首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pathways of transduction employed by receptors for sphingosine 1-phosphate (S1P) are identified by the nature of second messengers and/or downstream targets regulated and, more formally, by direct assays of heterotrimeric G protein activation. The different methods generally agree. S1P1 couples to members of the Gi family, apparently selectively, although reported pertussis toxin (PTX)-insensitive actions make categorical statements regarding exclusivity difficult. S1P2 and S1P3 couple to members of the Gi, Gq, and G12/13 families. S1P4 couples to Gi and possibly G12/13, while S1P5 couples to Gi and G12/13 but not to Gq. In virtually all circumstances, coupling of S1P receptors to Gi is reflected in PTX-sensitive inhibition of adenylyl cyclase, activation of extracellular-regulated kinases (ERKs), and, depending on the cell, activation of phospholipase C (PLC). Coupling to Gq is reflected in PTX-insensitive activation of phospholipase C. Coupling to G12/13 is reflected in activation of Rho and subsequent activation of serum response factor (SRF). Specific linkages have been verified in almost all instances by receptor-promoted [35S]GTPgammaS/GDP exchange on identified G proteins.  相似文献   

2.
Previous studies have shown that ligand or immunoaffinity chromatography can be used to purify the human platelet thromboxane A2 (TXA2) receptor-Galphaq complex. The same principle of co-elution was used to identify another G-protein associated with platelet TXA2 receptors. It was found that in addition to Galphaq, purification of TXA2 receptors by ligand (SQ31,491)-affinity chromatography resulted in the co-purification of a member of the G12 family. Using an antipeptide antibody specific for the human G13 alpha-subunit, this G-protein was identified as Galpha13. In separate experiments, it was found that the TXA2 receptor agonist U46619 stimulated [35S]guanosine 5'-O-(3-thiotriphosphate) incorporation into G13 alpha-subunit. Further evidence for functional coupling of G13 to TXA2 receptors was provided in studies where solubilized platelet membranes were subjected to immunoaffinity chromatography using an antibody raised against native TXA2 receptor protein. It was found that U46619 induced a significant decrease in Galphaq and Galpha13 association with the receptor protein. These results indicate that both Galphaq and Galpha13 are functionally coupled to TXA2 receptors and dissociate upon agonist activation. Furthermore, this agonist effect was specifically blocked by pretreatment with the TXA2 receptor antagonist, BM13.505. Taken collectively, these data provide direct evidence that endogenous Galpha13 is a TXA2 receptor-coupled G-protein, as: 1) its alpha-subunit can be co-purified with the receptor protein using both ligand and immunoaffinity chromatography, 2) TXA2 receptor activation stimulates GTPgammaS binding to Galpha13, and 3) Galpha13 affinity for the TXA2 receptor can be modulated by agonist-receptor activation.  相似文献   

3.
4.
Based on the kinetics of interaction between a receptor and G-protein, a myriad of possibilities may result. Two extreme cases are represented by: 1/Collision coupling, where an agonist binds to the free receptor and then the agonist-receptor complex "collides" with the free G-protein. 2/Pre-coupling, where stable receptor/G-protein complexes exist in the absence of agonist. Pre-coupling plays an important role in the kinetics of signal transduction. Odd-numbered muscarinic acetylcholine receptors preferentially couple to G(q/11), while even-numbered receptors prefer coupling to G(i/o). We analyzed the coupling status of the various subtypes of muscarinic receptors with preferential and non-preferential G-proteins. The magnitude of receptor-G-protein coupling was determined by the proportion of receptors existing in the agonist high-affinity binding conformation. Antibodies directed against the C-terminus of the α-subunits of the individual G-proteins were used to interfere with receptor-G-protein coupling. Effects of mutations and expression level on receptor-G-protein coupling were also investigated. Tested agonists displayed biphasic competition curves with the antagonist [(3)H]-N-methylscopolamine. Antibodies directed against the C-terminus of the α-subunits of the preferential G-protein decreased the proportion of high-affinity sites, and mutations at the receptor-G-protein interface abolished agonist high-affinity binding. In contrast, mutations that prevent receptor activation had no effect. Expression level of preferential G-proteins had no effect on pre-coupling to non-preferential G-proteins. Our data show that all subtypes of muscarinic receptors pre-couple with their preferential classes of G-proteins, but only M(1) and M(3) receptors also pre-couple with non-preferential G(i/o) G-proteins. Pre-coupling is not dependent on agonist efficacy nor on receptor activation. The ultimate mode of coupling is therefore dictated by a combination of the receptor subtype and the class of G-protein.  相似文献   

