首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of 5-amino-4-imidazole-carboximide (AI-CA)-riboside on different pathways of purine metabolism (biosynthesis de novo, salvage pathways, adenosine metabolism, ATP catabolism) was studied in human B lymphoblasts (WI-L2). AICA-Riboside markedly decreased intracellular levels of 5-phosphoribosyl-1-pyrophosphate and in consequence affected purine biosynthesis de novo and purine salvage pathways. AICA-riboside inhibited incorporation of glycine into purine nucleotides, but when formate was used as the precursor of purine biosynthesis de novo, a biphasic effect was observed. The incorporation of formate into purine nucleotides was increased by AICA-riboside at concentrations up to 2 mM but decreased at higher concentrations. Salvage of the purine bases adenine, hypoxanthine, and guanine was markedly inhibited and utilization of extracellular adenosine in B lymphoblasts was reduced by AICA-riboside. AICA-riboside increased ribose 1-phosphate concentrations and increased degradation of prelabeled ATP. No effect on the intracellular levels of orthophosphate was found. Proliferation of WI-L2 lymphoblasts was only slightly affected at concentrations of AICA-riboside below 500 microM but markedly inhibited by higher concentrations.  相似文献   

2.
Rat livers preserved in University of Wisconsin (UW) solution for 24 h were compared with those preserved in Euro-Collins (EC) solution before and after liver transplantation using an immunohistochemical method. Tissue ATP and total tissue adenine nucleotide (TAN) were measured using HPLC. The levels of TAN in the UW group or the EC group were significantly low compared with the control group (no preservation) after 24-h storage. In the EC group, the levels of tissue adenine nucleotides (TAN) decreased 1 h after reperfusion and never reached control levels. In the UW group, the levels of TAN increased a little 1 h after reperfusion and increased more 3 h after reperfusion. After 24-h preservation, the expression of factor VIII-related antigen (FRA) in endothelial cells of central veins was weak in the EC group; in the UW group, FRA was clearly detected in these cells. After reperfusion, although severe endothelial cell damage to the central veins and numerous FRA-positive substances were observed in EC group, endothelial cells of central veins retained their normal structure and FRA-positive substances were rarely noted in the UW group. In both groups, no endothelial changes were detected in portal veins. From these results, it is concluded that UW solution prevents endothelial cell damage and microcirculatory injury in zone III during the preservation period resulting in prevention of initial graft nonfunction. Also, measurement of the TAN level after reperfusion is useful to predict the function of the graft.  相似文献   

3.
Mononucleotide Metabolism in the Rat Brain After Transient Ischemia   总被引:3,自引:2,他引:1  
Nucleotide metabolism was studied in rats during and following the induction of 10 min of forebrain ischemia (four-vessel occlusion model). Purine and pyrimidine nucleotides, nucleotides, and bases in forebrain extracts were quantitated by HPLC with an ultraviolet detector. Ischemia resulted in a severe reduction in the concentration of nucleoside triphosphates (ATP, GTP, UTP, and CTP) and an increase in the concentration of AMP, IMP, adenosine, inosine, hypoxanthine, and guanosine. During the recovery period, both the phosphocreatine level and adenylate energy charge were rapidly and completely restored to the normal range. ATP was only 78% of the control value at 180 min after ischemic reperfusion. Levels of nucleosides and bases were elevated during ischemia but decreased to values close to those of control animals following recirculation. Both the decrease in the adenine nucleotide pool and the incomplete ATP recovery were caused by insufficient reutilization of hypoxanthine via the purine salvage system. The content of cyclic AMP, which transiently accumulated during the early recirculation period, returned to the control level, paralleling the decrease of adenosine concentration, which suggested that adenylate cyclase activity during reperfusion is modulated by adenosine A2 receptors. The recovery of CTP was slow but greater than that of ATP, GTP, and UTP. The GTP/GDP ratio was higher than that of the control animals following recirculation.  相似文献   

