首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malaria aminopeptidases are important in the generation and regulation of free amino acids that are used in protein anabolism and for maintaining osmotic stability within the infected erythrocyte. The intraerythrocytic development of malaria parasites is blocked when the activity of aminopeptidases is specifically inhibited by reagents such as bestatin. One of the major aminopeptidases of malaria parasites is a leucyl aminopeptidase of the M17 family. We reasoned that, when this enzyme was the target of bestatin inhibition, its overexpression in malaria cells would lead to a reduced sensitivity to the inhibitor. To address this supposition, transgenic Plasmodium falciparum parasites overexpressing the leucyl aminopeptidase were generated by transfection with a plasmid that housed the full-length gene. Transgenic parasites expressed a 65-kDa protein close to the predicted molecule size of 67.831 kDa for the introduced leucyl aminopeptidase, and immunofluorescence studies localized the protein to the cytosol, the location of the native enzyme. The product of the transgene was shown to be functionally active with cytosolic extracts of transgenic parasites exhibiting twice the leucyl aminopeptidase activity compared with wild-type parasites. In vitro inhibitor sensitivity assays demonstrated that the transgenic parasites were more resistant to bestatin (EC50 64 microM) compared with the parent parasites (EC50 25 microM). Overexpression of genes in malaria parasites would have general application in the identification and validation of targets for antimalarial drugs.  相似文献   

2.
  1. Download : Download high-res image (237KB)
  2. Download : Download full-size image
  相似文献   

3.
A member of the M18 family of aspartyl aminopeptidases is expressed by all intra-erythrocytic stages of the human malaria parasite Plasmodium falciparum (PfM18AAP), with highest expression levels in rings. Functionally active recombinant enzyme, rPfM18AAP, and native enzyme in cytosolic extracts of malaria parasites are 560-kDa octomers that exhibit optimal activity at neutral pH and require the presence of metal ions to maintain enzymatic activity and stability. Like the human aspartyl aminopeptidase, the exopeptidase activity of PfM18AAP is exclusive to N-terminal acidic amino acids, glutamate and aspartate, making this enzyme of particular interest and suggesting that it may function alongside the malaria cytosolic neutral aminopeptidases in the release of amino acids from host hemoglobin-derived peptides. Whereas immunocytochemical studies using transgenic P. falciparum parasites show that PfM18AAP is expressed in the cytosol, immunoblotting experiments revealed that the enzyme is also trafficked out of the parasite into the surrounding parasitophorous vacuole. Antisense-mediated knockdown of PfM18AAP results in a lethal phenotype as a result of significant intracellular damage and validates this enzyme as a target at which novel antimalarial drugs could be directed. Novel phosphinic derivatives of aspartate and glutamate showed modest inhibition of rPfM18AAP but did not inhibit malaria growth in culture. However, we were able to draw valuable observations concerning the structure-activity relationship of these inhibitors that can be employed in future inhibitor optimization studies.  相似文献   

4.
5.
Aiming to replace the radioisotopic assay, the widely used procedure for vitro antimalarial drug screening, we set up a protocol using a Plasmodium falciparum strain transformed with the green fluorescent protein (PfGFP), which can be quickly and specifically quantified by flow cytometry. On the basis of a side-by-side comparison, this PfGFP-based method showed results similar to those obtained with the standard radioisotopic method.  相似文献   

6.
Chlorpheniramine, a histamine H1 receptor antagonist, was assayed for in vitro antimalarial activity against multidrug-resistant Plasmodium falciparum K1 strain and chloroquine-resistant P. falciparum T9/94 clone, by measuring the 3H-hypoxanthine incorporation. Chlorphenirame inhibited P. falciparum K1 and T9/94 growth with IC50 values of 136.0+/-40.2 microM and 102.0+/-22.6 microM respectively. A combination of antimalarial drug and chlorpheniramine was tested against resistant P. falciparum in vitro. Isobologram analysis showed that chlorpheniramine exerts marked synergistic action on chloroquine against P. falciparum K1 and T9/94. Chlorpheniramine also potentiated antimalarial action of mefloquine, quinine or pyronaridine against both of the resistant strains of P. falciparum. However, chlorpheniramine antagonism with artesunate was obtained in both P. falciparum K1 and T9/94. The results in this study indicate that antihistaminic drugs may be promising candidates for potentiating antimalarial drug action against drug resistant malarial parasites.  相似文献   

