首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subunit G of photosystem I is a nuclear-encoded protein, predicted to form two transmembrane alpha-helices separated by a loop region. We use in vitro import assays to show that the positively charged loop domain faces the stroma, whilst the N- and C-termini most likely face the lumen. PSI-G constructs in which a His- or Strep-tag is placed at the C-terminus or in the loop region insert with the same topology as wild-type photosystem I subunit G (PSI-G). However, the presence of the tags in the loop make the membrane-inserted protein significantly more sensitive to trypsin, apparently by disrupting the interaction between the loop and the PSI core. Knock-out plants lacking PSI-G were transformed with constructs encoding the C-terminal and loop-tagged PSI-G proteins. Experiments on thylakoids from the transgenic lines show that the C-terminally tagged versions of PSI-G adopt the same topology as wild-type PSI-G, whereas the loop-tagged versions affect the sensitivity of the loop region to trypsin, thus confirming the in vitro observations. Furthermore, purification of PSI complexes from transgenic plants revealed that all the tagged versions of PSI-G are incorporated and retained in the PSI complex, although the C-terminally tagged variants of PSI-G were preferentially retained. This suggests that the loop region of PSI-G is important for proper integration into the PSI core. Our experiments demonstrate that it is possible to produce His- and Strep-tagged PSI in plants, and provide further evidence that the topology of membrane proteins is dictated by the distribution of positive charges, which resist translocation across membranes.  相似文献   

2.
Chinese hamster ovary (CHO) cells have been transfected with either a full-length cDNA encoding human angiotensin I-converting enzyme (kininase II; EC 3.4.15.1) (ACE) or a mutated cDNA, in which the last C-terminal 47 amino acids, including the putative transmembrane domain, are not translated. Cell lines expressing high levels of the wild-type ACE or the mutant were established. The cells transfected with the wild-type cDNA (CHO-ACE) express a membrane-bound ectoenzyme with an intracellular C terminus, as shown by indirect immunofluorescence using an antiserum (28A7) raised against a synthetic peptide corresponding to the deduced C terminus of ACE. This enzyme is structurally, immunologically, and enzymatically identical to human kidney ACE. In addition, CHO-ACE cells also produce a secreted form of the enzyme. Neither this secreted form nor the enzyme purified from human plasma is recognized by the antiserum 28A7, indicating that they undergo a truncation in the C-terminal region. On the other hand, the transfected cells expressing the C-terminally truncated mutant (CHO-ACE delta COOH) do not retain ACE in the plasma membrane, but secrete it into the medium. These results indicate that ACE is anchored to the plasma membrane by the predicted C-terminal transmembrane domain, and the secreted form is derived from the membrane-bound form by a post-translational proteolytic cleavage of the C-terminal region.  相似文献   

3.
A 5'-truncated PDE4A-cDNA corresponding to the amino acid positions 200-886 of the "full-length" sequence (Accession No. L20965) was generated from human leukocyte mRNA by RT-PCR. Several PDE4A constructs containing the catalytic region and differing in their degree of N- and/or C-terminal truncation (amino acid positions 200-886, 200-704, 342-886, and 342-704) were expressed in Escherichia coli to investigate the effect of truncations on purification characteristics, long-term stability, and aggregation. All peptides accumulated as inclusion bodies, necessitating refolding prior to purification by dye and metal chelate affinity chromatography. The constructs differed in long-term stability due to variable levels of protease contamination. The position of the His-tag also influenced the purification results. The best results were obtained with the N- and C-truncated form C-terminally His-tagged, appropriate quantities of which were obtained in pure form and was found to be stable against proteolysis at 4 degrees C for at least 6 weeks. The comparison of the molecular mass of the investigated PDE4A constructs obtained by SDS electrophoresis, size-exclusion chromatography, and analytical ultracentrifugation indicated that C-terminal truncated PDE4A forms dimers whereas PDE4A constructs with a complete C-terminus tend to form larger aggregates.  相似文献   