5.
The goal of this study was to functionally express the three G(q)-coupled muscarinic receptor subtypes, M(1), M(3) and M(5), in yeast (Saccharomyces cerevisiae). Transformation of yeast with expression constructs coding for the full-length receptors resulted in very low numbers of detectable muscarinic binding sites (B(max) < 5 fmol/mg). Strikingly, deletion of the central portion of the third intracellular loops of the M(1), M(3) and M(5) muscarinic receptors resulted in dramatic increases in B(max) values (53-214 fmol/mg). To monitor productive receptor/G-protein coupling, we used specifically engineered yeast strains that required agonist-stimulated receptor/G-protein coupling for cell growth. These studies showed that the shortened versions of the M(1), M(3) and M(5) receptors were unable to productively interact with the endogenous yeast G protein alpha-subunit, Gpa1p, or a Gpa1 mutant subunit that contained C-terminal mammalian Galpha(s) sequence. In contrast, all three receptors gained the ability to efficiently couple to a Gpa1/Galpha(q) hybrid subunit containing C-terminal mammalian Galpha(q) sequence, indicating that the M(1), M(3) and M(5) muscarinic receptors retained proper G-protein coupling selectivity in yeast. This is the first study to report the expression of muscarinic receptors in a coupling-competent form in yeast. The strategy described here, which involves structural modification of both receptors and co-expressed G proteins, should facilitate the functional expression of other classes of G protein-coupled receptors in yeast.  相似文献   

6.
Sphingosine 1-phosphate (S1P) is one of several bioactive phospholipids that exert profound mitogenic and morphogenic actions. Originally characterized as a second messenger, S1P is now recognized to achieve many of its effects through cell surface, G protein-coupled receptors. We used a subunit-selective [(35)S]GTPgammaS binding assay to investigate whether the variety of actions exerted through Edg-1, a recently identified receptor for S1P, might be achieved through multiple G proteins. We found, employing both Sf9 and HEK293 cells, that Edg-1 activates only members of the G(i) family, and not G(s), G(q), G(12), or G(13). We additionally established that Edg-1 activates G(i) in response not only to S1P but also sphingosylphosphorylcholine; no effects of lysophosphatidic acid through Edg-1 were evident. Our assays further revealed a receptor(s) for S1P endogenous to HEK293 cells that mediates activation of G(13) as well as G(i). Because several of the biological actions of S1P are assumed to proceed through the G(12/13) family, we tested whether Edg-3 and H218/Edg-5, two other receptors for S1P, might have a broader coupling profile than Edg-1. Indeed, Edg-3 and H218/Edg-5 communicate not only with G(i) but also with G(q) and G(13). These studies represent the first characterization of S1P receptor activity through G proteins directly and establish fundamental differences in coupling.  相似文献   

7.
Guo Y  Li M  Lu M  Wen Z  Huang Z 《Proteins》2006,65(1):55-60
Determining G-protein coupled receptors (GPCRs) coupling specificity is very important for further understanding the functions of receptors. A successful method in this area will benefit both basic research and drug discovery practice. Previously published methods rely on the transmembrane topology prediction at training step, even at prediction step. However, the transmembrane topology predicted by even the best algorithm is not of high accuracy. In this study, we developed a new method, autocross-covariance (ACC) transform based support vector machine (SVM), to predict coupling specificity between GPCRs and G-proteins. The primary amino acid sequences are translated into vectors based on the principal physicochemical properties of the amino acids and the data are transformed into a uniform matrix by applying ACC transform. SVMs for nonpromiscuous coupled GPCRs and promiscuous coupled GPCRs were trained and validated by jackknife test and the results thus obtained are very promising. All classifiers were also evaluated by the test datasets with good performance. Besides the high prediction accuracy, the most important feature of this method is that it does not require any transmembrane topology prediction at either training or prediction step but only the primary sequences of proteins. The results indicate that this relatively simple method is applicable. Academic users can freely download the prediction program at http://www.scucic.net/group/database/Service.asp.  相似文献   