7.
Prolyl aminopeptidase (EC 3.4.11.5) has been assumed to be a unique enzyme catalyzing specifically the removal of unsubstituted NH2-terminal L-prolyl residues from various peptides and to be distinct from leucyl aminopeptidase (EC 3.4.11.1). In the present study, prolyl aminopeptidases were purified to apparent homogeneity from pig small intestine mucosa and human liver and their NH2-terminal amino acid sequences were determined together with that of pig kidney leucyl aminopeptidase. The NH2-terminal 24-residue sequence of pig intestinal prolyl aminopeptidase was shown to be identical with that of pig kidney leucyl aminopeptidase. The NH2-terminal sequence of human liver prolyl aminopeptidase was also shown to be very similar to that of pig kidney leucyl aminopeptidase. Further, pig intestinal prolyl aminopeptidase and pig kidney leucyl aminopeptidase were immunologically indistinguishable. These lines of evidence strongly suggest that prolyl aminopeptidase is identical with leucyl aminopeptidase.  相似文献   

8.
Trotta RF  Brown ML  Terrell JC  Geyer JA 《Biochemistry》2004,43(17):4885-4891
The development and spread of highly drug-resistant parasites pose a central problem in the control of malaria.Understanding mechanisms that regulate genomic stability, such as DNA repair, in drug-resistant parasites and during drug treatment may help determine whether this rapid onset of resistance is due to an increase in the rate at which resistance-causing mutations are generated. This is the first report to demonstrate DNA repair activities from the malaria-causing parasite Plasmodium falciparum that are specific for ultraviolet light-induced DNA damage. The efficiency of DNA repair differs dramatically among P. falciparum strains with varying drug sensitivities. Most notable is the markedly reduced level of repair in the highly drug-resistant W2 isolate, which has been shown to develop resistance to novel drugs at an increased rate when compared to drug-sensitive strains. Additionally, the antimalarial drug chloroquine and other quinoline-like compounds interfered with the DNA synthesis step of the repair process, most likely a result of direct binding to repair substrates. We propose that altered DNA repair, either through defective repair mechanisms or drug-mediated inhibition, may contribute to the accelerated development of drug resistance in the parasite.  相似文献   

9.
Plasmodium falciparum alanine M1-aminopeptidase (PfA-M1) is a validated target for anti-malarial drug development. Presence ofsignificant similarity between PfA-M1 and human M1-aminopeptidases, particularly within regions of enzyme active site leads toproblem of non-specificity and off-target binding for known aminopeptidase inhibitors. Molecular docking based in silico screeningapproach for off-target binding has high potential but requires 3D-structure of all human M1-aminopeptidaes. Therefore, in thepresent study 3D structural models of seven human M1-aminopeptidases were developed. The robustness of docking parametersand quality of predicted human M1-aminopeptidases structural models was evaluated by stereochemical analysis and docking oftheir respective known inhibitors. The docking scores were in agreement with the inhibitory concentrations elucidated in enzymeassays of respective inhibitor enzyme combinations (r2≈0.70). Further docking analysis of fifteen potential PfA-M1 inhibitors(virtual screening identified) showed that three compounds had less docking affinity for human M1-aminopeptidases as comparedto PfA-M1. These three identified potential lead compounds can be validated with enzyme assays and used as a scaffold fordesigning of new compounds with increased specificity towards PfA-M1.  相似文献   

10.
Chemotherapy is a critical component of malaria control. However, the most deadly malaria pathogen, Plasmodium falciparum, has repeatedly mounted resistance against a series of antimalarial drugs used in the last decades. Southeast Asia is an epicenter of emerging antimalarial drug resistance, including recent resistance to the artemisinins, the core component of all recommended antimalarial combination therapies. Alterations in the parasitic membrane proteins Pgh-1, PfCRT and PfMRP1 are believed to be major contributors to resistance through decreasing intracellular drug accumulation. The pfcrt, pfmdr1 and pfmrp1 genes were sequenced from a set of P.falciparum field isolates from the Thai-Myanmar border. In vitro drug susceptibility to artemisinin, dihydroartemisinin, mefloquine and lumefantrine were assessed. Positive correlations were seen between the in vitro susceptibility responses to artemisinin and dihydroartemisinin and the responses to the arylamino-alcohol quinolines lumefantrine and mefloquine. The previously unstudied pfmdr1 F1226Y and pfmrp1 F1390I SNPs were associated significantly with artemisinin, mefloquine and lumefantrine in vitro susceptibility. A variation in pfmdr1 gene copy number was also associated with parasite drug susceptibility of artemisinin, mefloquine and lumefantrine. Our work unveils new candidate markers of P. falciparum multidrug resistance in vitro, while contributing to the understanding of subjacent genetic complexity, essential for future evidence-based drug policy decisions.  相似文献   