4.
The regulation of the purine metabolism of the rat liver is studied on the basis of a mathematical model which comprises rate laws and kinetic constants of all physiologically relevant reactions. The computed stationary and time-dependent concentrations are in good accordance with experimental data obtained in the ischaemic rat liver and in isolated hepatocytes. In particular, model-based simulations of the adenine nucleotide metabolism have been performed for situations where ATP-deficient states of the cell (hypoxia, anoxia or ischaemia) of various length are followed by onset of ATP production (reoxygenation). These simulations confirm the experimentally observed incomplete recovery of ATP and of the total pool of adenine nucleotides within a few hours of reoxygenation after long-term ATP depletion. Therefore, it can be concluded that this phenomenon is an intrinsic regulatory property of the purine metabolism and not necessarily due to some irreversible changes in the activity of the enzymes involved.  相似文献   

5.
Purine metabolism by intracellular Chlamydia psittaci.   总被引:1,自引:0,他引:1       下载免费PDF全文
Purine metabolism was studied in the obligate intracellular bacterium Chlamydia psittaci AA Mp in the wild type and a variety of mutant host cell lines with well-defined deficiencies in purine metabolism. C. psittaci AA Mp cannot synthesize purines de novo, as assessed by its inability to incorporate exogenous glycine into nucleic acid purines. C. psittaci AA Mp can take ATP and GTP, but not dATP or dGTP, directly from the host cell. Exogenous hypoxanthine and inosine were not utilized by the parasite. In contrast, exogenous adenine, adenosine, and guanine were directly salvaged by C. psittaci AA Mp. Crude extract prepared from highly purified C. psittaci AA Mp reticulate bodies contained adenine and guanine but no hypoxanthine phosphoribosyltransferase activity. Adenosine kinase activity was detected, but guanosine kinase activity was not. There was no competition for incorporation into nucleic acid between adenine and guanine, and high-performance liquid chromatography profiles of radiolabelled nucleic acid nucleobases indicated that adenine, adenosine, and deoxyadenosine were incorporated only into adenine and that guanine, guanosine, and deoxyguanosine were incorporated only into guanine. Thus, there is no interconversion of nucleotides. Deoxyadenosine and deoxyguanosine were cleaved to adenine and guanine before being utilized, and purine (deoxy)nucleoside phosphorylase activity was present in reticulate body extract.  相似文献   

6.
Regional changes in adenine nucleotides in the rat brain were studied after 1 h of ischemia produced by the embolization method. The animals were divided into three groups according to neurological symptoms: sham-operation group, group A (hemiparesis only), and group B (hemiparesis with unconsciousness). Marked ATP depletion was detected in the hippocampus on the embolized side and extended to the other regions on the same side in group B. The results suggest that this damage in regional energy metabolism arises from regional reduction in blood flow and/or tissue vulnerability. ATP levels in the hypothalamus, hippocampus, and striatum on the opposite side of embolization decreased markedly in group B, and may be caused by extension of brain edema or diaschisis.  相似文献   

7.
Suspensions enriched in isolated rabbit proximal tubules were subjected to varying degrees of oxygen deprivation-induced injury by incubating them under hypoxic conditions at pH 7.4 or pH 6.6 or under high density pelleted conditions and adenine nucleotide degradation was characterized. The major metabolite was hypoxanthine. Its levels increased with the extent of irreversible injury. It was not further degraded or salvaged. Recovery of cell ATP during reoxygenation was predominantly from the remaining cell nucleotides. Allopurinol did not alter the pattern of purine metabolism or the extent of cell injury. These observations provide information on the intrinsic purine metabolic capacity of renal tubule cells during oxygen deprivation which is relevant to understanding both the salvage mechanisms available in these cells as well as the contribution of purine metabolism to the pathogenesis of oxygen deprivation-induced tubule cell injury.  相似文献   

