首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
T cell release of lymphotoxin-α (LT-α, or TNF-β) is stimulated by pyrogenic exotoxins of Gram-positive bacteria and mitogens. In contrast to TNF-α, it is unknown whether LT-α plays any role in the pathogenesis of sepsis and, in particular, the pathogenesis of Gram-positive sepsis. Sera from patients with sepsis were examined for LT-α and compared with normal volunteers and pregnant women. LT-α was detected in 33% of sepsis sera (mean 608.4 pg/ml SE 306), 16% of normal sera (mean 167 pg/ml SE 87) and 23% of sera from pregnant women (mean 714 pg/ml SE 191). These differences were not significant and there were no differences within species sera when grouped by the type of causative organism, or disease severity. LT-α detected by immunoassay in serum was not bioactive, in contrast to that produced in cell culture. Recombinant soluble TNF receptors (rSTNFR) neutralized the bioactivity of recombinant LT-α at rSTNFR concentrations which did not interfere with immunoreactivity and which are known to prevailin vivo. Hence, LT-α is unlikely to have a critical role in the pathogenesis of sepsis. Much of the potential bioactivity of this lymphokine may be abrogated by TNFR in serum.  相似文献   

5.
In the last years, we have developed a method for the study of random RNA sequences with the aim of investigating their capacity to assume folded and possibly functionally active (ribozymes) structures. The RNA Foster assay developed in our laboratory is a powerful, simple, and fast method to investigate the structural properties of RNA by assessing the presence of secondary domains and their thermal stability through the combination of S1 nuclease activity at different temperatures. In this work, we investigated the structural properties of totally de novo random RNAs, 97‐nucleotides‐long, of which 60 nucleotides were completely random. The rationale behind this was to assess whether and to what extent random RNAs would acquire a stable fold as a prerequisite for catalytic activity. A library of random sequences was created, and 18 sequences were randomly selected and analyzed. Surprisingly, most of the RNAs were resistant to S1 nuclease digestion at up to 50°, and two sequences were resistant even at 70°, suggesting that these totally random RNA molecules could posses a stable secondary structure over a broad range of temperatures under the conditions used. We discuss the possible relevance of these data for the general scenario of the RNA world.  相似文献   

6.
7.
The 90‐kDa heat shock protein (Hsp90α) has been identified on the surface of cancer cells, and is implicated in tumor invasion and metastasis, suggesting that it is a potentially important target for tumor therapy. However, the regulatory mechanism of Hsp90α plasma membrane translocation during tumor invasion remains poorly understood. Here, we show that Hsp90α plasma membrane expression is selectively upregulated upon epidermal growth factor (EGF) stimulation, which is a process independent of the extracellular matrix. Abrogation of EGF‐mediated activation of phospholipase (PLCγ1) by its siRNA or inhibitor prevents the accumulation of Hsp90α at cell protrusions. Inhibition of the downstream effectors of PLCγ1, including Ca2+ and protein kinase C (PKCγ), also blocks the membrane translocation of Hsp90α, while activation of PKCγ leads to increased levels of cell‐surface Hsp90α. Moreover, overexpression of PKCγ increases extracellular vesicle release, on which Hsp90α is present. Furthermore, activation or overexpression of PKCγ promotes tumor cell motility in vitro and tumor metastasis in vivo, whereas a specific neutralizing monoclonal antibody against Hsp90α inhibits such effects, demonstrating that PKCγ‐induced Hsp90α translocation is required for tumor metastasis. Taken together, our study provides a mechanistic basis for the role for the PLCγ1–PKCγ pathway in regulating Hsp90α plasma membrane translocation, which facilitates tumor cell motility and promotes tumor metastasis.  相似文献   