11.
The metal-dependent M17 aminopeptidases are conserved throughout all kingdoms of life. This large enzyme family is characterized by a conserved binuclear metal center and a distinctive homohexameric arrangement. Recently, we showed that hexamer formation in Plasmodium M17 aminopeptidases was controlled by the metal ion environment, although the functional necessity for hexamer formation is still unclear. To further understand the mechanistic role of the hexameric assembly, here we undertook an investigation of the structure and dynamics of the M17 aminopeptidase from Plasmodium falciparum, PfA-M17. We describe a novel structure of PfA-M17, which shows that the active sites of each trimer are linked by a dynamic loop, and loop movement is coupled with a drastic rearrangement of the binuclear metal center and substrate-binding pocket, rendering the protein inactive. Molecular dynamics simulations and biochemical analyses of PfA-M17 variants demonstrated that this rearrangement is inherent to PfA-M17, and that the transition between the active and inactive states is metal dependent and part of a dynamic regulatory mechanism. Key to the mechanism is a remodeling of the binuclear metal center, which occurs in response to a signal from the neighboring active site and serves to moderate the rate of proteolysis under different environmental conditions. In conclusion, this work identifies a precise mechanism by which oligomerization contributes to PfA-M17 function. Furthermore, it describes a novel role for metal cofactors in the regulation of enzymes, with implications for the wide range of metalloenzymes that operate via a two-metal ion catalytic center, including DNA processing enzymes and metalloproteases.  相似文献   

12.
A new leucyl aminopeptidase activity has been identified in the fission yeast Schizosaccharomyces pombe. The enzyme, which has been purified and named leucyl aminopeptidase yspII (LAP yspII), had a molecular mass of 320 and 54 kDa by gel filtration and SDS/PAGE, respectively, suggesting a homohexameric structure. The enzyme cleaved synthetic aminoacyl-4-nitroanilides at an optimum of pH 8.5, and preferred leucine and methionine as N-terminal amino acids. A clear dependence on Mn2+ concentration for activity was found, and an apparent association constant of 0.33 mM was calculated for the metal ion. Bestatin behaved as a competitive inhibitor of LAP yspII (K(i) = 0.14 microM), while chelating agents such as chloroquine, EDTA and 1,10-phenanthroline also reduced enzyme activity. A MALDI-MS analysis, followed by sequencing of two of the resulting peptides, showed that LAP yspII undoubtedly corresponds to the putative aminopeptidase C13A11.05 identified in the S. pombe genome project. The protein exhibited nearly 40% sequence identity to fungal and mammalian aminopeptidases belonging to the M17 family of metallopeptidases. Catalytic residues (Lys292 and Arg366), as well as those involved in coordination with the cocatalytic metal ions (Lys280, Asp285, Asp303, Asp362 and Glu364) and those forming the hydrophobic pocket for substrate binding (Met300, Asn360, Ala363, Thr390, Leu391, Ala483 and Met486), were perfectly conserved among all known aminopeptidases. The S. pombe enzyme is predicted to be formed two clearly distinguished domains with a well conserved C-terminal catalytic domain showing a characteristic topology of eight beta-sheets surrounded by alpha-helical segments in the form of a saddle.  相似文献   

13.
Plasmodium vivax (Pv) is the second most malaria causing pathogen among Plasmodium species. M18 aspartic aminopeptidase (M18AAP) protein is a single gene copy present in Plasmodium. This protein is functional at the terminal stage of hemoglobin degradation of host and completes the hydrolysis process which makes it an important target for new chemotherapeutics. No experimental and structural study on M18AAP protein of P. vivax is reported till today. This paper advocates the application of multiple computational approaches like protein model prediction, ligand-based 3D QSAR study, pharmacophore, structure-based virtual screening and molecular docking simulation for identification of potent lead molecules against the enzyme. The 3D QSAR model was developed using known bioactive compounds against the PvM18AAP protein which statistically signify the k-NN model with q^2 = 0.7654. The study reports a lead molecule from ligand-centric approach with good binding affinity and possessing lowest docking score. The findings will be helpful for in-vivo and in-vitro validations and development of potent anti-malarial molecules against the drug resistant strains of malaria parasite.  相似文献   