4.
Four chimeric human immunodeficiency virus type 1 (HIV-1) env genes were constructed which encoded the extracellular domain of either the wild-type or a cleavage-defective HIV-1 envelope glycoprotein (gp160) fused at one of two different positions in env to a C-terminal glycosyl-phosphatidylinositol (GPI) attachment signal from the mouse Thy-1.1 glycoprotein. All four of the constructs encoded glycoproteins that were efficiently expressed when Rev was supplied in trans, and the two cleavable forms were processed normally to gp120 and a chimeric "gp41." The chimeric glycoproteins, in contrast to the wild-type glycoprotein, could be cleaved from the surface of transfected cells by treatment with phosphatidylinositol-specific phospholipase C, indicating that they were anchored in the plasma membrane by a GPI moiety. These GPI-anchored glycoproteins were transported intracellularly at a rate only slightly lower than that of the full-length HIV-1 glycoprotein and were present on the cell surface in equivalent amounts. Nevertheless, all four glycoproteins were defective in mediating both cell-cell and virus-cell fusion as determined by syncytium formation in COS-1-HeLa-T4 cell mixtures and trans complementation of an env-defective HIV-1 genome.  相似文献   

5.
In most organisms, glutathione (GSH) is synthesized by the sequential action of distinct enzymes, gamma-glutamylcysteine synthetase (gamma-GCS) and GSH synthetase (GS). In Streptococcus agalactiae, GSH synthesis is catalyzed by a single enzyme, gamma-glutamylcysteine synthetase-glutathione synthetase (gamma-GCS-GS). The N-terminal sequence of gamma-GCS-GS is similar to Escherichia coli gamma-GCS, but the C-terminal sequence is an ATP-grasp domain more similar to d-Ala, d-Ala ligase than to any known GS. In the present studies, C-terminally and N-terminally truncated constructs were characterized in order to define the limits of the gamma-GCS and GS domains, respectively. Although WT gamma-GCS-GS is nearly uninhibited by GSH (K(i) approximately 140 mM), shorter gamma-GCS domain constructs were unexpectedly found to be strongly inhibited (K(i) approximately 15 mM), reproducing a physiologically important regulation seen in monofunctional gamma-GCS enzymes. Because studies with E. coli gamma-GCS implicate a flexible loop region in GSH binding, chimeras of S. agalactiae gamma-GCS-GS were made containing gamma-GCS domain flexible loop sequences from Enterococcus faecalis and Pasteurella multocida gamma-GCS-GS, isoforms that are inhibited by GSH. Inhibition remained S. agalactiae-like (i.e., very weak). C-Terminal constructs of gamma-GCS-GS have GS activity (0.01-0.04% of WT), but proper folding and significant GS activity required a covalently linked gamma-GCS domain. In addition, site-directed mutants in the middle region of the gamma-GCS-GS sequence established that GS activity depends on residues in a region that is also part of the gamma-GCS domain. Our results provide new insights into the structure of gamma-GCS-GS and suggest gamma-GCS-GS evolved from a monomeric gamma-GCS that became C-terminally fused to a multimeric ATP-grasp protein.  相似文献   

6.
Human immunodeficiency virus type 1 (HIV-1) can readily accept envelope (Env) glycoproteins from distantly related retroviruses. However, we previously showed that the HIV-1 Env glycoprotein complex is excluded even from particles formed by the Gag proteins of another lentivirus, visna virus, unless the matrix domain of the visna virus Gag polyprotein is replaced by that of HIV-1. We also showed that the integrity of the HIV-1 matrix domain is critical for the incorporation of wild-type HIV-1 Env protein but not for the incorporation of a truncated form which lacks the 144 C-terminal amino acids of the cytoplasmic domain of the transmembrane glycoprotein. We report here that the C-terminal truncation of the transmembrane glycoprotein also allows the efficient incorporation of HIV-1 Env proteins into viral particles formed by the Gag proteins of the widely divergent Moloney murine leukemia virus (Mo-MLV). Additionally, pseudotyping of a Mo-MLV-based vector with the truncated rather than the full-length HIV-1 Env allowed efficient transduction of human CD4+ cells. These results establish that Mo-MLV-based vectors can be used to target cells susceptible to infection by HIV-1.  相似文献   

