首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The response of smooth muscle cells to IGF-I requires ligand occupancy of the alphaVbeta3 integrin. We have shown that vitronectin (Vn) is required for IGF-I-stimulated migration or proliferation, whereas the anti-alphaVbeta3 monoclonal antibody, LM609, which inhibits ligand binding, blocks responsiveness of these cells to IGF-I. The amino acids 177-184 ((177)CYDMKTTC(184)) within the extracellular domain of beta3 have been proposed to confer the ligand specificity of alphaVbeta3; therefore, we hypothesized that ligand binding to the 177-184 cysteine loop of beta3 may be an important regulator of the cross talk between alphaVbeta3 and IGF-I in SMCs. Here we demonstrate that blocking ligand binding to a specific amino acid sequence within the beta3 subunit of alphaVbeta3 (i.e. amino acids 177-184) blocked Vn binding to the beta3 subunit of alphaVbeta3 and correspondingly beta3 phosphorylation was decreased. In the presence of this antibody, IGF-I-stimulated Shc phosphorylation and ERK 1/2 activation were impaired, and this was associated with an inhibition in the ability of IGF-I to stimulate an increase in migration or proliferation. Furthermore, in cells expressing a mutated form of beta3 in which three critical residues within the 177-184 sequence were altered beta3 phosphorylation was decreased. This was associated with a loss of IGF-I-stimulated Shc phosphorylation and impaired smooth muscle cell proliferation in response to IGF-I. In conclusion, we have demonstrated that the 177-184 sequence of beta3 is necessary for Vn binding to alphaVbeta3 and that ligand occupancy of this site is necessary for an optimal response of smooth muscle cells to IGF-I.  相似文献   

2.
Optimal stimulation of signal transduction and biological functions by IGF-I in porcine smooth muscle cells (pSMC) requires ligand occupancy of the alphaVbeta3 integrin. Binding of heparin-binding domain (HBD) of vitronectin (VN) to the cysteine loop (C-loop) region of beta3 is required for pSMC to respond optimally to IGF-I stimulation. Mouse smooth muscle cells (mSMC), which express a form of beta3 whose sequence within the C-loop region is different than porcine or human beta3, do not respond optimally to IGF-I, and IGF-I stimulated beta3 and SHPS-1 phosphorylation which are necessary for optimal IGF-I signaling were undetectable. VN also had no effect on IGF-I stimulated the cell proliferation. In contrast, when human beta3 (hbeta3) was introduced into mSMC, there was an enhanced VN binding in spite of an equivalent amount of total beta3 expression, and IGF-I-dependent beta3, and SHPS-1 phosphorylation were detected. In addition, there was enhanced IGF-I-stimulated Shc association with SHPS-1, Shc tyrosine phosphorylation, Shc and Grb2 association, and MAP kinase activation leading to increased cell proliferation. These enhancements could be further augmented by adding a peptide containing the HBD of VN. To determine if these changes were mediated by the C-loop region of beta3, an antibody that reacts with that region of beta3 was utilized. The addition of the hbeta3 C-loop antibody abolished VN-induced enhancement of IGF-I signaling and IGF-I-stimulated cell proliferation. These results strongly support the conclusion that optimal SMC responsiveness to IGF-I requires ligand interaction with the C-loop domain of hbeta3.  相似文献   

3.
The interaction between the arginine glycine and aspartic acid motif (RGD) of integrin ligands such as vitronectin and the integrin receptor alphaVbeta3 in mediating cell attachment has been well described. Similarly, the ability of disintegrins, small RGD containing peptides, to inhibit cell attachment and other cellular processes has also been studied extensively. Recently, we characterized a second site of interaction between vitronectin and its integrin partner. We determined that amino acids within the heparin-binding domain of vitronectin bind to a cysteine loop (C-loop) region of beta3 and that this interaction is required for the positive effects of alphaVbeta3 ligand occupancy on IGF-I signaling in smooth muscle cells. In this study we examine the signaling events activated following ligand binding of disintegrins to the alphaVbeta3 and the ability of these signals to be regulated by binding of the heparin-binding domain of vitronectin. We demonstrate that disintegrin ligand binding activates a series of events including the sequential activation of the tyrosine kinases c-Src and Syk. This leads to the activation of calpain and the cleavage of the beta3 cytoplasmic tail. Addition of vitronectin or a peptide homologous to the heparin-binding domain inhibited activation of this pathway. Our results suggest that the signaling events that occur following ligand binding to the alphaVbeta3 integrin reflects a balance between the effects mediated through the RGD binding site interaction and the effects mediated by the heparin binding site interaction and that for intact vitronectin the effect of the heparin-binding domain predominates.  相似文献   

