首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Lu J  Yang H  Yu H  Gao W  Lai R  Liu J  Liang X 《Peptides》2008,29(3):369-374
By Sephadex G-50 gel filtration, cation-exchange CM-Sephadex C-25 chromatography and reversed phase high-performance liquid chromatography (HPLC), a novel serine protease inhibitor named bungaruskunin was purified and characterized from venom of Bungarus fasciatus. Its cDNA was also cloned from the cDNA library of B. fasciatus venomous glands. The predicted precursor is composed of 83 amino acid (aa) residues including a 24-aa signal peptide and a 59-aa mature bungaruskunin. Bungaruskunin showed maximal similarity (64%) with the predicted serine protease inhibitor blackelin deduced from the cDNA sequence of the red-bellied black snake Pseudechis porphyriacus. Bungaruskunin is a Kunitz protease inhibitor with a conserved Kunitz domain and could exert inhibitory activity against trypsin, chymotrypsin, and elastase. By screening the cDNA library, two new B chains of beta-bungarotoxin are also identified. The overall structures of bungaruskunin and beta-bungarotoxin B chains are similar; especially they have highly conserved signal peptide sequences. These findings strongly suggest that snake Kunitz/BPTI protease inhibitors and neurotoxic homologs may have originated from a common ancestor.  相似文献   

3.
We have found that degranulation from mast cells is specifically inhibited by the inhibitors of chymase (10). Among the natural serine protease inhibitors tested, Bowman-Birk soybean protease inhibitor, Eglin C, and human alpha 1-antichymotrypsin inhibited chymase more strongly than did chymostatin, Kunitz soybean protease inhibitor, and phosphatidylserine. Of the inhibitors tested, Bowman-Birk soybean protease inhibitor was the strongest inhibitor of chymase, its Ki value being 13.2 X 10(-9) M. Kinetic studies showed that these inhibitors were all noncompetitive inhibitors of chymase. Bowman-Birk and Kunitz soybean protease inhibitors inhibited both chymotrypsin-type and trypsin-type serine proteases but Eglin C specifically inhibited chymotrypsin-type proteases.  相似文献   

4.
Fungus defensin is a kind of important natural peptide resource, such as plectasin from the soil fungus Pseudoplectania nigrella with potential application in the antimicrobial peptide lead drug discovery. Here, a fungus defensin named Bldesin with Kv1.3 channel and serine protease inhibitory activities was first explored. By GST‐Bldesin fusion expression and enterokinase cleaving strategy, recombinant Bldesin was obtained successfully. Antimicrobial assays showed that Bldesin had potent activity against Gram‐positive Staphylococcus aureus, but had no effect on Gram‐negative Escherichia coli. Electrophysiological experiments showed that Bldesin had Kv1.3 channel inhibitory activity. Serine protease inhibitory associated experiments showed that Bldesin had unique chymotrypsin protease inhibitory, elastase protease inhibitory, and serine protease‐associated coagulation inhibitory activities. To the best of our knowledge, Bldesin is the first functionally characterized pathogenic fungus defensin with Kv1.3 channel and chymotrypsin inhibitory activities and highlighted novel pharmacological effects of fungus‐derived defensin peptides.  相似文献   