7.
The Oca family is a novel class of autotransporter-adhesins with highest structural similarity in their C-terminal transmembrane region, which supposedly builds a beta-barrel pore in the outer membrane (OM). The prototype of the Oca family is YadA, an adhesin of Yersinia enterocolitica and Yersinia pseudotuberculosis. YadA forms a homotrimeric lollipop-like structure on the bacterial surface. The C-terminal regions of three YadA monomers form a barrel in the OM and translocate the trimeric N-terminal passenger domain, consisting of stalk, neck, and head region to the exterior. To elucidate the structural and functional role of the C-terminal translocator domain (TLD) and to assess its promiscuous capability with respect to transport of related passenger domains, we constructed chimeric YadA proteins, which consist of the N-terminal YadA passenger domain and C-terminal TLDs of Oca family members UspA1 (Moraxella catarrhalis), EibA (Escherichia coli), and Hia (Haemophilus influenzae). These constructs were expressed in Y. enterocolitica and compared for OM localization, surface exposure, oligomerization, adhesion properties, serum resistance, and mouse virulence. We demonstrate that all chimeric YadA proteins translocated the YadA passenger domain across the OM. Y. enterocolitica strains producing YadA chimeras or wild-type YadA showed comparable binding to collagen and epithelial cells. However, strains producing YadA chimeras were attenuated in serum resistance and mouse virulence. These results demonstrate for the first time that TLDs of Oca proteins of different origin are efficient translocators of the YadA passenger domain and that the cognate TLD of YadA is essential for bacterial survival in human serum and mouse virulence.  相似文献   

8.
Previous studies have demonstrated dimerization of intercellular adhesion molecule-1 (ICAM-1) on the cell surface and suggested a role for immunoglobulin superfamily domain 5 and/or the transmembrane domain in mediating such dimerization. Crystallization studies suggest that domain 1 may also mediate dimerization. ICAM-1 binds through domain 1 to the I domain of the integrin alpha(L)beta(2) (lymphocyte function-associated antigen 1). Soluble C-terminally dimerized ICAM-1 was made by replacing the transmembrane and cytoplasmic domains with an alpha-helical coiled coil. Electron microscopy revealed C-terminal dimers that were straight, slightly bent, and sometimes U-shaped. A small number of apparently closed ring-like dimers and W-shaped tetramers were found. To capture ICAM-1 dimerized at the crystallographically defined dimer interface in domain 1, cysteines were introduced into this interface. Several of these mutations resulted in the formation of soluble disulfide-bonded ICAM-1 dimers (domain 1 dimers). Combining a domain 1 cysteine mutation with the C-terminal dimers (domain 1/C-terminal dimers) resulted in significant amounts of both closed ring-like dimers and W-shaped tetramers. Surface plasmon resonance studies showed that all of the dimeric forms of ICAM-1 (domain 1, C-terminal, and domain 1/C-terminal dimers) bound similarly to the integrin alpha(L)beta(2) I domain, with affinities approximately 1.5--3-fold greater than that of monomeric ICAM-1. These studies demonstrate that ICAM-1 can form at least three different topologies and that dimerization at domain 1 does not interfere with binding in domain 1 to alpha(L)beta(2).  相似文献   