8.
9.
Objective: This study was designed to determine when peroxisome proliferator‐activated receptor γ (PPARγ) is expressed in developing fetal adipose tissue and stromal‐vascular adipose precursor cells derived from adipose tissue. In addition we examined developing tissue for CCAAT/enhancer‐binding protein β (C/EBPβ) expression to see if it was correlated with PPARγ expression. Pituitary function and hormones involved with differentiation (dexamethasone and retinoic acid) were also tested for their effects on PPARγ expression to determine if hormones known to affect differentiation also effect PPARγ expression in vivo and in cell culture. Research Methods and Procedures: Developing subcutaneous adipose tissues from the dorsal region of the fetal pig were collected at different gestation times and assayed using Western blot analysis to determine levels of PPARγ and C/EBPβ. Hypophysectomy was performed on 75‐day pig fetuses and tissue samples were then taken at 105 days for Western blot analysis. Adipose tissue was also taken from postnatal pigs to isolate stromal‐vascular (S‐V) cells. These adipose precursor cells were grown in culture and samples were taken for Western blot analysis to determine expression levels of PPARγ. Results: Our results indicate that PPARγ is expressed as early as 50 days of fetal development in adipose tissue and continues through 105 days. Expression of PPARγ was found to be significantly enhanced in adipose tissue from hypophysectomized fetuses at 105 days of fetal development (p < 0.05). C/EBPβ was not found in 50‐ or 75‐day fetal tissues and was found only at low levels in 105‐day tissues. C/EBPβ was not found in hypophysectomized (hypoxed) 105‐day tissue where PPARγ was elevated. S‐V cells freshly isolated from adipose tissue of 5‐ to 7‐day postnatal pigs showed the expression of PPARγ1. When S‐V cells were cultured, both PPARγ1 and 2 were expressed after the first day and continued as cells differentiated. High concentrations of retinoic acid decreased PPARγ expression in early S‐V cultures (p < 0.05). Discussion: Our data indicate that PPARγ is expressed in fetal adipose tissue very early before distinct fat cells are observed and can be expressed without the expression of C/EBPβ. The increase in PPARγ expression after hypophysectomy may explain the increase in fat cell size under these conditions. Adipose precursor cells (S‐V cells) from 5‐ to 7‐day postnatal pigs also express PPARγ in the tissue before being induced to differentiate in culture. Thus S‐V cells from newborn pig adipose tissue are probably more advanced in development than the 3T3‐L1 cell model. S‐V cells may be in a state where PPARγ and C/EBPα are expressed but new signals or vascularization are needed before cells are fully committed and lipid filling begins.  相似文献   

10.
Phosphorylation and dephosphorylation of PKCs can regulate their activity, stability and function. We have previously shown that downregulation of PKCδ by tumor promoting phorbol esters was compromised when HeLa cells acquired resistance to cisplatin (HeLa/CP). In the present study, we have used these cells to understand the mechanism of PKCδ downregulation. A brief treatment of HeLa cells with phorbol 12,13-dibutyrate (PDBu) induced phosphorylation of PKCδ at the activation loop (Thr505), turn motif (Ser643), hydrophobic motif (Ser662) and Tyr-311 sites to a greater extent in HeLa/CP cells compared to HeLa cells. Prolonged treatment with PDBu led to downregulation of PKCδ in HeLa but not in HeLa/CP cells. The PKC inhibitor Gö 6983 inhibited PDBu-induced downregulation of PKCδ, decreased Thr505 phosphorylation and increased PKCδ tyrosine phosphorylation at Tyr-311 site. However, knockdown of c-Abl, c-Src, Fyn and Lyn had little effect on PKCδ downregulation and Tyr311 phosphorylation. Pretreatment with the phosphatidylinositol 3-kinase inhibitor Ly294002 and mTOR inhibitor rapamycin restored the ability of PDBu to downregulate PKCδ in HeLa/CP cells. Knockdown of mTOR and rictor but not raptor facilitated PKCδ downregulation. Depletion of PKCε also enhanced PKCδ downregulation by PDBu. These results suggest that downregulation of PKCδ is regulated by PKCε and mammalian target of rapamycin complex 2 (mTORC2).  相似文献   