4.
Ligand occupancy of the alphaVbeta3 integrin is required for IGF-I receptor (IGF-IR) phosphorylation of an appropriate duration and for stimulation of IGF-I actions. In vascular smooth muscle cells (SMCs), the tyrosine phosphatase SHP-2 regulates the duration of IGF-IR phosphorylation and biological actions. We determined the role of ligand occupancy of the alphaVbeta3 integrin on beta3 phosphorylation and studied the role of beta3 phosphorylation in regulating both SHP-2 recruitment to the cell membrane and IGF-I-dependent biological responses. Vitronectin binding to alphaVbeta3 induced tyrosine phosphorylation of the beta3-subunit in subconfluent SMCs and was accompanied by increased association of SHP-2 with beta3. In confluent SMCs, the beta3-subunit was constitutively phosphorylated leading to basal binding of SHP-2. The Src kinase inhibitor PP2 caused a concentration-dependent decrease in beta3 phosphorylation and resulted in decreased SHP-2 association with beta3 and with the cell membrane. In contrast to control cells, SMCs expressing a mutant beta3 that had two tyrosines changed to phenylalanines showed a 89.9 +/- 1.2% decrease in beta3 phosphorylation. This decrease was associated with reduced SHP-2 binding to nonphosphorylated beta3 and a corresponding decrease in the membrane association of SHP-2. When IGF-I was added to cells expressing mutant beta3, SHP-2 was not recruited to the Src homology 2 domain-containing tyrosine phosphatase substrate-1 or to IGF-IR. This was associated with prolonged IGF-IR phosphorylation and an impaired cellular DNA synthesis response to IGF-I. These results define a mechanism by which ligand occupancy of alphaVbeta3 regulates the SMC response to IGF-I.  相似文献   

5.
Integrins are heterodimeric transmembrane proteins that mediate cell attachment to extracellular matrix, migration, division, and inhibition of apoptosis. Because growth factors are also important for these processes, there has been interest in cooperative signaling between growth factor receptors and integrins. IGF-I is an important growth factor for vascular cells. One integrin, alphaVbeta3, that is expressed in smooth muscle cells modulates IGF-I actions. Ligand occupancy of alphaVbeta3 is required for IGF-I to stimulate cell migration and division. Src homology 2 containing tyrosine phosphatase (SHP-2) is a tyrosine phosphatase whose recruitment to signaling molecules is stimulated by growth factors including IGF-I. If alphaVbeta3 ligand occupancy is inhibited, there is no recruitment of SHP-2 to alphaVbeta3 and its transfer to downstream signaling molecules is blocked. Ligand occupancy of alphaVbeta3 stimulates tyrosine phosphorylation of the beta3-subunit, resulting in recruitment of SHP-2. This transfer is mediated by an insulin receptor substrate-1-related protein termed DOK-1. Subsequently, SHP-2 is transferred to another transmembrane protein, SHPS-1. This transfer requires IGF-I receptor-mediated tyrosine phosphorylation of SHPS-1, which contains two YXXL motifs that mediate SHP-2 binding. The transfer of SHP-2 to SHPS-1 is also required for recruitment of Shc to SHPS-1. Ligand occupancy of alphaVbeta3 results in sustained Shc phosphorylation and enhanced Shc recruitment. Shc activation results in induction of MAPK. Inhibition of the Shc/SHPS-1 complex formation results in failure to achieve sustained MAPK activation and an attenuated mitogenic response. Thus, within the vessel wall, a mechanism exists whereby ligand occupancy of the alphaVbeta3 integrin is required for assembly of a multicomponent membrane signaling complex that is necessary for cells to respond optimally to IGF-I.  相似文献   