9.
Stromelysin-1 is a member of a tissue metalloproteinase family whose members are all capable of degrading extracellular matrix components. A truncated form of human fibroblast prostromelysin 1 lacking the C-terminal, hemopexin-like domain has been expressed in Escherichia coli and purified to homogeneity. Treatment of this short form of prostromelysin with (aminophenyl)mercuric acetate resulted in activation and loss of the propeptide in a manner identical with the wild-type, full-length protein. Kinetic comparisons using Nle11-substance P as a substrate showed that the wild-type stromelysin and the truncated form of the enzyme had similar kcat and Km values. Likewise, both enzymes displayed similar Ki values for a hydroxamate-containing peptide inhibitor. Taken together, these results indicate that the C-terminal portion of stromelysin is not required for proper folding of the catalytic domain, maintenance of the enzyme in a latent form, activation with an organomercurial, cleavage of a peptide substrate, or interaction with an inhibitor. Moreover, the active short form of stromelysin displayed a reduction in the C-terminal heterogeneity, a characteristic degradation of the full-length stromelysin, and thereby provides a more suitable protein for future structural studies.  相似文献   

10.
The human immunodeficiency virus-1 (HIV-1) envelope glycoprotein is composed of a soluble glycopolypeptide gp120 and a transmembrane glycopolypeptide gp41. These subunits form non-covalently linked oligomers on the surface of infected cells, virions and cells transfected with the complete env gene. Two length variants of the extracellular domain of gp41 (aa 21-166 and aa 39-166), that both lack the N-terminal fusion peptide and the C-terminal membrane anchor and cytoplasmic domain, have been expressed in insect cells to yield soluble oligomeric gp41 proteins. Oligomerization was confirmed by chemical cross-linking and gel filtration. Electron microscopy and circular dichroism measurements indicate a rod-like molecule with a high alpha-helical content and a high melting temperature (78 degrees C). The binding of monoclonal antibody Fab fragments dramatically increased the solubility of both gp41 constructs. We propose that gp41 folds into its membrane fusion-active conformation, when expressed alone.  相似文献   

11.
The efficiencies of different procedures for purification of the capsid protein (CA) of Mason-Pfizer monkey virus are compared. Plasmids encoding both wild-type CA and two C-terminally modified sequences of CA suitable for affinity chromatography purification were prepared. CA was expressed in Escherichia coli (i) as a wild-type protein, (ii) C-terminally extended with a six-histidine tag (CA 6His), and (iii) as a protein containing a C-terminal fusion to a viral protease cleavage site followed by a six-histidine tag (CA 6aa6His). Electron microscopy was used for comparison of the resulting proteins, as CA is a structural protein with no enzymatic activity. We have found that these C-terminal fusions dramatically influenced the properties and morphology of structures formed by CA protein in E. coli. The formation of amorphous aggregates of CA was abolished and CA 6His and CA 6aa6His proteins formed organized structures. CA and CA 6aa6His accumulated in bacteria in inclusion bodies as insoluble proteins, CA 6His was found in a soluble form. Both six-histidine-tagged proteins were purified using affinity chromatography under either native (CA 6His) or denaturing (CA 6aa6His) conditions. CA protein was purified under denaturing conditions using gel-filtration chromatography followed by refolding. All proteins were obtained at a purity >98%. Both aforementioned C-terminal extensions led to dramatic changes in behavior of the products and they also affected the tendency to form organized structures within E. coli. We show here that the widely used histidine anchor may significantly alter the properties of the protein of interest.  相似文献   