5.
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a Kunitz-type serine protease inhibitor identified as a strong inhibitor of hepatocyte growth factor (HGF) activator and matriptase. HAI-1 is first produced in a membrane-integrated form with two Kunitz domains in its extracellular region, and subsequent ectodomain shedding releases two major secreted forms, one with a single Kunitz domain and one with two Kunitz domains. To determine the roles of the Kunitz domains in the inhibitory activity of HAI-1 against serine proteases, we constructed various HAI-1 mutant proteins and examined their inhibitory activity against HGF activator and trypsin. The N-terminal Kunitz domain (Kunitz I) had potent inhibitory activity against both HGF activator and trypsin, whereas the C-terminal Kunitz domain (Kunitz II) had only very weak inhibitory activity against HGF activator, although its potency against trypsin was equivalent to that of Kunitz I. These results indicate that Kunitz I is the functional domain of HAI-1 for inhibiting the HGF-converting activity of HGF activator. Furthermore, the presence of two Kunitz domains affected the inhibitory activity of HAI-1 against HGF activator, and it showed a similar, but not additive, level of inhibitory activity against trypsin when compared with that of the individual Kunitz domains. These results suggest that serine protease binding sites of Kunitz I and Kunitz II are located close to each other and that proteolytic processing to generate HAI-1 with only one Kunitz domain regulates the activity of HAI-1.  相似文献   

6.
This study describes a novel bifunctional metallocarboxypeptidase and serine protease inhibitor (SmCI) isolated from the tentacle crown of the annelid Sabellastarte magnifica. SmCI is a 165-residue glycoprotein with a molecular mass of 19.69 kDa (mass spectrometry) and 18 cysteine residues forming nine disulfide bonds. Its cDNA was cloned and sequenced by RT-PCR and nested PCR using degenerated oligonucleotides. Employing this information along with data derived from automatic Edman degradation of peptide fragments, the SmCI sequence was fully characterized, indicating the presence of three bovine pancreatic trypsin inhibitor/Kunitz domains and its high homology with other Kunitz serine protease inhibitors. Enzyme kinetics and structural analyses revealed SmCI to be an inhibitor of human and bovine pancreatic metallocarboxypeptidases of the A-type (but not B-type), with nanomolar K(i) values. SmCI is also capable of inhibiting bovine pancreatic trypsin, chymotrypsin, and porcine pancreatic elastase in varying measures. When the inhibitor and its nonglycosylated form (SmCI N23A mutant) were overproduced recombinantly in a Pichia pastoris system, they displayed the dual inhibitory properties of the natural form. Similarly, two bi-domain forms of the inhibitor (recombinant rSmCI D1-D2 and rSmCI D2-D3) as well as its C-terminal domain (rSmCI-D3) were also overproduced. Of these fragments, only the rSmCI D1-D2 bi-domain retained inhibition of metallocarboxypeptidase A but only partially, indicating that the whole tri-domain structure is required for such capability in full. SmCI is the first proteinaceous inhibitor of metallocarboxypeptidases able to act as well on another mechanistic class of proteases (serine-type) and is the first of this kind identified in nature.  相似文献   

7.
Serine proteinases and Kunitz type inhibitors are widely represented in venoms of snakes from different genera. During the study of the venoms from snakes inhabiting Russia we have cloned cDNAs encoding new proteins belonging to these protein families. Thus, a new serine proteinase called nikobin was identified in the venom gland of Vipera nikolskii viper. By amino acid sequence deduced from the cDNA sequence, nikobin differs from serine proteinases identified in other snake species. Nikobin amino acid sequence contains 15 unique substitutions. This is the first serine proteinase of viper from Vipera genus for which a complete amino acid sequence established. The cDNA encoding Kunitz type inhibitor was also cloned. The deduced amino acid sequence of inhibitor is homologous to those of other proteins from that snakes of Vipera genus. However there are several unusual amino acid substitutions that might result in the change of biological activity of inhibitor.  相似文献   

8.
A bifunctional α-amylase/serine protease inhibitor which inhibits germination-specific cereal α-amylases of the Graminae subfamily Festucoideae as well as bacterial subtilisins has been isolated from wheat grains. This protein has Mr ≈20500 and pI ≈7.2. The amino acid composition and N-teminal sequence (45 residues) show that the inhibitor is homologous with cereal and leguminous inhibitors of the soybean trypsin inhibitor (Kunitz) family.  相似文献   