14.
15.
16.
17.
Caseinolytic chaperones and proteases (Clp) belong to the AAA+ protein superfamily and are part of the protein quality control machinery in cells. The eukaryotic parasite Plasmodium falciparum, the causative agent of malaria, has evolved an elaborate network of Clp proteins including two distinct ClpB ATPases. ClpB1 and ClpB2 are involved in different aspects of parasitic proteostasis. ClpB1 is present in the apicoplast, a parasite-specific and plastid-like organelle hosting various metabolic pathways necessary for parasite growth. ClpB2 localizes to the parasitophorous vacuole membrane where it drives protein export as core subunit of a parasite-derived protein secretion complex, the Plasmodium Translocon of Exported proteins (PTEX); this process is central to parasite virulence and survival in the human host. The functional associations of these two chaperones with parasite-specific metabolism and protein secretion make them prime drug targets. ClpB proteins function as unfoldases and disaggregases and share a common architecture consisting of four domains—a variable N-terminal domain that binds different protein substrates, followed by two highly conserved catalytic ATPase domains, and a C-terminal domain. Here, we report and compare the first crystal structures of the N terminal domains of ClpB1 and ClpB2 from Plasmodium and analyze their molecular surfaces. Solution scattering analysis of the N domain of ClpB2 shows that the average solution conformation is similar to the crystalline structure. These structures represent the first step towards the characterization of these two malarial chaperones and the reconstitution of the entire PTEX to aid structure-based design of novel anti-malarial drugs.  相似文献   

18.
Falcipains (FP) of Plasmodium falciparum are important virulence factors marked as potential targets for antimalarial drug discovery. In this study, the previously uncharacterized fp2B (PF11_0161) was shown to be highly expressed as an active enzyme during the erythrocytic stage. With three related proteases in the FP family and the existence of human homologues, it is prudent to identify clusters of residues unique to the parasite proteases that can be targeted selectively for drug design. Using bioinformatic tools, we have carefully mapped out a highly conserved and unique region constituted by I85, S149, and A151 in the plasmodial proteases that can influence the development of compounds capable of inhibiting the entire FP family. Taking drug interactions with the human homologues into consideration, these residues in FP2B were replaced with the cognate residues found in human cathepsin L (catL) for evaluation. Despite the high sequence similarity between the FP2 isozymes (97.5%), FP2B is found to be more tolerant to amino acid substitution at position 149 than FP2A. This structural disparity implied that residues mediating peptide substrate interactions are not fully conserved across the FP family and warrant attention in the design and evaluation of protease inhibitors focused on the FPs. The simultaneous substitution of the neighboring residues (I85 or A151) rendered the double mutants (S149A/I85M and S149A/A151D) completely inactive. Significantly, the mutations did not result in 'catL-like' specificity, suggesting that substrate-based inhibitors could be rationally designed against these important parasite-specific structural determinants.  相似文献   

19.

Background

Plasmodium falciparum, the causative agent of human malaria, expresses two aminopeptidases, PfM1AAP and PfM17LAP, critical to generating a free amino acid pool used by the intraerythrocytic stage of the parasite for proteins synthesis, growth and development. These exopeptidases are potential targets for the development of a new class of anti-malaria drugs.

Methodology/Principal Findings

To define the substrate specificity of recombinant forms of these two malaria aminopeptidases we used a new library consisting of 61 fluorogenic substrates derived both from natural and unnatural amino acids. We obtained a detailed substrate fingerprint for recombinant forms of the enzymes revealing that PfM1AAP exhibits a very broad substrate tolerance, capable of efficiently hydrolyzing neutral and basic amino acids, while PfM17LAP has narrower substrate specificity and preferentially cleaves bulky, hydrophobic amino acids. The substrate library was also exploited to profile the activity of the native aminopeptidases in soluble cell lysates of P. falciparum malaria.

Conclusions/Significance

This data showed that PfM1AAP and PfM17LAP are responsible for majority of the aminopeptidase activity in these extracts. These studies provide specific substrate and mechanistic information important for understanding the function of these aminopeptidases and could be exploited in the design of new inhibitors to specifically target these for anti-malaria treatment.  相似文献   

20.
A new class of Saccharomyces cerevisiae mutants (aat1 - amino acid transport) has been identified. These mutants are unable to grow on rich medium or on minimal medium supplemented with certain amino acids (isoleucine, methionine, phenylalanine, tyrosine or valine). This phenotype is directly linked to the presence of the leu2 allele in these strains: aat1 LEU2 organisms grow normally on all media tested. Leucine uptake through the leucine-specific permease is inhibited to less than 35% of wild-type levels in aat1 cells preincubated in nonpermissive media, and the activity of the general amino acid permease is also low in these conditions. aat1 cells are therefore unable to grow on rich media because they cannot take up enough leucine to supplement their auxotrophic requirement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号