11.
Cyclooxygenase 2 (COX‐2) is an important inflammatory factor. Previous studies have indicated that COX‐2 is induced with lipopolysaccharide (LPS) treatment. Here, we found that an inhibitor of histone deacetylase (HDAC), trichostatin A (TSA), cannot repress LPS‐induced COX‐2 but it increased the COX‐2 level in RAW264.7 cells. We found no significant difference in NF‐κB activation and ERK1/2 phosphorylation, but LPS‐induced C/EBPδ expression was completely abolished after TSA treatment of LPS‐treated cells. Interesting, reporter assay of C/EBPδ promoter revealed that Sp1‐binding site is important. Although there was no alteration in c‐Jun levels, but the phosphorylation of c‐Jun at its C‐terminus was increased dramatically. A DNA‐associated protein assay (DAPA) and chromatin immunoprecipitation assay (ChIP) indicated that c‐Jun was recruited via Sp1 to the promoter of C/EBPδ after LPS treatment; this recruitment of c‐Jun was repressed by TSA. C/EBPδ inhibition by TSA resulted in increased binding of C/EBPα and C/EBPβ to the COX‐2 promoter. Therefore, TSA has a positive effect on LPS‐induced COX‐2 since it decreases the C/EBPδ level by reducing c‐Jun recruitment by Sp1 to the C/EBPδ promoter, resulting in increased the recruitment of C/EBPα and C/EBPβ to the COX‐2 promoter. J. Cell. Biochem. 110: 1430–1438, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
The transforming growth factor-betas (TGF-βs) are synthesized as precursor proteins that are modified intracellularly prior to secretion. One of the most relevant intracellular modifications is the cleavage of the C-terminal pro-region from the N-terminal portion of the protein. The C-terminal pro-region is referred to as the latency-associated peptide (LAP) while the N-terminal region is called the mature TGF-β or active TGF-β. However, with some exceptions the LAP noncovalently associates with the mature TGF-β prior to secretion. When the mature TGF-β is associated with the LAP it is called L-TGF-β and cannot interact with its receptor and has no biological effect. The TGF-βs and their receptors are very ubiquitously expressed, suggesting that the regulation of TGF-β activity is likely to be complex and multifactorial. However, one of the most important means of controlling the biological effects of TGF-β is the regulation of converting L-TGF-β to active TGF-β. The current literature supports two major mechanisms of activation of L-TGF-β and suggests that the mechanism of activation of L-TGF-β may be varied and context-dependent. For TGF-β to become biologically active the LAP has to be either released from its associations with L-TGF-β or undergo conformational change such that the LAP is not released from the L-TGF-β complex but exposes the TGF-β receptor binding site. Since TGF-β has been associated with the pathogenesis of numerous diseases, the various mechanisms of activation of L-TGF-β in context offer the possibility of controlling TGF-β activity localized to the organ of involvement and to a more specific disease process.  相似文献   

13.
14.
Reports describing the effect of interferon‐γ (IFNγ) on interleukin‐1β (IL‐1β) production are conflicting. We resolve this controversy by showing that IFNγ potentiates IL‐1β release from human cells, but transiently inhibits the production of IL‐1β from mouse cells. Release from this inhibition is dependent on suppressor of cytokine signalling 1. IL‐1β and Th17 cells are pathogenic in mouse models for autoimmune disease, which use Mycobacterium tuberculosis (MTB), in which IFNγ and IFNβ are anti‐inflammatory. We observed that these cytokines suppress IL‐1β production in response to MTB, resulting in a reduced number of IL‐17‐producing cells. In human cells, IFNγ increased IL‐1β production, and this might explain why IFNγ is detrimental for multiple sclerosis. In mice, IFNγ decreased IL‐1β and subsequently IL‐17, indicating that the adaptive immune response can provide a systemic, but transient, signal to limit inflammation.  相似文献   

15.
Inflammatory cytokines are closely related to pigmentary changes. In this study, the effects of IFN‐γ on melanogenesis were investigated. IFN‐γ inhibits basal and α‐MSH‐induced melanogenesis in B16 melanoma cells and normal human melanocytes. MITF mRNA and protein expressions were significantly inhibited in response to IFN‐γ. IFN‐γ inhibited CREB binding to the MITF promoter but did not affect CREB phosphorylation. Instead, IFN‐γ inhibited the association of CBP and CREB through the increased association between CREB binding protein (CBP) and STAT1. These findings suggest that IFN‐γ inhibits both basal and α‐MSH‐induced melanogenesis by inhibiting MITF expression. The inhibitory action of IFN‐γ in α‐MSH‐induced melanogenesis is likely to be associated with the sequestration of CBP via the association between CBP and STAT1. These data suggest that IFN‐γ plays a role in controlling inflammation‐ or UV‐induced pigmentary changes.  相似文献   

