首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Although it is known that the expression and activity of sirtuin 1 (Sirt1) decrease in the aged kidney, the role of interaction between Sirt1 and hypoxia‐inducible factor (HIF)‐1α is largely unknown. In this study, we investigated whether HIF‐1α could be a deacetylation target of Sirt1 and the effect of their interaction on age‐associated renal injury. Five‐week‐old (young) and 24‐month‐old (old) C57Bl/6J mice were assessed for their age‐associated changes. Kidneys from aged mice showed increased infiltration of CD68‐positive macrophages, higher expression of extracellular matrix (ECM) proteins, and more apoptosis than young controls. They also showed decreased Sirt1 expression along with increased acetylated HIF‐1α. The level of Bcl‐2/adenovirus E1B‐interacting protein 3, carbonic anhydrase 9, Snail, and transforming growth factor‐β1, which are regulated by HIF‐1α, was significantly higher in aged mice suggesting that HIF‐1α activity was increased. In HK‐2 cells, Sirt1 inhibitor sirtinol and siRNA‐mediated knockdown of Sirt1 enhanced apoptosis and ECM accumulation. During hypoxia, Sirt1 was down‐regulated, which allowed the acetylation and activation of HIF‐1α. Resveratrol, a Sirt1 activator, effectively prevented hypoxia‐induced production of ECM proteins, mitochondrial damage, reactive oxygen species generation, and apoptosis. The inhibition of HIF‐1α activity by Sirt1‐induced deacetylation of HIF‐1α was confirmed by Sirt1 overexpression under hypoxic conditions and by resveratrol treatment or Sirt1 overexpression in HIF‐1α‐transfected HK‐2 cells. Finally, we confirmed that chronic activation of HIF‐1α promoted apoptosis and fibrosis, using tubular cell‐specific HIF‐1α transgenic mice. Taken together, our data suggest that Sirt1‐induced deacetylation of HIF‐1α may have protective effects against tubulointerstitial damage in aged kidney.  相似文献   

6.
7.
Fibrosis in animal models and human diseases is associated with aberrant activation of the Wnt/β‐catenin pathway. Despite extensive research efforts, effective therapies are still not available. Myofibroblasts are major effectors, responsible for extracellular matrix deposition. Inhibiting the proliferation of the myofibroblast is crucial for treatment of fibrosis. Proliferation of myofibroblasts can have many triggering effects that result in fibrosis. In recent years, the Wnt pathway has been studied as an underlying factor as a primary contributor to fibrotic diseases. These efforts notwithstanding, the specific mechanisms by which Wnt‐mediated promotes fibrosis reaction remain obscure. The central role of the transforming growth factor‐β (TGF‐β) and myofibroblast activity in the pathogenesis of fibrosis has become generally accepted. The details of interaction between these two processes are not obvious. The present investigation was conducted to evaluate the level of sustained expression of fibrosis iconic proteins (vimentin, α‐SMA and collagen I) and the TGF‐β signalling pathway that include smad2/3 and its phosphorylated form p‐smad2/3. Detailed analysis of the possible molecular mechanisms mediated by β‐catenin revealed epithelial–mesenchymal transition and additionally demonstrated transitions of fibroblasts to myofibroblast cell forms, along with increased activity of β‐catenin in regulation of the signalling network, which acts to counteract autocrine TGF‐β/smad2/3 signalling. A major outcome of this study is improved insight into the mechanisms by which epithelial and mesenchymal cells activated by TGFβ1‐smad2/3 signalling through Wnt/β‐catenin contribute to lung fibrosis.  相似文献   

8.
Recent evidence suggests that adventitial fibroblasts (AFs) are crucially implicated in atherosclerosis. However, the mechanisms by which AFs are dysfunctional and contribute to atherosclerosis remain unclear. This study aimed to investigate the role of regulator of G‐protein signalling 3 (RGS3) in the regulation of AFs using apoE knockout mouse as the model. Pathological changes in aortic arteries of apoE knockout mice fed with hyperlipid diet were examined by Movat staining. The expression of RGS3, α‐SMA, TGF‐β1, Smad2, and Smad3 in the adventitia was detected by immunohistochemistry. Adventitial fibroblasts were isolated from aortic arteries of apoE knockout mice and infected with RGS3 overexpression lentivirus or empty lentivirus. The expression of RGS3, α‐SMA, TGF‐β1, Smad2, and Smad3 in AFs was detected by real‐time polymerase chain reaction and Western blot analysis. We found that hyperlipidic diet caused significant aortic intima thickening and atherosclerotic plaques in 15‐week‐old apoE knockout mice. Compared to wild‐type mice, RGS3 expression was lower while α‐SMA, TGF‐β1, Smad2, and Smad3 expression was higher in the adventitia of apoE knockout mice. In addition, lentivirus mediated overexpression of RGS3 caused decreased expression of α‐SMA, TGF‐β1, Smad2, and Smad3 in AFs derived from apoE(?/?) mice. In conclusion, these results suggest that RGS3 may provide protection against pathological changes of AFs and the development of atherosclerosis by inhibiting TGF‐β1/Smad signalling. RGS3 may be a potential therapeutic target for atherosclerosis.  相似文献   