9.
Novel peptide toxins from the sea anemone Stichodactyla haddoni   总被引:1,自引:0,他引:1  
Four peptide toxins, SHTX I-III with crab-paralyzing activity and SHTX IV with crab lethality, were isolated from the sea anemone Stichodactyla haddoni and their primary structures elucidated by protein sequencing and cDNA cloning. SHTX I (new toxin, 28 residues), II (analogue of SHTX I, 28 residues) and III (Kunitz-type protease inhibitor, 62 residues) are potassium channel toxins and SHTX IV (48 residues) is a member of the type 2 sea anemone sodium channel toxins. The precursor protein of SHTX IV is composed of a signal peptide, propart and mature peptide, while the propart is missing in that of SHTX III. In addition to these four toxins, an epidermal growth factor-like peptide was detected in S. haddoni by RT-PCR.  相似文献   

10.

Background

Serine protease inhibitors act as modulators of serine proteases, playing important roles in protecting animal toxin peptides from degradation. However, all known serine protease inhibitors discovered thus far from animal venom belong to the Kunitz-type subfamily, and whether there are other novel types of protease inhibitors in animal venom remains unclear.

Principal Findings

Here, by screening scorpion venom gland cDNA libraries, we identified the first Ascaris-type animal toxin family, which contains four members: Scorpiops jendeki Ascaris-type protease inhibitor (SjAPI), Scorpiops jendeki Ascaris-type protease inhibitor 2 (SjAPI-2), Chaerilus tricostatus Ascaris-type protease inhibitor (CtAPI), and Buthus martensii Ascaris-type protease inhibitor (BmAPI). The detailed characterization of Ascaris-type peptide SjAPI from the venom gland of scorpion Scorpiops jendeki was carried out. The mature peptide of SjAPI contains 64 residues and possesses a classical Ascaris-type cysteine framework reticulated by five disulfide bridges, different from all known protease inhibitors from venomous animals. Enzyme and inhibitor reaction kinetics experiments showed that recombinant SjAPI was a dual function peptide with α-chymotrypsin- and elastase-inhibiting properties. Recombinant SjAPI inhibited α-chymotrypsin with a Ki of 97.1 nM and elastase with a Ki of 3.7 μM, respectively. Bioinformatics analyses and chimera experiments indicated that SjAPI contained the unique short side chain functional residues “AAV” and might be a useful template to produce new serine protease inhibitors.

Conclusions/Significance

To our knowledge, SjAPI is the first functionally characterized animal toxin peptide with an Ascaris-type fold. The structural and functional diversity of animal toxins with protease-inhibiting properties suggested that bioactive peptides from animal venom glands might be a new source of protease inhibitors, which will accelerate the development of diagnostic and therapeutic agents for human diseases that target diverse proteases.  相似文献   

11.
NMR structure determination of tick anticoagulant peptide (TAP).   总被引:3,自引:1,他引:2       下载免费PDF全文
Tick anticoagulant peptide (TAP) is a potent and selective 60-amino acid inhibitor of the serine protease Factor Xa (fXa), the penultimate enzyme in the blood coagulation cascade. The structural features of TAP responsible for its remarkable specificity for fXa are unknown, but the binding to its target appears to be unique. The elucidation of the TAP structure may facilitate our understanding of this new mode of serine protease inhibition and could provide a basis for the design of novel fXa inhibitors. Analyses of homo- and heteronuclear two-dimensional NMR spectra (total correlation spectroscopy, nuclear Overhauser effect spectroscopy [NOESY], constant time heteronuclear single quantum correlation spectroscopy [CT-HSQC], and HSQC-NOESY; 600 MHz; 1.5 mM TAP; pH 2.5) of unlabeled, 13C-labeled, and 15N-labeled TAP provided nearly complete 1H sequence-specific resonance assignments. Secondary structural elements were identified by characteristic NOE patterns and D2O amide proton-exchange experiments. A three-dimensional structure of TAP was generated from 412 NOESY-derived distance and 47 dihedral angle constraints. The structural elements of TAP are similar in some respects to those of the Kunitz serine protease inhibitor family, with which TAP shares weak sequence homology. This structure, coupled with previous kinetic and biochemical information, confirms previous suggestions that TAP has a unique mode of binding to fXa.  相似文献   

