for CX(3)CL1 in modulating NK cell activity in vivo.  相似文献   

10.
The chemokine receptor CX3CR1 is thought to regulate inflammation in part by modulating NK cell adhesion, migration, and killing in response to its ligand CX3CL1 (fractalkine). Recent reports indicate that IL-15, which is essential for development and survival of NK cells, may negatively regulate CX3CR1 expression, however, the effects of the cytokine on human NK cell CX3CR1 expression and function have not been fully delineated. Here, we demonstrate that short term culture in IL-15 decreases surface expression of CX3CR1 on cultured CD56+ cells from human blood resulting in diminished chemotaxis and calcium flux in response to CX3CL1. Cells cultured long term in IL-15 (more than five days) completely lost surface expression as well as mRNA and protein for CX3CR1. The effect was specific since mRNA for CCR5 was increased and mRNA for CXCR4 was unchanged in these cells by IL-15. Thus, exogenous IL-15 is a negative regulator of CX3CR1 expression and function in human CD56+ NK cells. The data imply that the use of IL-15 alone to expand NK cells ex vivo for immunotherapy may produce cells impaired in their ability to traffic to sites of inflammation.  相似文献   

11.
Recent genetic evidence has implicated the adhesive chemokine CX3CL1 and its leukocyte receptor CX3CR1 in atherosclerosis. We previously proposed a mechanism involving foam cell anchorage to vascular smooth muscle cells because: 1) CX3CL1 and CX3CR1 are expressed by both cell types in mouse and human atherosclerotic lesions; 2) foam cells are reduced in lesions in cx3cr1(-/-)apoE(-/-) mice; and 3) proatherogenic lipids (oxidized low density lipoprotein [oxLDL] and oxidized linoleic acid derivatives) induce adhesion of primary human macrophages to primary human coronary artery smooth muscle cells (CASMCs) in vitro in a macrophage CX3CR1-dependent manner. Here we analyze this concept further by testing whether atherogenic lipids regulate expression and function of CX3CL1 and CX3CR1 on CASMCs. We found that both oxLDL and oxidized linoleic acid derivatives indirectly up-regulated CASMC CX3CL1 at both the protein and mRNA levels through an autocrine feedback loop involving tumor necrosis factor alpha production and NF-kappaB signaling. Oxidized lipids also up-regulated CASMC CX3CR1 but through a different mechanism. Oxidized lipid stimulation also increased adhesion of macrophages to CASMCs when CASMCs were stimulated prior to assay, and a synergistic pro-adhesive effect was observed when both cell types were prestimulated. Selective inhibition with a CX3CL1-specific blocking antibody indicated that adhesion was strongly CASMC CX3CL1-dependent. These findings support the hypothesis that CX3CR1 and CX3CL1 mediate heterotypic anchorage of foam cells to CASMCs in the context of atherosclerosis and suggest that this chemokine/chemokine receptor pair may be considered as a pro-inflammatory target for therapeutic intervention in atherosclerotic cardiovascular disease.  相似文献   

12.
The transmembrane chemokine CX3CL1 and its receptor CX3CR1 are thought to be involved in the trafficking of immune cells during an immune response and in the pathology of various human diseases including cancer. However, little is known about the expression and function of CX3CR1 in human glioma-infiltrating microglia/macrophages (GIMs), representing the major cellular stroma component of highly malignant gliomas. Here, we show that CX3CR1 is overexpressed at both the mRNA and protein level in solid human astrocytomas of different malignancy grades and in glioblastomas. CX3CR1 was localized in ionized calcium-binding adapter molecule 1 (Iba1) and CD11b/c positive GIMs in situ as shown by fluorescence microscopy. In accordance with this, freshly isolated human GIM-enriched fractions separated by CD11b MACS technology displayed high Iba1 and CX3CR1 mRNA expression levels in vitro. Moreover, cultured human GIMs responded to CX3CL1-triggered activation of CX3CR1 with adhesion and migration in vitro. Besides an increase in motility, CX3CL1 also enhanced expression of matrix metalloproteases 2, 9, and 14 in GIM fractions in vitro. These data indicate that the CX3CL1/CX3CR1 system has a crucial tumor-promoting role in human glioblastomas via its impact on glioma-infiltrating immune subsets.  相似文献   

13.
It was recently shown that individuals carrying the naturally occurring mutant CX3CR1-Ile(249)-Met(280) (hereafter called CX3CR1-IM) have a lower risk of cardiovascular disease than individuals homozygous for the wild-type CX3CR1-Val(249)-Thr(280) (CX3CR1-VT). We report here that peripheral blood mononuclear cells (PBMC) from individuals with the CX3CR1-IM haplotype adhered more potently to membrane-bound CX3CL1 than did PBMC from homozygous CX3CR1-VT donors. Similar excess adhesion was observed with CX3CR1-IM-transfected human embryonic kidney (HEK) cell lines tested with two different methods: the parallel plate laminar flow chamber and the dual pipette aspiration technique. Suppression of the extra adhesion in the presence of pertussis toxin indicates that G-protein mediated the underlying transduction pathway, in contrast to the G-protein-independent adhesion previously described for CX3CR1-VT. Surprisingly, HEK and PBMC that expressed CX3CR1-IM and -VT were indistinguishable when tested with the soluble form of CX3CL1 for chemotaxis, calcium release, and binding capacity. In conclusion, only the membrane-anchored form of CX3CL1 functionally discriminated between these two allelic isoforms of CX3CR1. These results suggest that each form of this ligand may lead to a different signaling pathway. The extra adhesion of CX3CR1-IM may be related to immune defenses and to atherogenesis, both of which depend substantially on adhesive intercellular events.  相似文献   