9.
10.
11.
This study investigated the roles of ERK1 and ERK2 in transforming growth factor‐β1 (TGF‐β1)‐induced tissue inhibitor of metalloproteinases‐3 (TIMP‐3) expression in rat chondrocytes, and the specific roles of ERK1 and ERK2 in crosstalk with Smad2/3 were investigated to demonstrate the molecular mechanism of ERK1/2 regulation of TGF‐β1 signalling. To examine the interaction of specific isoforms of ERK and the Smad2/3 signalling pathway, chondrocytes were infected with LV expressing either ERK1 or ERK2 siRNA and stimulated with or without TGF‐β1. At indicated time‐points, TIMP‐3 expression was determined by real‐time PCR and Western blotting; p‐Smad3, nuclear p‐Smad3, Smad2/3, p‐ERK1/2 and ERK1/2 levels were assessed. And then, aggrecan, type II collagen and the intensity of matrix were examined. TGF‐β1‐induced TIMP‐3 expression was significantly inhibited by ERK1 knock‐down, and the decrease in TIMP‐3 expression was accompanied by a reduction of p‐Smad3 in ERK1 knock‐down cells. Knock‐down of ERK2 had no effect on neither TGF‐β1‐induced TIMP‐3 expression nor the quantity of p‐Smad3. Moreover, aggrecan, type II collagen expression and the intensity of matrix were significantly suppressed by ERK1 knock‐down instead of ERK2 knock‐down. Taken together, ERK1 and ERK2 have different roles in TGF‐β1‐induced TIMP‐3 expression in rat chondrocytes. ERK1 instead of ERK2 can regulate TGF‐β/Smad signalling, which may be the mechanism through which ERK1 regulates TGF‐β1‐induced TIMP‐3 expression.  相似文献   

12.
During the course of breast cancer progression, normally dormant tumour‐promoting effects of transforming growth factor β (TGFβ), including migration, invasion, and metastasis are unmasked. In an effort to identify mechanisms that regulate the pro‐migratory TGFβ ‘switch’ in mammary epithelial cells in vitro, we found that TGFβ stimulates the phosphorylation of Smad1 and Smad5, which are typically associated with bone morphogenetic protein signalling. Mechanistically, this phosphorylation event requires the kinase activity and, unexpectedly, the L45 loop motif of the type I TGFβ receptor, ALK5, as evidenced by studies using short hairpin RNA‐resistant ALK5 mutants in ALK5‐depleted cells and in vitro kinase assays. Functionally, Smad1/5 co‐depletion studies demonstrate that this phosphorylation event is essential to the initiation and promotion of TGFβ‐stimulated migration. Moreover, this phosphorylation event is preferentially detected in permissive environments such as those created by tumorigenic cells or oncogene activation. Taken together, our data provide evidence that TGFβ‐stimulated Smad1/5 phosphorylation, which occurs through a non‐canonical mechanism that challenges the notion of selective Smad phosphorylation by ALK5, mediates the pro‐migratory TGFβ switch in mammary epithelial cells.  相似文献   