12.
The amino acid sequences of four presynaptically active toxins from mamba snake venom (termed 'dendrotoxins') were compared systematically with homologous sequences of members of the proteinase inhibitor family (Kunitz). A comparison based on the complete sequences revealed that relatively few amino acid changes are necessary to abolish antiprotease activity and convert a proteinase inhibitor into a dendrotoxin. When comparison centred only on the sequence segments known to comprise the antiprotease site of bovine pancreatic trypsin inhibitor, the dendrotoxins were clearly classified apart from all the known inhibitors. Since the mode of action of the bovine pancreatic trypsin/kallikrein inhibitor involves beta sheet formation with the enzyme, predictions were obtained for this secondary structure in the region of the 'antiprotease site' throughout the homologues. Again, the dendrotoxins were clearly distinguished from the inhibitors. Structure/activity analyses, based on the crystal structures of inhibitor/enzyme complexes, suggest that unlike proteinase inhibitors, dendrotoxins might specifically co-ordinate the active-site 'catalytic' histidine residues of serine proteases. Although the significance of this remains to be studied, the presynaptic target is expected to involve an as yet uncharacterised member of the serine protease family.  相似文献   

13.
Trancriptomic analysis of the venom gland cDNA library of Bungarus flaviceps revealed Kunitz‐type serine protease inhibitor as one of the major venom protein families with three groups A, B, C. One of the group B isoforms named Flavikunin, which lacked an extra cysteine residue involved in disulfide bond formation in β‐bungarotoxin, was synthesized, cloned, and overexpressed in Escherichia coli. To decipher the structure‐function relationship, the P1 residue of Flavikunin, histidine, was mutated to alanine and arginine. Purified wild‐type and mutant Flavikunins were screened against serine proteases‐thrombin, factor Xa, trypsin, chymotrypsin, plasmin, and elastase. The wild‐type and mutant Flavikunin (H?R) inhibited plasmin with an IC 50 of 0.48 and 0.35 µM, respectively. The in‐silico study showed that P1 residue of wild‐type and mutant (H?R) Flavikunin interacted with S1′ and S1 site of plasmin, respectively. Thus, histidine at the P1 position was found to be involved in plasmin inhibition with mild anticoagulant activity.  相似文献   

14.
Yuan CH  He QY  Peng K  Diao JB  Jiang LP  Tang X  Liang SP 《PloS one》2008,3(10):e3414

Background

Kuntiz-type toxins (KTTs) have been found in the venom of animals such as snake, cone snail and sea anemone. The main ancestral function of Kunitz-type proteins was the inhibition of a diverse array of serine proteases, while toxic activities (such as ion-channel blocking) were developed under a variety of Darwinian selection pressures. How new functions were grafted onto an old protein scaffold and what effect Darwinian selection pressures had on KTT evolution remains a puzzle.

Principal Findings

Here we report the presence of a new superfamily of KTTs in spiders (Tarantulas: Ornithoctonus huwena and Ornithoctonus hainana), which share low sequence similarity to known KTTs and is clustered in a distinct clade in the phylogenetic tree of KTT evolution. The representative molecule of spider KTTs, HWTX-XI, purified from the venom of O. huwena, is a bi-functional protein which is a very potent trypsin inhibitor (about 30-fold more strong than BPTI) as well as a weak Kv1.1 potassium channel blocker. Structural analysis of HWTX-XI in 3-D by NMR together with comparative function analysis of 18 expressed mutants of this toxin revealed two separate sites, corresponding to these two activities, located on the two ends of the cone-shape molecule of HWTX-XI. Comparison of non-synonymous/synonymous mutation ratios (ω) for each site in spider and snake KTTs, as well as PBTI like body Kunitz proteins revealed high Darwinian selection pressure on the binding sites for Kv channels and serine proteases in snake, while only on the proteases in spider and none detected in body proteins, suggesting different rates and patterns of evolution among them. The results also revealed a series of key events in the history of spider KTT evolution, including the formation of a novel KTT family (named sub-Kuntiz-type toxins) derived from the ancestral native KTTs with the loss of the second disulfide bridge accompanied by several dramatic sequence modifications.