6.
Recruitment of the Src homology 2 domain tyrosine phosphatase (SHP-2) to the phosphorylated beta3 subunit of the alphaVbeta3 integrin is required for insulin-like growth factor I (IGF-I)-stimulated cell migration and proliferation in vascular smooth muscle cells. Because SHP-2 does not bind directly to beta3, we attempted to identify a linker protein that could mediate SHP-2/beta3 association. DOK1 is a member of insulin receptor substrate protein family that binds beta3 and contains YXXL/I motifs that are potential binding sites for SHP-2. Our results show that IGF-I induces DOK1 binding to beta3 and to SHP-2. Preincubation of cells with synthetic peptides that blocked either DOK1/beta3 or DOK1/SHP-2 association inhibited SHP-2 recruitment to beta3. Expression of a DOK1 mutant that does not bind to beta3 also disrupts SHP-2/beta3 association. As a result of SHP-2/beta3 disruption, IGF-I dependent phosphorylation of Akt and p44/p42 mitogen-activated protein kinase and its ability to stimulate cell migration and proliferation were significantly impaired. These results demonstrate that DOK1 mediates SHP-2/beta3 association in response to IGF-I thereby mediating the effect of integrin ligand occupancy on IGF-IR-linked signaling in smooth muscle cells.  相似文献   

7.
Insulin-like growth factor I (IGF-I) stimulates smooth muscle cell (SMC) proliferation, and the mitogen-activated protein kinase (MAPK) pathway plays an important role in mediating IGF-I-induced mitogenic signaling. Our prior studies have shown that recruitment of Src homology 2 domain tyrosine phosphatase (SHP-2) to the membrane scaffolding protein Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 (SHPS-1) is required for IGF-I-dependent MAPK activation. The current studies were undertaken to define the upstream signaling components that are required for IGF-I-stimulated MAPK activation and the role of SHPS-1 in regulating this process. The results show that IGF-I-induced Shc phosphorylation and its subsequent binding to Grb2 is required for sustained phosphorylation of MAPK and increased cell proliferation in SMCs. Furthermore, for Shc to be phosphorylated in response to IGF-I requires that Shc must associate with SHPS-1 and this association is mediated in part by SHP-2. Preincubation of cells with a peptide that contains a phospho-tyrosine binding motif sequence derived from SHPS-1 inhibited IGF-I-stimulated SHP-2 transfer to SHPS-1, the association of Shc with SHPS-1, and IGF-I-dependent Shc phosphorylation. Expression of an SHPS-1 mutant that did not bind to Shc or SHP-2 resulted in decreased Shc and MAPK phosphorylation in response to IGF-I. In addition, SMCs expressing a mutant form of the beta3 subunit of the alphaVbeta3, which results in impairment of SHP-2 transfer to SHPS-1, also showed attenuated IGF-I-dependent Shc and MAPK phosphorylation. Further analysis showed that Shc and SHP-2 can be coimmunoprecipitated after IGF-I stimulation. A cell-permeable peptide that contained a polyproline sequence from Shc selectively inhibited Shc/SHP-2 association and impaired Shc but not SHP-2 binding to SHPS-1. Exposure to this peptide also inhibited IGF-I-stimulated Shc and MAPK phosphorylation. Cells expressing a mutant form of Shc with the four prolines substituted with alanines showed no Shc/SHPS-1 association in response to IGF-I. We conclude that SHPS-1 functions as an anchor protein that recruits both Shc and SHP-2 and that their recruitment is necessary for IGF-I-dependent Shc phosphorylation, which is required for an optimal mitogenic response in SMCs.  相似文献   