13.
TGFβ1 is very important in the synthesis and degradation of extracellular matrix, and also in the mediation of human lung fibroblasts proliferation, and miR‐29 plays an important role in this process. To explore the interactions of miR‐29 family members and TGFβ1, the effects of transforming growth factor TGFβ1 on the expression of miR‐29 and whether miR‐29 is involved in pro‐survival signaling pathways mediated by TGFβ1 were examined in human lung fibroblasts. Treatment of the human embryonic lung fibroblast cell line IMR90 with TGFβ1 caused a decrease in expression of miR‐29a/b/c by real‐time PCR analysis. TGFβ1 stimulation increased cell proliferation, colony formation and up‐regulated expression of COL1A1; transfecting with miR‐29a/b/c mimics reverse TGFβ1‐induced phenotype changes in IMR90 cells. Western blot analyses showed that TGFβ1 treatment unchanged total protein expression levels of PI3K or AKT, but the expression levels of p‐PI3K, p‐AKT, and COL1A1 were increased; and miR‐19a/b/c mimics interfering blocked phosphorylation of PI3K or AKT and decreased expression of COL1A1 after TGFβ1 treatment. The results indicate that TGFβ1 beta uses the PI3k‐Akt pathway in these embryonic fibroblasts and miR29 blocks this activation pathway. It indicates a novel biological function of the PI3K‐Akt pathway in IMR90. Elevated expression of miR‐29 may play an important role in the pathogenesis of diseases related to fibrogenic reactions in human lung fibroblasts. J. Cell. Biochem. 114: 1336–1342, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
15.
16.
Recent studies have suggested that platelet‐rich plasma (PRP) injections are an effective way to retard intervertebral disc degeneration, but the mechanism of action is unclear. Activated platelets release some growth factors, such as transforming growth factor‐β1 (TGF‐β1), which positively modulate the extracellular matrix of nucleus pulposus cells. The purpose of this study was to explore the mechanism underlying the PRP‐mediated inhibition of intervertebral disc degeneration. In an in vitro study, we found that the proliferation of nucleus pulposus cells was greatly enhanced with 2.5% PRP treatment. The TGF‐β1 concentration was much higher after PRP treatment. PRP administration effectively increased the collagen II, aggrecan and sox‐9 mRNA levels and decreased collagen X levels. However, Western blotting demonstrated that specifically inhibiting TGF‐β1 signalling could significantly prevent nucleus pulpous cellular expression of Smad2/3 and matrix protein. In a rabbit study, magnetic resonance imaging revealed significant recovery signal intensity in the intervertebral discs of the PRP injection group compared with the very low signal intensity in the control groups. Histologically, the PRP plus inhibitor injection group had significantly lower expression levels of Smad2/3 and collagen II than the PRP group. These results demonstrated that a high TGF‐β1 content in the platelets retarded disc degeneration in vitro and in vivo. Inhibiting the TGF‐β1/Smad2/3 pathway could prevent this recovery by inactivating Smad2/3 and down‐regulating the extracellular matrix. Therefore, the TGF‐β1/Smad2/3 pathway might play a critical role in the ability of PRP to retard intervertebral disc degeneration.  相似文献   

17.
18.
19.
20.
High‐mobility group box 1 (HMGB1) has been reported to attenuate ventricular remodeling, but its mechanism remains mostly unresolved. Transforming growth factor‐beta (TGF‐β) is a crucial mediator in the pathogenesis of post‐infarction remodeling. Our study focused on the effects of HMGB1 on ventricular remodeling, and explored whether or not these effects were depended upon the TGF‐β signaling pathway. Rats underwent coronary artery ligation. An intramyocardium injection of phosphate buffered saline (PBS) with or without HMGB1 was administered 3 weeks after myocardial infarction (MI). At 4 weeks after the treatment, HMGB1 significantly increased the left ventricular ejection fraction (LVEF) (P < 0.05), decreased the left ventricular end diastolic dimension (LVEDD; P < 0.05), left ventricular end systolic dimension (LVESD) (P < 0.05) and the infarct size (P < 0.05) compared with control group. The expressions of collagen I, collagen III, and tissue inhibitor of metalloproteinase 2 (TIMP2) were also decreased, while the matrix metalloproteinases 2 (MMP2) and MMP9 expressions were upregulated by HMGB1 injection (P < 0.05) compared with control group. No effect on TIMP3 was observed. Furthermore, TGF‐β1 and phosphor‐Smad2 (p‐Smad2) were significantly suppressed and Smad7 was increased in HMGB1‐treated group (P < 0.05) compared with control group, no effects on p‐Smad3 and p‐p38 were observed. HMGB1 also upregulated Smad 7 expression and decreased the level of collagen I on cardiac fibroblasts (P < 0.05). Silencing of Smad7 gene by small interfering RNA abolished the fibrogenic effects of HMGB1 on cardiac fibroblasts (P < 0.05). These finding suggested that HMGB1 injection modulated ventricular remodeling may function through the possible inhibition of TGF‐β/Smad signaling pathway. J. Cell. Biochem. 114: 1634–1641, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号