12.
Lysosomal beta-D-galactosidase (beta-gal), the enzyme deficient in the autosomal recessive disorders G(M1) gangliosidosis and Morquio B, is synthesized as an 85-kDa precursor that is C-terminally processed into a 64-66-kDa mature form. The released approximately 20-kDa proteolytic fragment was thought to be degraded. We now present evidence that it remains associated to the 64-kDa chain after partial proteolysis of the precursor. This polypeptide was found to copurify with beta-gal and protective protein/cathepsin A from mouse liver and Madin-Darby bovine kidney cells and was immunoprecipitated from human fibroblasts but not from fibroblasts of a G(M1) gangliosidosis and a galactosialidosis patient. Uptake of wild-type protective protein/cathepsin A by galactosialidosis fibroblasts resulted in a significant increase of mature and active beta-gal and its C-terminal fragment. Expression in COS-1 cells of mutant cDNAs encoding either the N-terminal or the C-terminal domain of beta-gal resulted in the synthesis of correctly sized polypeptides without catalytic activity. Only when co-expressed, the two subunits associate and become catalytically active. Our results suggest that the C terminus of beta-gal is an essential domain of the catalytically active enzyme and provide evidence that lysosomal beta-galactosidase is a two-subunit molecule. These data may give new significance to mutations in G(M1) gangliosidosis patients found in the C-terminal part of the molecule.  相似文献   

13.
We have previously proposed a model for the fold of the N-terminal domain of the small, regulatory subunit (SSU) of acetohydroxyacid synthase isozyme III. The fold is an alpha-beta sandwich with betaalphabetabetaalphabeta topology, structurally homologous to the C-terminal regulatory domain of 3-phosphoglycerate dehydrogenase. We suggested that the N-terminal domains of a pair of SSUs interact in the holoenzyme to form two binding sites for the feedback inhibitor valine in the interface between them. The model was supported by mutational analysis and other evidence. We have now examined the role of the C-terminal portion of the SSU by construction of truncated polypeptides (lacking 35, 48, 80, 95, or 112 amino acid residues from the C terminus) and examining the properties of holoenzymes reconstituted using these constructs. The Delta35, Delta48, and Delta80 constructs all lead to essentially complete activation of the catalytic subunits. The Delta80 construct, corresponding to the putative N-terminal domain, has the highest level of affinity for the catalytic subunits and leads to a reconstituted enzyme with k(cat)/K(M) about twice that of the wild-type enzyme. On the other hand, none of these constructs binds valine or leads to a valine-sensitive enzyme on reconstitution. The enzyme reconstituted with the Delta80 construct does not bind valine, either. The N-terminal portion (about 80 amino acid residues) of the SSU is thus necessary and sufficient for recognition and activation of the catalytic subunits, but the C-terminal half of the SSU is required for valine binding and response. We suggest that the C-terminal region of the SSU contributes to monomer-monomer interactions, and provide additional experimental evidence for this suggestion.  相似文献   

14.
B Crise  A Ruusala  P Zagouras  A Shaw    J K Rose 《Journal of virology》1989,63(12):5328-5333
The vesicular stomatitis virus glycoprotein forms noncovalently linked trimers in the endoplasmic reticulum before being transported to the Golgi apparatus. The experiments reported here were designed to determine if the extracellular domain of the glycoprotein contains structural information sufficient to direct trimer formation. To accomplish this, we generated a construct encoding G protein with the normal transmembrane and anchor sequences replaced with the sequence encoding 53 C-terminal amino acids from the Thy-1.1 glycoprotein. We show here that these sequences were able to specify glycolipid addition to the truncated G protein, probably after cleavage of 31 amino acids derived from Thy-1.1. The glycolipid-anchored G protein formed trimers and was expressed on the cell surface in a form that could be cleaved by phosphoinositol-specific phospholipase C. However, the rate of transport was reduced, compared with that of wild-type G protein. A second form of the G protein was generated by deletion of only the transmembrane and cytoplasmic domains. This mutant protein also formed trimers with relatively high efficiency and was secreted slowly from cells.  相似文献   