8.
We have developed a comprehensive expressed sequence tag database search method and used it for the identification of new members of the G-protein coupled receptor superfamily. Our approach proved to be especially useful for the detection of expressed sequence tag sequences that do not encode conserved parts of a protein, making it an ideal tool for the identification of members of divergent protein families or of protein parts without conserved domain structures in the expressed sequence tag database. At least 14 of the expressed sequence tags found with this strategy are promising candidates for new putative G-protein coupled receptors. Here, we describe the sequence and expression analysis of five new members of this receptor superfamily, namely GPR84, GPR86, GPR87, GPR90 and GPR91. We also studied the genomic structure and chromosomal localization of the respective genes applying in silico methods. A cluster of six closely related G-protein coupled receptors was found on the human chromosome 3q24-3q25. It consists of four orphan receptors (GPR86, GPR87, GPR91, and H963), the purinergic receptor P2Y1, and the uridine 5'-diphosphoglucose receptor KIAA0001. It seems likely that these receptors evolved from a common ancestor and therefore might have related ligands. In conclusion, we describe a data mining procedure that proved to be useful for the identification and first characterization of new genes and is well applicable for other gene families.  相似文献   

9.
Most cells express more than one receptor plus degrading enzymes for adenine nucleotides or nucleosides, and cellular responses to purines are rarely compatible with the actions of single receptors. Therefore, these receptors are viewed as components of a combinatorial receptor web rather than self-dependent entities, but it remained unclear to what extent they can associate with each other to form signalling units. P2Y(1), P2Y(2), P2Y(12), P2Y(13), P2X(2), A(1), A(2A) receptors and NTPDase1 and -2 were expressed as fluorescent fusion proteins which were targeted to membranes and signalled like the unlabelled counterparts. When tested by FRET microscopy, all the G protein-coupled receptors proved able to form heterooligomers with each other, and P2Y(1), P2Y(12), P2Y(13), A(1), A(2A), and P2X(2) receptors also formed homooligomers. P2Y receptors did not associate with P2X, but G protein-coupled receptors formed heterooligomers with NTPDase1, but not NTPDase2. The specificity of prototypic interactions (P2Y(1)/P2Y(1), A(2A)/P2Y(1), A(2A)/P2Y(12)) was corroborated by FRET competition or co-immunoprecipitation. These results demonstrate that G protein-coupled purine receptors associate with each other and with NTPDase1 in a highly promiscuous manner. Thus, purinergic signalling is not only determined by the expression of receptors and enzymes but also by their direct interaction within a previously unrecognized multifarious membrane network.  相似文献   

10.
Somatostatin (SST) is a peptide hormone that acts through a family of heptahelical receptors belonging to the G-protein coupled receptor (GPCR) superfamily. There are five known SST receptor subtypes termed SSTR1–5 and all couple to Gαi/o G-proteins. It has been previously demonstrated that these receptors can form both homo- and heterodimers within their family or with other GPCR family members. Although agonist was demonstrated as a factor in modulating certain dimeric pairs, the molecular mechanism(s) underlying this regulation remains undetermined. Here, we demonstrate the coupling of G-protein as a contributing factor in the homo- and heterodimerisation of human (h) SSTR2 and SSTR5. When cells stably expressing hSSTR2 are pretreated with pertussis toxin (PTX), dissociation of hSSTR2 dimers occurs. Interestingly, although dimerisation of hSSTR5 was unaffected following PTX treatment, heterodimerisation between hSSTR2 and hSSTR5 is potentiated in the absence of receptor-stimulation. These results demonstrate the importance of G-protein in the maintenance and regulation of hSSTR dimers.  相似文献   