8.
The metabolism of adenine and guanine, relating to the biosynthesis of caffeine, in excised shoot tips of tea was studied with micromolar amounts of adenine-[8-14C] or guanine-[8-14C]. Among the presumed precursors of caffeine biosynthesis, adenine was the most effective, whereas guanine was the least effective. After administration of a ‘pulse’ of adenine-[8-14C], almost all of the adenine-[14C] supplied disappeared by 30 hr, and 14C-labelled caffeine and RNA purine nucleotide (AMP and GMP) synthesis increased throughout the experimental period, whereas the radioactivities of free purine nucleotides, 7-methylxanthine and theobromine increased during the first 10 hr incubation period, followed by a steady decrease. By contrast, more than 45% of the guanine-[8-14C] supplied remained unchanged even after a 120 hr period. The main products of guanine-[8-14C] metabolism in tea shoot tips were guanine nucleotides, theobromine, caffeine and the GMP of RNA. The results support the hypothesis that the purine nucleotides are synthesized from adenine and guanine via the pathway of purine salvage. Adenylate is readily converted into other purine nucleotides, whereas the conversion rate of guanylate into other purine nucleotides is very low.The results also support the view that 7-methylxanthine and theobromine are precursors of caffeine. For the origin of the purine ring in caffeine, purine nucleotides in the nucleotide pool rather than in nucleic acids are suggested.  相似文献   

9.
This study investigated whether dazoxiben, a thromboxane synthesis inhibitor, could reverse regional contractile dysfunction and protect against adenine nucleotide loss in the "stunned myocardium". Hearts from anesthetized dogs were "stunned" by 15 min of left anterior descending coronary artery occlusion followed by 3 hr of reperfusion. Left ventricular segment shortening (%SS) and regional myocardial blood flow (RMBF) were measured by sonomicrometry and the radioactive microsphere technique, respectively. Local coronary venous blood was withdrawn and thromboxane A2 and prostacyclin measured by radioimmunoassay. Transmural biopsies from the reperfused and nonischemic areas were taken at 3 hr following reperfusion for tissue metabolite analysis. During ischemia, %SS, RMBF and area at risk were decreased to similar levels in both control and dazoxiben-treated hearts indicating equivalent degrees of flow deprivation. During reperfusion, %SS recovered only partially and was not significantly improved by dazoxiben. Dazoxiben augmented peak prostacyclin production (123 +/- 31% vs. 292 +/- 49% of preocclusion values) following reperfusion, while it completely blocked thromboxane A2 production. Dazoxiben attenuated the decline in endocardial ATP (69 +/- 5% vs. 92 +/- 9% normalized to the nonischemic zone) and total adenine nucleotides. The results indicate that dazoxiben may elicit a cardioprotective effect on energy metabolism in the reperfused heart, but this is dissociated from any improvement in regional contractile function.  相似文献   

10.
The predominance of the adenosine triphosphate/adenosine diphosphate (ATP/ADP) couple in cellular phosphorylation reactions, including those that form the basis for cellular energy metabolism, cannot be explained on thermodynamic grounds since a variety of "high energy phosphate" compounds (including ADP itself) found in the cell would, based on thermodynamic considerations, be at least as effective as ATP in serving as a phosphoryl donor. How then did present-day organisms come to rely on the ATP/ADP couple as the principal mediator of phosphorylation reactions? The early appearance of adenine compounds in the prebiotic environment is suggested by experiments indicating that, relative to other purine or pyridimine compounds, adenine derivatives are preferentially synthesized under simulated prebiotic conditions (Ponnamperuma et al., 1963). In addition to the roles of adenine nucleotides in phosphorylation reactions, other adenine derivatives (e.g. Coenzyme A, flavin adenine dinucleotide, puridine nucleotides) are employed in a variety of metabolic roles. The principal function of the adenine moiety in these latter cases is in the binding of these derivatives to the relevant enzyme. The capability for binding of the adenine moiety appears to have arisen early in evolution and been exploited in a multitude of contexts, a suggestion consistent with observed similarities between the binding sites of several enzymes employing adenine derivatives as substrate. The early availability of suitable adenine compounds in the biosphere and development of complementary binding sites on cellular proteins, coupled with the expected advantages in having a limited number of metabolites as central mediators of endergonic and exergonic metabolism could readily have led to the observed pre-eminence of adenine nucleotides in cellular energy metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effects of an adenosine deaminase inhibitor (deoxycoformycin, 500 μg/kg) and of an inhibitor of nucleoside transport (propentofylline, 10 mg/kg) on adenosine and adenine nucleotide levels in the ischemic rat brain were investigated. The brains of the rats were microwaved before, at the end of a 20 min period of cerebral ischemia (4 vessel occlusion+hypotension), or after 5, 10, 45, and 90 min of reperfusion. Deoxycoformycin increased brain adenosine levels during both ischemia and the initial phases of reperfusion. AMP levels were elevated during ischemia and after 5 min of reperfusion. ATP levels were elevated above those in the non-treated animals after 10 and 45 min of reperfusion. ADP levels were elevated above the non-drug controls at 90 min. These increases in ATP, ADP and AMP resulted in significant increases in total adenylates during ischemia, and after 10 min and 90 min of reperfusion. Propentofylline administration resulted in enhanced AMP levels during ischemia but did not alter adenosine or adenine nucleotide levels during reperfusion in comparison with non-treated controls.  相似文献   