15.
The C-terminal phosphorylation domain of the epidermal growth factor receptor is believed to regulate protein kinase activity as well as mediate the assembly of signal transduction complexes. The structure and dynamics of this proposed autoregulatory domain were examined by labeling the extreme C terminus of the EGFR intracellular domain (ICD) with an extrinsic fluorophore. Fluorescence anisotropy decay analysis of the nonphosphorylated EGFR-ICD yielded two rotational correlation times: a longer time, consistent with the global rotational motion of a 60- to 70-kDa protein with an elongated globular conformation, and a shorter time, presumably contributed by segmental motion near the fluorophore. A C-terminally truncated form of EGFR-ICD yielded a slow component consistent with the rotational motion of the 38-kDa kinase core. These findings suggested a structural arrangement of the EGFR-ICD in which the C-terminal phosphorylation domain interacts with the kinase core to move as an extended structure. A marked reduction in the larger correlation time of EGFR-ICD was observed upon its autophosphorylation. This dynamic component was faster than predicted for the globular motion of the 62-kDa EGFR-ICD, suggesting an increase in the mobility of the C-terminal domain and a likely displacement of this domain from the kinase core. The interaction between the SH2 domain of c-Src and the phosphorylated EGFR C-terminal domain was shown to impede its mobility. Circular dichroism spectroscopy indicated that the EGFR C-terminal domain possessed a significant level of secondary structure in the form of alpha-helices and beta-sheets, with a marginal change in beta-sheet content occurring upon phosphorylation.  相似文献   

16.
We have expressed and characterized the severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein in cDNA-transfected mammalian cells. The full-length spike protein (S) was newly synthesized as an endoglycosidase H (endo H)-sensitive glycoprotein (gp170) that is further modified into an endo H-resistant glycoprotein (gp180) in the Golgi apparatus. No substantial proteolytic cleavage of S was observed, suggesting that S is not processed into head (S1) and stalk (S2) domains as observed for certain other coronaviruses. While the expressed full-length S glycoprotein was exclusively cell associated, a truncation of S by excluding the C-terminal transmembrane and cytoplasmic tail domains resulted in the expression of an endoplasmic reticulum-localized glycoprotein (gp160) as well as a Golgi-specific form (gp170) which was ultimately secreted into the cell culture medium. Chemical cross-linking, thermal denaturation, and size fractionation analyses suggested that the full-length S glycoprotein of SARS-CoV forms a higher order structure of approximately 500 kDa, which is consistent with it being an S homotrimer. The latter was also observed in purified virions. The intracellular form of the C-terminally truncated S protein (but not the secreted form) also forms trimers, but with much less efficiency than full-length S. Deglycosylation of the full-length homotrimer with peptide N-glycosidase-F under native conditions abolished recognition of the protein by virus-neutralizing antisera raised against purified virions, suggesting the importance of the carbohydrate in the correct folding of the S protein. These data should aid in the design of recombinant vaccine antigens to prevent the spread of this emerging pathogen.  相似文献   

17.
Patients with the autosomal dominant form of Emery-Dreifuss muscular dystrophy (EDMD) or familial partial lipodystrophy (FPLD) have specific mutations in the lamin A gene. Three such point mutations, G465D (FPLD), R482L, (FPLD), or R527P (EDMD), were introduced by site-specific mutagenesis in the C-terminal tail domain of a FLAG-tagged full-length lamin A construct. HeLa cells were transfected with mutant and wild-type constructs. Lamin A accumulated in nuclear aggregates and the number of cells with aggregates increased with time after transfection. At 72 h post transfection 60-80% of cells transfected with the mutant lamin A constructs had aggregates, while only 35% of the cells transfected with wild-type lamin A revealed aggregates. Mutant transfected cells expressed 10-24x, and wild-type transfected cells 20x, the normal levels of lamin A. Lamins C, B1 and B2, Nup153, LAP2, and emerin were recruited into aggregates, resulting in a decrease of these proteins at the nuclear rim. Aggregates were also characterized by electron microscopy and found to be preferentially associated with the inner nuclear membrane. Aggregates from mutant constructs were larger than those formed by the wild-type constructs, both in immunofluorescence and electron microscopy. The combined results suggest that aggregate formation is in part due to overexpression, but that there are also mutant-specific effects.  相似文献   