11.
gpDB is a publicly accessible, relational database, containing information about G-proteins, G-protein coupled receptors (GPCRs) and effectors, as well as information concerning known interactions between these molecules. The sequences are classified according to a hierarchy of different classes, families and subfamilies based on literature search. The main innovation besides the classification of G-proteins, GPCRs and effectors is the relational model of the database, describing the known coupling specificity of GPCRs to their respective alpha subunits of G-proteins, and also the specific interaction between G-proteins and their effectors, a unique feature not available in any other database. AVAILABILITY: http://bioinformatics.biol.uoa.gr/gpDB CONTACT: shamodr@biol.uoa.gr SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

12.
Chen S  Lin F  Xu M  Hwa J  Graham RM 《The EMBO journal》2000,19(16):4265-4271
alpha(1)-adrenergic receptors (alpha(1)-ARs) are members of the G-protein-coupled receptor (GPCR) superfamily and activate inositol phosphate (IP) turnover. We show that glycine and asparagine mutations of Phe303 in transmembrane segment VI (TMVI) of the alpha(1B)-AR, a highly conserved residue in GPCRs, although increasing agonist affinity, abolish agonist-activated IP signalling. Co-expression of the Phe303 mutants also inhibited (-)epinephrine-stimulated IP signalling by wild-type alpha(1B)-AR and other G(q)-coupled receptors, as well as IP signalling mediated by AlF(4)(-) stimulation of both wild-type G(q alpha) and a constitutively active mutant. The inability of the Phe303 mutants to signal is due to induction of a receptor conformation that dissociates G-protein binding from activation. As a result, the Phe303 mutants sequester G(q alpha) and stoichiometrically inhibit Gq signalling in a dominant-negative manner. We further show that both the enhanced basal and agonist-stimulated IP-signalling activity of the constitutively active alpha(1B)-AR mutants, C128F and A293E, are inhibited in the double mutants, C128F/F303G and A293E/F303G. Phe303, therefore, appears to be critically involved in coupling TMVI alpha-helical movement, a key step in receptor activation, to activation of the cognate G-protein.  相似文献   

13.
G-protein-coupled receptors (GPCRs) activate heterotrimeric G-proteins (G(i)-, G(s)-, G(q)-, or G(12)-like) to generate specific intracellular responses, depending on the receptor/G-protein coupling. The aim was to enable a majority of GPCRs to generate a predetermined output by signaling through a single G-protein-supported pathway. The authors focused on calcium responses as the output, then engineered Galpha(q) to promote promiscuous receptor interactions. Starting with a human Galpha(q) containing 5 Galpha(z) residues in the C-terminal receptor recognition domain (hGalpha(q/z5)), they evaluated agonist-stimulated calcium responses for 33 diverse GPCRs (G(i)-, G(s)-, and G(q)-coupled) and found 20 of 33 responders. In parallel, they tested Caenorhabditis elegans Galpha(q) containing 5 or 9 C-terminal Galpha(z) residues (cGalpha(q/z5), cGalpha(q/z9)). Signal detection was enhanced with cGalpha(q/z5) and cGalpha(q/z9) (yielding 25/33 and 26/33 responders, respectively). In a separate study of Galpha(s)-coupled receptors, the authors compared hGalpha(q/s5) versus hGalpha(q/s9), cGalpha(q/s9), andcGalphaq/s21 and observed optimal function with cGalpha(q/s9). Cotransfection of an engineered Galpha(q) "cocktail" (cGalpha(q/z5) plus cGalpha(q/s9)) provided a powerful and efficient screening platform. When the chimeras included N-terminal myristoylation sites (to promote membrane localization), calcium responses were sustained or improved, depending on the receptor. This approach toward a "universal functional assay" is particularly useful for orphan GPCRs whose signaling pathways are unknown.  相似文献   