Conclusions/Significance

These finding illustrate that the two activity sites of Kunitz-type toxins are functionally and evolutionally independent and provide new insights into effects of Darwinian selection pressures on KTT evolution, and mechanisms by which new functions can be grafted onto old protein scaffolds.  相似文献   

15.
Sea anemones are a rich source of two classes of peptide toxins, sodium channel toxins and potassium channel toxins, which have been or will be useful tools for studying the structure and function of specific ion channels. Most of the known sodium channel toxins delay channel inactivation by binding to the receptor site 3 and most of the known potassium channel toxins selectively inhibit Kv1 channels. The following peptide toxins are functionally unique among the known sodium or potassium channel toxins: APETx2, which inhibits acid-sensing ion channels in sensory neurons; BDS-I and II, which show selectivity for Kv3.4 channels and APETx1, which inhibits human ether-a-go-go-related gene potassium channels. In addition, structurally novel peptide toxins, such as an epidermal growth factor (EGF)-like toxin (gigantoxin I), have also been isolated from some sea anemones although their functions remain to be clarified.  相似文献   

16.
Kallikreins-related peptidases (KLKs) are serine proteases and have been implicated in the desquamation process of the skin. Their activity is tightly controlled by epidermal protease inhibitors like the lympho-epithelial Kazal-type inhibitor (LEKTI). Defects of the LEKTI-encoding gene serine protease inhibitor Kazal type (Spink)5 lead to the absence of LEKTI and result in the genodermatose Netherton syndrome, which mimics the common skin disease atopic dermatitis. Since many KLKs are expressed in human skin with KLK5 being considered as one of the most important KLKs in skin desquamation, we proposed that more inhibitors are present in human skin. Herein, we purified from human stratum corneum by HPLC techniques a new KLK5-inhibiting peptide encoded by a member of the Spink family, designated as Spink9 located on chromosome 5p33.1. This peptide is highly homologous to LEKTI and was termed LEKTI-2. Recombinant LEKTI-2 inhibited KLK5 but not KLK7, 14 or other serine proteases tested including trypsin, plasmin and thrombin. Spink9 mRNA expression was detected in human skin samples and in cultured keratinocytes. LEKTI-2 immune-expression was focally localized at the stratum granulosum and stratum corneum at palmar and plantar sites in close localization to KLK5. At sites of plantar hyperkeratosis, LEKTI-2 expression was increased. We suggest that LEKTI-2 contributes to the regulation of the desquamation process in human skin by specifically inhibiting KLK5.  相似文献   

17.
Zhao R  Dai H  Qiu S  Li T  He Y  Ma Y  Chen Z  Wu Y  Li W  Cao Z 《PloS one》2011,6(11):e27548

Background

Kunitz-type venom peptides have been isolated from a wide variety of venomous animals. They usually have protease inhibitory activity or potassium channel blocking activity, which by virtue of the effects on predator animals are essential for the survival of venomous animals. However, no Kunitz-type peptides from scorpion venom have been functionally characterized.

Principal Findings

A new Kunitz-type venom peptide gene precursor, SdPI, was cloned and characterized from a venom gland cDNA library of the scorpion Lychas mucronatus. It codes for a signal peptide of 21 residues and a mature peptide of 59 residues. The mature SdPI peptide possesses a unique cysteine framework reticulated by three disulfide bridges, different from all reported Kunitz-type proteins. The recombinant SdPI peptide was functionally expressed. It showed trypsin inhibitory activity with high potency (Ki = 1.6×10−7 M) and thermostability.