16.
Preliminary observations were made between October 1982 and May 1983 on the nature, taxonomic composition, spatial distribution, buoyancy behaviour and nutrient requirements of some unusual planktonic algal “jellies” in Oguta Lake in Southeastern Nigeria. These “jellies” are macroscopic, blue-green algal masses whose excessive mucilage of high consistency acts as substrata for other epiphytic components viz. diatoms and green algae. They are more abundant in the lentic areas of the lake, undergo diurnal vertical movements and have their growth enhanced by spikes of nitrogen and phosphorus salts into their aquatic medium. The effects of these “jellies” on the ecology and general water use of the lake are discussed. Speculations on the reasons for their occurrence are given and possible control measures outlined.  相似文献   

17.
The CLC ‘Cl channel'' family consists of both Cl/H+ antiporters and Cl channels. Although CLC channels can undergo large, conformational changes involving cooperativity between the two protein subunits, it has been hypothesized that conformational changes in the antiporters may be limited to small movements localized near the Cl permeation pathway. However, to date few studies have directly addressed this issue, and therefore little is known about the molecular movements that underlie CLC-mediated antiport. The crystal structure of the Escherichia coli antiporter ClC-ec1 provides an invaluable molecular framework, but this static picture alone cannot depict the protein movements that must occur during ion transport. In this study we use fluorine nuclear magnetic resonance (NMR) to monitor substrate-induced conformational changes in ClC-ec1. Using mutational analysis, we show that substrate-dependent 19F spectral changes reflect functionally relevant protein movement occurring at the ClC-ec1 dimer interface. Our results show that conformational change in CLC antiporters is not restricted to the Cl permeation pathway and show the usefulness of 19F NMR for studying conformational changes in membrane proteins of known structure.  相似文献   

18.
19.
Crystal structures of Gαi (and closely related family member Gαt) reveal much of what we currently know about G protein structure, including changes which occur in Switch regions. Gαt exhibits a low rate of basal (uncatalyzed) nucleotide exchange and an ordered Switch II region in the GDP‐bound state, unlike Gαi, which exhibits higher basal exchange and a disordered Switch II region in GαiGDP structures. Using purified Gαi and Gαt, we examined the intrinsic tryptophan fluorescence of these proteins, which reports conformational changes associated with activation and deactivation of Gα proteins. In addition to the expected enhancement in tryptophan fluorescence intensity, activation of GαGDP proteins was accompanied by a modest but notable red shift in tryptophan emission maxima. We identified a cation‐π interaction between tryptophan and arginine residues in the Switch II of Gαi family proteins that mediates the observed red shift in emission maxima. Furthermore, amino‐terminal myristoylation of Gαi resulted in a less polar environment for tryptophan residues in the GTPase domain, consistent with an interaction between the myristoylated amino terminus and the GTPase domain of Gα proteins. These results reveal unique insights into conformational changes which occur upon activation and deactivation of G proteins in solution.  相似文献   

20.
Troxerutin, a natural flavonoid guards against oxidative stress and apoptosis with a high capability of passing through the blood‐brain barrier. Our aim was to investigate the role of troxerutin in experimentally induced retinal neurodegeneration by modulating the interferon‐gamma (IFNγ)‐extracellular signal‐regulated kinases 1/2 (ERK1/2)‐CCAAT enhancer‐binding protein β (C/EBP‐β) signaling pathway. Three groups of rats (10 each group) were included. Group I (control group), group II (rotenone treated group): the rats were injected subcutaneously with a single rotenone dosage of 3 mg/kg repeated every 48 hours for 60 days to trigger retinal neurodegeneration. Group III (troxerutin‐treated group): rats received troxerutin (150 mg/kg/day) by oral gavage 1 hour before rotenone administration. A real‐time polymerase chain reaction technique was applied to measure messenger RNA (mRNA) levels of retinal C/EBP‐β. Enzyme‐linked immunosorbent assay technique was utilized to assay tumor necrosis factor‐α (TNF‐α), IFNγ, and ERK1/2 levels. Finally, reactive oxygen species (ROS), as well as carbonylated protein (CP) levels, were assessed spectrophotometrically. Improved retinal neurodegeneration by downregulation of C/EBP‐β mRNA gene expression, also caused a significant reduction of TNF‐α, IFNγ, ERK1/2 as well as ROS and CP levels compared with the diseased group. These findings could hold promise for the usage of troxerutin as a protective agent against rotenone‐induced retinal neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号