8.
For a pregnancy to be established, initial apposition and adhesion of the blastocyst to maternal endometrium must occur in a coordinated manner; however, a key factor(s) that mediates the trophoblast cell migration and attachment to the apical surface of the endometrium has not been identified. In this study, we examined the effect of an endometrial chemokine, interferon-gamma-inducible protein 10 kDa (IP-10), on conceptus migration to the endometrial epithelium. We first studied endometrial IP-10 mRNA expression, which was localized in the subepithelial stromal region, and detected the protein in the uterine flushing media during early pregnancy. Expression of IP-10 mRNA by the endometrium of cyclic animals was stimulated by the addition of a conceptus factor interferon-tau (IFN-tau). Immunofluorescent analysis revealed that IP-10 receptor, CXCR3, was localized in the trophoblast cells, to which biotinylated-recombinant caprine IP-10 (rcIP-10) bound. Chemotaxis assay indicated that rcIP-10 stimulated the migration of trophoblast cells, and the effects of rcIP-10 were neutralized by the pretreatment with an anti-IP-10 antibody. Adhesive activity of trophoblast cells to fibronectin was promoted by rcIP-10, and the effect was inhibited by the use of anti-IP-10 antibody. Further adhesion experiments demonstrated that binding of trophoblast cells to fibronectin was completely inhibited by a peptide of the Arg-Gly-Asp (RGD) sequence, which binds to integrins alpha5beta1, alphaVbeta1, alphaVbeta3, and alphaVbeta5, whereas non-binding peptide containing Arg-Gly-Glu (RGE) had minimal effects. More importantly, rcIP-10 promoted the adhesion of trophoblast cells to primary cells isolated from endometrial epithelium. Furthermore, rcIP-10 stimulated the expression of integrin alpha5, alphaV, and beta3 subunit mRNA in trophoblast cells. These findings suggest that endometrial IP-10 regulates the establishment of apical interactions between trophoblast and epithelial cells during early gestation.  相似文献   

9.
Human fibrillin-1, the major structural protein of connective tissue 10-12 nm microfibrils, contains multiple calcium binding epidermal growth factor-like domains interspersed with transforming growth factor beta-binding protein-like (TB) domains. TB4 contains a flexible RGD loop that mediates cell adhesion via alphaVbeta3 and alpha5beta1 integrins. This study identifies integrin alphaVbeta6 as a novel cellular receptor for fibrillin-1 with a K(d) of approximately 0.45 mum. Analyses of this interaction by surface plasmon resonance and immunocytochemistry reveal different module requirements for alphaVbeta6 activation compared with those of alphaVbeta3, suggesting that a covalent linkage of an N-terminal calcium binding epidermal growth factor-like domain to TB4 can modulate alphaV integrin binding specificity. Furthermore, our data suggest alpha5beta1 is a low affinity fibrillin-1 receptor (K(d) > 1 mum), thus providing a molecular explanation for the different alpha5beta1 distribution patterns seen when human keratinocytes and fibroblasts are plated on recombinant fibrillin fragments versus those derived from the physiological ligand fibronectin. Non-focal contact distribution of alpha5beta1 suggests that its engagement by fibrillin-1 may elicit a lesser degree and/or different type of intracellular signaling compared with that seen with a high affinity ligand.  相似文献   

10.
IGF-I stimulates cell growth through interaction of the IGF receptor with multiprotein signaling complexes. However, the mechanisms of IGF-I receptor-mediated signaling are not completely understood. We have previously shown that IGF-I-stimulated 3T3-L1 cell proliferation is dependent on Src activation of the ERK-1/2 MAPK pathway. We hypothesized that IGF-I activation of the MAPK pathway is mediated through integrin activation of Src-containing signaling complexes. The disintegrin echistatin decreased IGF-I phosphorylation of Src and MAPK, and blocking antibodies to (alpha)v and beta3 integrin subunits inhibited IGF-I activation of MAPK, suggesting that (alpha)v(beta)3 integrins mediate IGF-I mitogenic signaling. IGF-I increased ligand binding to (alpha)v(beta)3 as detected by immunofluorescent staining of ligand-induced binding site antibody and stimulated phosphorylation of the beta3 subunit, consistent with inside-out activation of (alpha)v(beta)3 integrins. IGF-I increased tyrosine phosphorylation of the focal adhesion kinase (FAK) Pyk2 (calcium-dependent proline-rich tyrosine kinase-2) to a much greater extent than FAK, and increased association of Src with Pyk2 but not FAK. The intracellular calcium chelator BAPTA prevented IGF-I phosphorylation of Pyk2, Src, and MAPK, suggesting that IGF-I activation of Pyk2 is calcium dependent. Transient transfection with a dominant-negative Pyk2, which lacks the autophosphorylation and Src binding site, decreased IGF-I activation of MAPK, but no inhibition was seen with transfected wild-type Pyk2. These results indicate that IGF-I signaling to MAPK is dependent on inside-out activation of (alpha)v(beta)3 integrins and integrin-facilitated multiprotein complex formation involving Pyk2 activation and association with Src.  相似文献   