Conclusions

The results illustrated that SdPI is a potent and stable serine protease inhibitor. Further mutagenesis and molecular dynamics simulation revealed that SdPI possesses a serine protease inhibitory active site similar to other Kunitz-type venom peptides. To our knowledge, SdPI is the first functionally characterized Kunitz-type trypsin inhibitor derived from scorpion venom, and it represents a new class of Kunitz-type venom peptides.  相似文献   

18.
Toxins from the venoms of scorpion, snake, and spider are valuable tools to probe the structure-function relationship of ion channels. In this investigation, a new toxin gene encoding the peptide ImKTx1 was isolated from the venom gland of the scorpion Isometrus maculates by constructing cDNA library method, and the recombinant ImKTx1 peptide was characterized physiologically. The mature peptide of ImKTx1 has 39 amino acid residues including six cross-linked cysteines. The electrophysiological experiments showed that the recombinant ImKTx1 peptide had a pharmacological profile where it inhibited Kv1.3 channel currents with IC(50) of 1.70 n± 1.35 μM, whereas 10 μM rImKTx1 peptide inhibited about 40% Kv1.1 and 42% Kv1.2 channel currents, respectively. In addition, 10 μM rImKTx1 had no effect on the Nav1.2 and Nav1.4 channel currents. Multiple sequence alignments showed that ImKTx1 had no homologous toxin peptide, but it was similar with Ca(2+) channel toxins from scorpion and spider in the arrangement of cysteine residues. These results indicate that ImKTx1 is a new Kv1.3 channel blocker with a unique primary structure. Our results indicate the diversity of K(+) channel toxins from scorpion venoms and also provide a new molecular template targeting Kv1.3 channel.  相似文献   

19.
Male accessory glands of Drosophila funebris synthesize and secrete a peptide that shows a protease-inhibiting activity. Amino acid sequencing of the purified peptide revealed that the peptide consists of 63 amino acid residues. It is a serine protease inhibitor belonging to the pancreatic trypsin inhibitor (Kunitz) family. The inhibitory function and the kinetic characteristics of the inhibition have been examined with various substrates. The peptide possibly plays a role as an acrosin inhibitor involved in Drosophila reproduction.  相似文献   

20.
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a membrane-bound, Kunitz-type serine protease inhibitor. HAI-1 inhibits serine proteases that have potent pro-hepatocyte growth factor-converting activity, such as the membrane-type serine protease, matriptase. HAI-1 comprises an N-terminal domain, followed by an internal domain, first protease inhibitory domain (Kunitz domain I), low-density lipoprotein receptor A module (LDLRA) domain, and a second Kunitz domain (Kunitz domain II) in the extracellular region. Our aim was to assess the roles of these domains in the inhibition of matriptase. Soluble forms of recombinant rat HAI-1 mutants made up with various combinations of domains were produced, and their inhibitory activities toward the hydrolysis of a chromogenic substrate were analyzed using a soluble recombinant rat matriptase. Kunitz domain I exhibited inhibitory activity against matriptase, but Kunitz domain II did not. The N-terminal domain and Kunitz domain II decreased the association rate between Kunitz domain I and matriptase, whereas the internal domain increased this rate. The LDLRA domain suppressed the dissociation of the Kunitz domain I-matriptase complex. Surprisingly, an HAI-1 mutant lacking the N-terminal domain and Kunitz domain II showed an inhibitor constant of 1.6 pm, and the inhibitory activity was 400 times higher in this HAI-1 mutant than in the mutant with all domains. These findings, together with the known occurrence of an HAI-1 species lacking the N-terminal domain and Kunitz domain II in vivo, suggest that the domain structure of HAI-1 is organized in a way that allows HAI-1 to flexibly control matriptase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号