12.
The role of adenosine as a possible physiological modulator was explored by measuring its concentration in different tissues during a 24-hour period. Initially the circadian variations of adenosine and other purine compounds such as inosine, hypoxanthine, uric acid and adenine nucleotides were studied in the rat blood. A daily cyclic response was observed, with low levels of adenosine from 08.00 - 20.00 h, followed by an increase from this time on. Inosine and hypoxanthine levels were elevated during the day and low at night. The uric acid changes observed indicate that the decrease in purine catabolism coincides with a decrease in inosine and hypoxanthine levels and an increase in adenosine. The blood adenine nucleotides, energy charge and phosphorylation potential remained constant during the day and showed oscillatory changes during the night. Similar studies were made in the liver, a primary source of circulating purines. Liver adenosine was high during the night while inosine and hypoxanthine remained low along the 24 hours. The results suggest that liver purine metabolism might participate in the maintenance and renewal of the blood purine pool and in the energy state of erythrocytes in vivo.  相似文献   

13.
The ability of brief hypothermic reperfusion (HtR) to restore hepatic energy metabolism following periods of cold hypoxic preservation was studied in isolated rat livers after storage times of 5, 10, and 24 h. In addition, investigations were performed on the effects of HtR used to restore liver oxidative metabolism in the middle of a prolonged (24 h) hypoxic preservation period. A histidine-lactobionate-raffinose solution was used for the initial cold portal flush in all groups. Results showed that cold hypoxia for either 5 or 10 h yielded livers capable of similar recoveries of ATP, energy charge, and total adenine nucleotides, but that HtR after 24 h cold preservation resulted in reduced regeneration of ATP, a lower energy charge, and a fall in tissue adenine nucleotides. When livers were stored for 24 h but subjected to brief HtR after either 5 or 10 h before return to hypoxic storage, improved recoveries of the energy metabolites were seen over those recorded after 24 h hypoxia alone. The fact that these improvements were not due to an improved supply of adenine nucleotide precursors was demonstrated by studying groups which were given HtR with perfusate containing precursors of adenine nucleotides (adenosine, adenine, and inosine) after 24 h cold hypoxia. These data are consistent with the hypothesis that poor metabolic recovery after long-term hepatic cold preservation results more from decreased mitochondrial oxidative phosphorylation than from a lack of precursors for adenine nucleotide resynthesis. In addition, restoring oxidative metabolism at hypothermia for brief periods can to some extent protect final metabolic status after prolonged storage.  相似文献   