11.
Growth factors and matrix proteins regulate the proliferation and differentiation of osteoblasts. The insulin-like growth factor (IGF) system comprises IGF-I, IGF-II, and six high-affinity IGF-binding proteins (IGFBPs). IGFs stimulate cell growth in many types of tissue; IGF-binding proteins regulate cellular actions and can affect cell growth. IGF-I is involved in differentiation, proliferation, and matrix formation in osteoblasts; IGFBP-5 is associated with the extracellular matrix (ECM) and can potentiate the actions of IGF-I. We investigated the effect of ECM proteins on the responses of MC3T3-E1 osteoblast cells to IGF-I and IGFBP-5. In addition, because extracellular signal-regulated kinases 1 and 2 (Erk 1/2) affect cell growth, we evaluated the effects of IGFBP-5 on Erk 1/2 phosphorylation in MC3T3-E1 cells. IGF-I caused an increase in IGFBP-5 expression in cultured MC3T3-E1 cells, and IGF-I plus IGFBP-5 significantly increased cell growth. Likewise, the addition of IGF-I and IGFBP-5 to cultured MC3T3-E1 cells increased the synthesis of the ECM proteins osteopontin (OPN) and thrombospondin-1 (TSP-1), which can bind to alphaVbeta3 integrin receptors on the cell surface. By contrast, the addition of an antibody against ECM proteins inhibited the effects of OPN and TSP-1 on IGFBP-5 expression. The stimulatory effect of IGFBP-5 was mediated via Erk 1/2 activation. These data suggest that IGFBP-5 regulates Erk 1/2 phosphorylation in cultured MC3T3-E1 cells via ECM proteins that may ultimately stimulate the growth of osteoblasts. We determined whether occupation of the alphaVbeta3 integrin receptor affects IGF-I receptor (IGF-IR)-mediated signaling and function in MC3T3-E1 osteoblast cells. Occupation of the alphaVbeta3 integrin receptor with ECM proteins induced IGF-I-stimulated IGF-IR phosphorylation. Conversely, in the presence of the alphaVbeta3-specific disintegrin echistatin, IGF-I-stimulated IGF-IR activation was inhibited. IGF-I-stimulated IGF-IR phosphorylation was accompanied by IRS-1 phosphorylation and MAPK activation. However, these effects were attenuated by echistatin. Thus, occupancy of the alphaVbeta3 disintegrin receptor modulates IGF-I-induced IGF-IR activation and IGF-IR-mediated function in MC 3T3-E1 osteoblasts.  相似文献   

12.
Disintegrins are a family of small proteins containing an Arg-Gly-Asp (RGD) sequence motif that binds specifically to integrin receptors. Since the integrin is known to serve as the final common pathway leading to aggregation via formation of platelet-platelet bridges, disintegrins act as fibrinogen receptor antagonists. Here, we report the first crystal structure of a disintegrin, trimestatin, found in snake venom. The structure of trimestatin at 1.7A resolution reveals that a number of turns and loops form a rigid core stabilized by six disulfide bonds. Electron densities of the RGD sequence are visible clearly at the tip of a hairpin loop, in such a manner that the Arg and Asp side-chains point in opposite directions. A docking model using the crystal structure of integrin alphaVbeta3 suggests that the Arg binds to the propeller domain, and Asp to the betaA domain. This model indicates that the C-terminal region is another potential binding site with integrin receptors. In addition to the RGD sequence, the structural evidence of a C-terminal region (Arg66, Trp67 and Asn68) important for disintegrin activity allows understanding of the high affinity and selectiveness of snake venom disintegrin for integrin receptors. The crystal structure of trimestatin should provide a useful framework for designing and developing more effective drugs for controlling platelet aggregation and anti-angiogenesis cancer.  相似文献   