18.
UvrD is an SF1 family helicase involved in DNA repair that is widely conserved in bacteria. Mycobacterium tuberculosis has two annotated UvrD homologues; here we investigate the role of UvrD2. The uvrD2 gene at its native locus could be knocked out only in the presence of a second copy of the gene, demonstrating that uvrD2 is essential. Analysis of the putative protein domain structure of UvrD2 shows a distinctive domain architecture, with an extended C terminus containing an HRDC domain normally found in SF2 family helicases and a linking domain carrying a tetracysteine motif. Truncated constructs lacking the C-terminal domains of UvrD2 were able to compensate for the loss of the chromosomal copy, showing that these C-terminal domains are not essential. Although UvrD2 is a functional helicase, a mutant form of the protein lacking helicase activity was able to permit deletion of uvrD2 at its native locus. However, a mutant protein unable to hydrolyze ATP or translocate along DNA was not able to compensate for lack of the wild-type protein. Therefore, we concluded that the essential role played by UvrD2 is unlikely to involve its DNA unwinding activity and is more likely to involve DNA translocation and, possibly, protein displacement.  相似文献   

19.
Isogawa Y  Kon T  Inoue T  Ohkura R  Yamakawa H  Ohara O  Sutoh K 《Biochemistry》2005,44(16):6190-6196
Myosin XVIII is the recently identified 18th class of myosins, and its members are composed of a unique N-terminal domain, a motor domain with an unusual sequence around the ATPase site, one IQ motif, a segmented coiled-coil region for dimerization, and a C-terminal globular tail. To gain insight into the functions of this unique myosin, we characterized its human homologue, MYO18A, focusing on the functional roles of the characteristic N-terminal domain that contains a PDZ module known to mediate protein-protein interaction. GFP-tagged full-length and C-terminally truncated MYO18A molecules that were expressed in HeLa cells exhibited colocalization with actin filaments. Chemical cross-linking of these molecules showed that they form stable dimers as expected from their putative coiled-coil tails. Cosedimentation of the various types of truncated MYO18A constructs with actin filaments indicated the presence of an ATP-insensitive actin-binding site in the N-terminal domain. Further studies on truncated constructs of the N-terminal domain indicated that this actin-binding site is located outside the PDZ module, but within the middle region of this domain, which does not show any homology with the known actin-binding motifs. These results imply that this dimeric myosin might stably cross-link actin filaments by two ATP-insensitive actin-binding sites at the N-terminal domains for higher-order organization of the actin cytoskeleton.  相似文献   

20.
Previous results have indicated that incorporation of surface glycoprotein into retroviral particles is not a specific process and that many heterologous viral and cellular glycoproteins can be incorporated as long as they do not have long cytoplasmic C-terminal regions which were presumed to be sterically inhibitory. In this study, this concept has been directly examined by analyzing the incorporation of the wild-type human epidermal growth factor receptor (Wt-EGFR) and of a C-terminally truncated mutant of Wt-EGFR (Tr-EGFR) into human immunodeficiency virus (HIV)-like particles. Incorporation was directly analyzed at the protein level and by immunogold labelling of enriched HIV-like particles. In agreement with the above concept, Tr-EGFR, with only 7 C-terminal amino acids (aa), was efficiently incorporated into HIV-like particles. Incorporation of the Wt-EGFR species, with 542 C-terminal cytoplasmic aa, was reduced by a factor of about 5 in comparison to that of the Tr-EGFR species. However, the Wt-EGFR species was still very significantly present in the HIV-like particles. A series of control experiments verified that this represents genuine incorporation of Wt-EGFR into the membrane of HIV-like particles. These observations allow further speculation as to the processes governing glycoprotein incorporation into retroviral particles and indicate that the internal virus structure of HIV (in particular the matrix layer [MA]) can accommodate much larger heterologous cytoplasmic domains in incorporated glycoproteins than previously assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号