14.
Adenosine is formed inside cells or on their surface, mostly by breakdown of adenine nucleotides. The formation of adenosine increases in different conditions of stress and distress. Adenosine acts on four G-protein coupled receptors: two of them, A(1) and A(3), are primarily coupled to G(i) family G proteins; and two of them, A(2A) and A(2B), are mostly coupled to G(s) like G proteins. These receptors are antagonized by xanthines including caffeine. Via these receptors it affects many cells and organs, usually having a cytoprotective function. Joel Linden recently grouped these protective effects into four general modes of action: increased oxygen supply/demand ratio, preconditioning, anti-inflammatory effects and stimulation of angiogenesis. This review will briefly summarize what is known and what is not in this regard. It is argued that drugs targeting adenosine receptors might be useful adjuncts in many therapeutic approaches.  相似文献   

15.
G(12)alpha/G(13)alpha transduces signals from G-protein-coupled receptors to stimulate growth-promoting pathways and the early response gene c-fos. Within the c-fos promoter lies a key regulatory site, the serum response element (SRE). Here we show a critical role for the tyrosine kinase PYK2 in muscarinic receptor type 1 and G(12)alpha/G(13)alpha signaling to an SRE reporter gene. A kinase-inactivate form of PYK2 (PYK2 KD) inhibits muscarinic receptor type 1 signaling to the SRE and PYK2 itself triggers SRE reporter gene activation through a RhoA-dependent pathway. Placing PYK2 downstream of G-protein activation but upstream of RhoA, the expression of PYK2 KD blocks the activation of an SRE reporter gene by GTPase-deficient forms of G(12)alpha or G(13)alpha but not by RhoA. The GTPase-deficient form of G(13)alpha triggers PYK2 kinase activity and PYK2 tyrosine phosphorylation, and co-expression of the RGS domain of p115 RhoGEF inhibits both responses. Finally, we show that in vivo G(13)alpha, although not G(12)alpha, readily associates with PYK2. Thus, G-protein-coupled receptors via G(13)alpha activation can use PYK2 to link to SRE-dependent gene expression.  相似文献   

16.
Wilson BA  Ho M 《The FEBS journal》2011,278(23):4616-4632
The mitogenic toxin from Pasteurella multocida (PMT) is a member of the dermonecrotic toxin family, which includes toxins from Bordetella, Escherichia coli and Yersinia. Members of the dermonecrotic toxin family modulate G-protein targets in host cells through selective deamidation and/or transglutamination of a critical active site Gln residue in the G-protein target, which results in the activation of intrinsic GTPase activity. Structural and biochemical data point to the uniqueness of PMT among these toxins in its structure and action. Whereas the other dermonecrotic toxins act on small Rho GTPases, PMT acts on the α subunits of heterotrimeric G(q) -, G(i) - and G(12/13) -protein families. To date, experimental evidence supports a model in which PMT potently stimulates various mitogenic and survival pathways through the activation of G(q) and G(12/13) signaling, ultimately leading to cellular proliferation, whilst strongly inhibiting pathways involved in cellular differentiation through the activation of G(i) signaling. The resulting cellular outcomes account for the global physiological effects observed during infection with toxinogenic P. multocida, and hint at potential long-term sequelae that may result from PMT exposure.  相似文献   

17.
Agonist activation of a subset of G protein coupled receptors (GPCRs) stimulates cell proliferation, mimicking the better known effects of tyrosine kinase growth factors. Cell survival or apoptosis is also regulated via pathways initiated by stimulation of these same GPCRs. This review focuses on aspects of signaling by the lysophospholipid mediators, lysophosphatidic acid (LPA), and sphingosine 1 phosphate (S1P), which make these agonists uniquely capable of modulating cell growth and survival. The general features of GPCR coupling to specific G proteins, downstream effectors and signaling cascades are first reviewed. GPCR coupling to G(i) and Ras/MAPK or to G(q) and phospholipase generated second messengers are insufficient to regulate cell proliferation while G(12/13)/Rho engagement provides additional complementary signals required for cell proliferation. Survival is best predicted by coupling to G(i) pathways that regulate PI3K and Akt, but other signals generated through different G protein pathways are also implicated. The unique ability of LPA and S1P to concomitantly stimulate G(i), G(q), and G(12/13) pathways, given the proper complement of expressed LPA or S1P receptors, allows these receptors to support cell survival and proliferation. In pathophysiological situations, e.g., vascular disease, cancer, brain injury, and inflammation, components of the signaling cascade downstream of lysophospholipid receptors, in particular those involving Ras or Rho, may be altered. In addition, up or downregulation of LPA or S1P receptor subtypes, altering their ratio, and increased availability of the lysophospholipid ligands at sites of injury or inflammation, likely contribute to disease and may be important targets for therapeutic intervention.  相似文献   