13.
《The Journal of cell biology》1996,134(5):1313-1322
Integrin-associated protein (IAP/CD47) is physically associated with the alpha v beta 3 vitronectin (Vn) receptor and a functionally and immunologically related integrin on neutrophils (PMN) and monocytes. Anti-IAP antibodies inhibit multiple phagocyte functions, including Arg- Gly-Asp (RGD)-initiated activation of phagocytosis, chemotaxis, and respiratory burst; PMN adhesion to entactin; and PMN transendothelial and transepithelial migration at a step subsequent to tight intercellular adhesion. Anti-IAP antibodies also inhibit binding of Vn- coated particles to many cells expressing alpha v beta 3. However, prior studies with anti-IAP did not directly address IAP function because they could not distinguish between IAP blockade and antibody- induced signaling effects on cells. To better determine the function of IAP, we have characterized and used an IAP-deficient human cell line. Despite expressing alpha v integrins, these cells do not bind Vn-coated particles unless transfected with IAP expression constructs. Increasing the level of alpha v beta 3 expression or increasing Vn density on the particle does not overcome the requirement for IAP. All known splice variants of IAP restore Vn particle binding equivalently. Indeed, the membrane-anchored IAP Ig variable domain suffices to mediate Vn particle binding in this system, while the multiply membrane-spanning and cytoplasmic domains are dispensable. In all cases, adhesion to a Vn- coated surface and fibronectin particle binding through alpha 5 beta 1 fibronectin receptors are independent of IAP expression. These data demonstrate that some alpha v integrin ligand-binding functions are IAP independent, whereas others require IAP, presumably through direct physical interaction between its Ig domain and the integrin.  相似文献   

14.
Grb10 is a protein that binds to the intracellular domains of activated tyrosine kinase receptors, including insulin-like growth factor (IGF-I) and insulin receptors. This occurs through the interaction of two C-terminal Grb10 motifs (BPS and Src homology domains) with receptor phosphotyrosine residues. Published data from transfection/overexpression studies support both positive and negative regulatory effects of Grb10, thus leaving its physiological role unclear. Because Grb10 has the structure of an adapter protein, the objective of this study was to determine whether Grb10 links other proteins to IGF-I receptors and thus modulates IGF-I signaling. Using yeast two-hybrid screening, the N terminus of Grb10 was shown to interact with two novel proteins, designated GIGYF1 (Grb10 interacting GYF protein 1) and GIGYF2. Mutation analysis indicates that a 17-amino acid sequence in GIGYF1 and GIGYF2, homologous to the GYF domain described previously, binds to tandem proline-rich regions in the N terminus of Grb10. In IGF-I receptor-expressing R+ fibroblasts, there is detectable binding of a Myc-tagged fragment of GIGYF1 to Grb10 in the basal state. Stimulation with IGF-I results in increased binding of GIGYF1 to Grb10 and transient binding of both Grb10 and GIGYF1 to IGF-I receptors, presumably via the adapter function of Grb10. At later time points, GIGYF1 dissociates, but Grb10 remains linked to IGF-I receptors. Overexpression of the Grb10 binding fragment of GIGYF1 in R+ cells results in a significant increase in IGF-I-stimulated receptor tyrosine phosphorylation. In conclusion, we have identified two members of a novel protein family, which become transiently linked to IGF-I receptors by the Grb10 adapter protein following IGF-I stimulation. Grb10 and GIGYFs may act cooperatively to regulate receptor signaling.  相似文献   

15.
Following an ill-defined activation event, the Arg-Gly-Asp (RGD) recognition site of the platelet integrin, glycoprotein IIb-IIIa (alpha IIb beta 3), can bind to fluid-phase, RGD-containing protein ligands, such as fibrinogen, or to the murine monoclonal IgM, PAC-1, which contains the sequence Arg-Tyr-Asp (RYD) within the third complementarity-determining region of its heavy chain (H3). PAC-1 has thus become a widely exploited marker of platelet alpha IIb beta 3 activation. In this report, we compare PAC-1 with two murine IgG, OP-G2 (IgG1 kappa) and LJ-CP3 (IgG1 kappa), that also contain the sequence RYD in H3 but bind to alpha IIb beta 3 without prior activation. Each antibody can inhibit the binding of the other two to intact platelets or to purified IIb-IIIa, the binding of each antibody is completely inhibited by peptides containing RGD, and H3 of each antibody uses the germline D-gene DSP 2.10 (CTATAGGTACGAC) which includes the sequence RYD. Two other murine IgG, HP20 and PCG1-1, cloned and sequenced by other laboratories, also utilize the DSP 2.10 sequence, but neither antibody binds to alpha IIb beta 3. From a comparison of the H3 sequences of these antibodies, we have developed a molecular model of the H3 loop region which can explain these differences in specificity. This model predicts that both the ability to bind to alpha IIb beta 3 and the activation dependence of that binding are a function of the orientation and, therefore, accessibility of the RYD sequence. This model and refinements thereof can be exploited to study the molecular basis for specificity and affinity of RGD-containing ligands for integrins.  相似文献   