14.
Cell migration is a complex biological process playing a key role in physiological and pathological conditions. During central nervous system development, positioning and function of cortical neurons is tightly regulated by cell migration. Recently, signaling events involving the urokinase-type plasminogen activator receptor, which is a key regulator for the activation of hepatocyte growth factor (HGF), have been implicated in modulating cortical neuron migration. However, the intracellular pathways controlling neuronal migration triggered by the HGF receptor Met have not been elucidated. By combining pharmacological and genetic approaches, we show here that the Ras/ERK pathway and phosphatidylinositol 3-kinase (PI3K) are both required for cortical neuron migration. By dissecting the downstream signals necessary for this event, we found that Rac1/p38 and Akt are required, whereas the c-Jun N-terminal kinase (JNK) and mTOR/p70(s6k) pathways are dispensable. This study demonstrates that concomitant activation of the Ras/ERK, PI3K/Akt, and Rac1/p38 pathways is required to achieve full capacity of cortical neurons to migrate upon HGF stimulation.  相似文献   

15.
The injection of Clostridium difficile toxin A into the ileal loops caused fluid accumulation with the destruction of intestinal epithelial structure and the recruitment of neutrophils and macrophages. Concomitantly, intraileal gene expression of CX3CL1/fractalkine (FKN) and its receptor, CX3CR1, was enhanced. When treated with toxin A in a similar manner, CX3CR1-deficient (CX3CR1(-/-)) mice exhibited exaggerated fluid accumulation, histopathological alterations, and neutrophil recruitment, but not macrophage infiltration. Mice reconstituted with CX3CR1(-/-) mouse-derived bone marrow cells exhibited exacerbated toxin A-induced enteritis, indicating that the lack of the CX3CR1 gene for hematopoietic cells aggravated toxin A-induced enteritis. A heme oxygenase-1 (HO-1) inhibitor, tin-protoporphyrin-IX, markedly increased fluid accumulation in toxin A-treated wild-type mice, indicating the protective roles of HO-1 in this situation. HO-1 expression was detected mainly in F4/80-positive cells expressing CX3CR1, and CX3CR1(-/-) mice failed to increase HO-1 expression after toxin A treatment. Moreover, CX3CL1/FKN induced HO-1 gene expression by isolated lamina propria-derived macrophages or a mouse macrophage cell line, RAW264.7, through the activation of the ERK signal pathway. Thus, CX3CL1/FKN could induce CX3CR1-expressing macrophages to express HO-1, thereby ameliorating toxin A-induced enteritis.  相似文献   

16.
17.
Idiopathic inflammatory myopathy is a chronic inflammatory muscle disease characterized by mononuclear cell infiltration in the skeletal muscle. The infiltrated inflammatory cells express various cytokines and cytotoxic molecules. Chemokines are thought to contribute to the inflammatory cell migration into the muscle. We induced experimental autoimmune myositis (EAM) in SJL/J mice by immunization with rabbit myosin and CFA. In the affected muscles of EAM mice, CX3CL1 (fractalkine) was expressed on the infiltrated mononuclear cells and endothelial cells, and its corresponding receptor, CX3CR1, was expressed on the infiltrated CD4 and CD8 T cells and macrophages. Treatment of EAM mice with anti-CX3CL1 mAb significantly reduced the histopathological myositis score, the number of necrotic muscle fibers, and infiltration of CD4 and CD8 T cells and macrophages. Furthermore, treatment with anti-CX3CL1 mAb down-regulated the mRNA expression of TNF-alpha, IFN-gamma, and perforin in the muscles. Our results suggest that CX3CL1-CX3CR1 interaction plays an important role in inflammatory cell migration into the muscle tissue of EAM mice. The results also point to the potential therapeutic usefulness of CX3CL1 inhibition and/or blockade of CX3CL1-CX3CR1 interaction in idiopathic inflammatory myopathy.  相似文献   

18.
Inhibition of glycogen synthase kinase-3beta (GSK3beta) is one of the mechanisms by which phosphatidylinositol 3-kinase (PI3K) activation protects neurons from apoptosis. Here, we report that inhibition of ERK1/2 increased the basal activity of GSK3beta in cortical neurons and that both ERK1/2 and PI3K were required for brain-derived neurotrophic factor (BDNF) suppression of GSK3beta activity. Moreover, cortical neuron apoptosis induced by expression of recombinant GSK3beta was inhibited by coexpression of constitutively active MKK1 or PI3K. Activation of both endogenous ERK1/2 and PI3K signaling pathways was required for BDNF to block apoptosis induced by expression of recombinant GSK3beta. Furthermore, cortical neuron apoptosis induced by LY294002-mediated activation of endogenous GSK3beta was blocked by expression of constitutively active MKK1 or by BDNF via stimulation of the endogenous ERK1/2 pathway. Although both PI3K and ERK1/2 inhibited GSK3beta activity, neither had an effect on GSK3beta phosphorylation at Tyr-216. Interestingly, PI3K (but not ERK1/2) induced the inhibitory phosphorylation of GSK3beta at Ser-9. Significantly, coexpression of constitutively active MKK1 (but not PI3K) still suppressed neuronal apoptosis induced by expression of the GSK3beta(S9A) mutant. These data suggest that activation of the ERK1/2 signaling pathway protects neurons from GSK3beta-induced apoptosis and that inhibition of GSK3beta may be a common target by which ERK1/2 and PI3K protect neurons from apoptosis. Furthermore, ERK1/2 inhibits GSK3beta activity via a novel mechanism that is independent of Ser-9 phosphorylation and likely does not involve Tyr-216 phosphorylation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号