18.
19.
The T2Rs belong to a multi-gene family of G-protein-coupled receptors responsible for the detection of ingested bitter-tasting compounds. The T2Rs are conserved among mammals with the human and mouse gene families consisting of about 25 members. In the present study we address the signalling properties of human and mouse T2Rs using an in vitro reconstitution system in which both the ligands and G-proteins being assayed can be manipulated independently and quantitatively assessed. We confirm that the mT2R5, hT2R43 and hT2R47 receptors respond selectively to micromolar concentrations of cycloheximide, aristolochic acid and denatonium respectively. We also demonstrate that hT2R14 is a receptor for aristolochic acid and report the first characterization of the ligand specificities of hT2R7, which is a broadly tuned receptor responding to strychnine, quinacrine, chloroquine and papaverine. Using these defined ligand-receptor interactions, we assayed the ability of the ligand-activated T2Rs to catalyse GTP binding on divergent members of the G(alpha) family including three members of the G(alphai) subfamily (transducin, G(alphai1) and G(alphao)) as well as G(alphas) and G(alphaq). The T2Rs coupled with each of the three G(alphai) members tested. However, none of the T2Rs coupled to either G(alphas) or G(alphaq), suggesting the T2Rs signal primarily through G(alphai)-mediated signal transduction pathways. Furthermore, we observed different G-protein selectivities among the T2Rs with respect to both G(alphai) subunits and G(betagamma) dimers, suggesting that bitter taste is transduced by multiple G-proteins that may differ among the T2Rs.  相似文献   

20.
This work aimed to investigate the molecular mechanisms involved in the interaction of alpha2-adrenoceptors and adenosine A2A-receptor-mediated facilitation of noradrenaline release in rat tail artery, namely the type of G-protein involved in this effect and the step or steps where the signalling cascades triggered by alpha2-adrenoceptors and A2A-receptors interact. The selective adenosine A2A-receptor agonist 2-p-(2-carboxy ethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680; 100 nM) enhanced tritium overflow evoked by trains of 100 pulses at 5 Hz. This effect was abolished by the selective adenosine A2A-receptor antagonist 5-amino-7-(2-phenyl ethyl)-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo [1,5-c]pyrimidine (SCH 58261; 20 nM) and by yohimbine (1 microM). CGS 21680-mediated effects were also abolished by drugs that disrupted G(i/o)-protein coupling with receptors, PTX (2 microg/ml) or NEM (40 microM), by the anti-G(salpha) peptide (2 microg/ml) anti-G(betagamma) peptide (10 microg/ml) indicating coupling of A2A-receptors to G(salpha) and suggesting a crucial role for G(betagamma) subunits in the A(2A)-receptor-mediated enhancement of tritium overflow. Furthermore, phorbol 12-myristate 13-acetate (PMA; 1 microM) or forskolin (1 microM), direct activators of protein kinase C and of adenylyl cyclase, respectively, also enhanced tritium overflow. In addition, PMA-mediated effects were not observed in the presence of either yohimbine or PTX. Results indicate that facilitatory adenosine A2A-receptors couple to G(salpha) subunits which is essential, but not sufficient, for the release facilitation to occur, requiring the involvement of G(i/o)-protein coupling (it disappears after disruption of G(i/o)-protein coupling, PTX or NEM) and/or G(betagamma) subunits (anti-G(betagamma)). We propose a mechanism for the interaction in study suggesting group 2 AC isoforms as a plausible candidate for the interaction site, as these isoforms can integrate inputs from G(salpha) subunits (released after adenosine A2A-receptor activation; prime-activation), G(betagamma) subunits (released after activation of G(i/o)-protein coupled receptors) which can directly synergistically stimulate the prime-activated AC or indirectly via G(betagamma) activation of the PLC-PKC pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号