16.
Integrins are alphabeta heterodimeric cell surface receptors that mediate transmembrane signaling by binding extracellular and cytoplasmic ligands. The ectodomain of integrin alphaVbeta3 crystallizes in a bent, genuflexed conformation considered to be inactive (unable to bind physiological ligands in solution) unless it is fully extended by activating stimuli. We generated a stable, soluble complex of the Mn(2+)-bound alphaVbeta3 ectodomain with a fragment of fibronectin (FN) containing type III domains 7 to 10 and the EDB domain (FN7-EDB-10). Transmission electron microscopy and single particle image analysis were used to determine the three-dimensional structure of this complex. Most alphaVbeta3 particles, whether unliganded or FN-bound, displayed compact, triangular shapes. A difference map comparing ligand-free and FN-bound alphaVbeta3 revealed density that could accommodate the RGD-containing FN10 in proximity to the ligand-binding site of beta3, with FN9 just adjacent to the synergy site binding region of alphaV. We conclude that the ectodomain of alphaVbeta3 manifests a bent conformation that is capable of stably binding a physiological ligand in solution.  相似文献   

17.
Jeong KW  Lee JY  Lee SA  Yang SP  Ko H  Kang DI  Chae CB  Kim Y 《Biochemistry》2011,50(22):4843-4854
Vascular endothelial growth factor (VEGF), which has neurotrophic and neuroprotective effects in addition to its major role in angiogenesis, interacts with Aβ and accumulates in the senile plaques of Alzheimer's disease (AD) patients' brains. It is known that Aβ binds to the heparin-binding domain (HBD) of the 165-amino acid VEGF variant, VEGF(165). In this study, we showed that triamterene (Trm) inhibits VEGF--Aβ interaction without affecting other biological activities of VEGF or Aβ. We investigated the importance of structural and dynamic features of HBD for its molecular-recognition processes. The binding model of HBD and Trm was constructed based on measurements of chemical shift changes and docking study. The results showed that the loop region (S11-L17) and F18 at the beginning of the first β-sheet in the HBD constitute the inhibitor binding site. The N1 atom of pteridine ring of Trm forms hydrogen bonding with backbone amide proton of R13, and the phenyl ring took part in a hydrophobic interaction with the aromatic ring of F18. To investigate the functional importance of the inherent structural flexibility of the HBD in VEGF, the dynamic properties of free HBD and HBD--Trm complex were assessed by measuring spin relaxation rates, and the backbone dynamics were investigated by model-free analysis. The residues in the disordered loop region of the N-terminus exhibited conformational exchanges in free HBD, and flexibility of this loop region decreased dramatically upon binding to Trm, suggesting that Aβ as well as inhibitor may recognize these unique dynamic features of the HBD. Furthermore, C-terminal residues continued to exhibit slow conformational motions, even in the HBD--Trm complex, implying that these motions at the C-terminus of the HBD might be important for interactions with heparin molecules. The flexibility of HBD demonstrated here should be essential for VEGF function and interaction with other protein partners.  相似文献   

18.
Triflavin, an antiplatelet peptide containing Arg-Gly-Asp, purified from Trimeresurus flavoviridis venom, inhibits aggregation of human platelets stimulated by a variety of agonists. It blocks aggregation through interference with fibrinogen binding to its specific receptor on the platelet surface membrane in a competitive manner, but it has no apparent effect on intracellular events, such as thromboxane B2 formation, phosphoinositides breakdown and intracellular Ca2+ mobilization of thrombin-activated platelets. In this study, we determined the complete sequence of triflavin, which is composed of a single polypeptide chain of 70 amino acids. Its sequence is rich in cysteine and contains Arg-Gly-Asp at residues 49-51 in the carboxy-terminal domain. Triflavin shows about 68% identity of amino acid sequence with trigramin, which is a specific antagonist of the fibrinogen receptor associated with glycoprotein IIb/IIIa complex. [125I]Triflavin binds to unstimulated and ADP-stimulated platelets in a saturable manner and its Kd values are estimated to be 76 and 74 nM, respectively; the corresponding numbers of binding sites are 31,029 and 34,863 per platelet, respectively. [125I]Triflavin binding is blocked by Gly-Arg-Gly-Asp-Ser in a competitive manner. EDTA, the Arg-Gly-Asp-containing peptides (including naturally occurring polypeptides, trigramin and rhodostomin), and monoclonal antibody, 7E3, raised against GP IIb/IIIa complex, inhibit [125I]triflavin binding to unstimulated and ADP-stimulated human platelets. In conclusion, triflavin specifically binds to fibrinogen receptor associated with GP IIb/IIIa complex and its binding site is located at or near GP IIb/IIIa complex, overlapping with those of 7E3 and another Arg-Gly-Asp-containing polypeptide, rhodostomin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The vitronectin receptor, alphavbeta3 integrin, plays an important role in tumor cell invasion, angiogenesis, and phagocytosis of apoptotic cells. CD47, a member of the multispan transmembrane receptor family, physically and functionally associates with vitronectin receptor (VnR). Although vitronectin (Vn) is not a ligand of CD47, anti-CD47 and beta3 mAbs suppress Vn, but not fibronectin (Fn) binding and function. Here, we show that anti-CD47, anti-beta3 mAb and Vn, but not Fn, inhibit sCD23-mediated proinflammatory function (TNF-alpha, IL-12, and IFN-gamma release). Surprisingly, anti-CD47 and beta3 mAbs do not block sCD23 binding to alphav+beta3+ T cell lines, whereas Vn and an alphav mAb (clone AMF7) do inhibit sCD23 binding, suggesting the VnR complex may be a functional receptor for sCD23. sCD23 directly binds alphav+beta3+/CD47(-) cell lines, but coexpression of CD47 increases binding. Moreover, sCD23 binds purified alphav protein and a single human alphav chain CHO transfectant. We conclude that the VnR and its associated CD47 molecule may function as a novel receptor for sCD23 to mediate its proinflammatory activity and, as such, may be involved in the inflammatory process of the immune response.  相似文献   

20.
The red cell intercellular adhesion molecule-4 (ICAM-4) binds to different members of the integrin receptor families. To better define the ICAM-4 integrin receptor specificity, cell transfectants individually expressing various integrins were used to demonstrate that alphaLbeta2, alphaMbeta2, and alphaIIbbeta3 (activated) bind specifically and dose dependently to the recombinant ICAM-4-Fc protein. We also show that cell surface ICAM-4 interacts with the cell surface alphaVbeta3 integrin. In addition, using a alpha4beta1 cell transfectant and beta2 integrin-deficient LAD cells, we show here that ICAM-4 failed to interact with alpha4beta1 even after alpha4beta1 activation by phorbol ester or with the monoclonal antibody TS2/16 (+ Mn2+). ICAM-4 amino acids that are critical for alphaIIbbeta3 and alphaVbeta3 interaction were identified by domain deletion analysis, site-directed mutagenesis and synthetic peptide inhibition. Our results provide evidence that the beta3 integrin binding sites encompass the first and second Ig-like domains of ICAM-4. However, while the alphaIIbbeta3 contact site comprises the ABED face of domain D1 with an extension in the C'-E loop of domain D2, the alphaVbeta3 contact site comprises residues on both faces of D1 and in the C'-E loop of D2. These data, together with our previous results, demonstrate that different integrins bind to different but partly overlapping sites on ICAM-4, and that ICAM-4 may accommodate multiple integrin receptors present on leukocytes, platelets and endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号