14.
Catabolism of adenine nucleotides in suspension-cultured plant cells   总被引:3,自引:0,他引:3  
Profiles of the catabolism of adenine nucleotides in cultured plant cells were investigated. Adenine nucleotides, prelabelled by incubation of suspension-cultured Catharantus roseus cells with [8-14C]adenosine, were catabolized rapidly and most of the radioactivity appeared in 14CO2. Allantoin and allantoic acid, intermediates of the oxidative catabolic pathway of purines, were temporarily labelled. When the cells, prelabelled with [8-14C]adenosine, were incubated with high concentrations of adenosine, the rate of catabolism of adenine nucleotides increased. The results suggest that the relative rate of catabolism of adenine nucleotides is strongly dependent on the concentration of adenine nucleotides in the cells. Studies using allopurinol, coformycin and tiazofurin, inhibitors of enzymes involved in purine metabolism, suggest that participation of AMP deaminase and xanthine oxidoreductase in the catabolism of adenine nucleotides in plant cells. AMP deaminase was found in extracts from C. roseus cells and its activity increased significantly in the presence of ATP. In contrast, no adenosine deaminase or adenine deaminase activity was detected. Qualitative differences in the catabolic activity of AMP were observed between suspension-cultured cells from different species of plants.  相似文献   

15.
The incorporation of 14C from [U-14C]adenine into the pools of purine nucleotides, nucleosides and bases in Ehrlich mouse ascites cells (EMAC1) during the proliferating and resting phases of tumor growth was compared. In the proliferating phase the total 14C incorporation into purine pools is much faster than in the resting phase. The ATP turnover as well as the purine breakdown to hypoxanthine and uric acid are increased in the proliferating phase. That corresponds to previous findings on higher nucleotide pool sizes and higher ATP yield and ATP-consuming processes in this growth period.  相似文献   

16.
Extracellular (EC) adenosine, hypoxanthine, xanthine, and inosine concentrations were monitored in vivo in the striatum during steady state, 15 min of complete brain ischemia, and 4 h of reflow and compared with purine and nucleotide levels in the tissue. Ischemia was induced by three-vessel occlusion combined with hypotension (50 mm Hg) in male Sprague-Dawley rats. EC purines were sampled by microdialysis, and tissue adenine nucleotides and purine catabolites were extracted from the in situ frozen brain at the end of the experiment. ATP, ADP, and AMP were analyzed with enzymatic fluorometric techniques, and adenosine, hypoxanthine, xanthine, and inosine with a modified HPLC system. Ischemia depleted tissue ATP, whereas AMP, adenosine, hypoxanthine, and inosine accumulated. In parallel, adenosine, hypoxanthine, and inosine levels increased in the EC compartment. Adenosine reached an EC concentration of 40 microM after 15 min of ischemia. Levels of tissue nucleotides and purines normalized on reflow. However, xanthine levels increased transiently (sevenfold). In the EC compartment, adenosine, inosine, and hypoxanthine contents normalized slowly on reflow, whereas the xanthine content increased. The high EC levels of adenosine during ischemia may turn off spontaneous neuronal firing, counteract excitotoxicity, and inhibit ischemic calcium uptake, thereby exerting neuroprotective effects.  相似文献   

17.
To evaluate the regulation of adenine nucleotide metabolism in relation to purine enzyme activities in rat liver, human erythrocytes and cultured human skin fibroblasts, rapid and sensitive assays for the purine enzymes, adenosine deaminase (EC 2.5.4.4), adenosine kinase (EC 2.7.1.20), hyposanthine phosphoribosyltransferase (EC 2.4.28), adenine phosphoribosyltransferase (EC 2.4.2.7) and 5'-nucleotidase (EC 3.1.3.5) were standardized for these tissues. Adenosine deaminase was assayed by measuring the formation of product, inosine (plus traces of hypoxanthine), isolated chromatographically with 95% recovery of inosine. The other enzymes were assayed by isolating the labelled product or substrate nucleotides as lanthanum salts. Fibroblast enzymes were assayed using thin-layer chromatographic procedures because the high levels of 5'-nucleotidase present in this tissue interferred with the formation of LaCl3 salts. The lanthanum and the thin-layer chromatographic methods agreed within 10%. Liver cell sap had the highest activities of all purine enzymes except for 5'-nucleotidase and adenosine deaminase which were highest in fibroblasts. Erythrocytes had lowest activities of all except for hypoxanthine phosphoribosyltransferase which was intermediate between the liver and fibroblasts. Erhthrocytes were devoid of 5'-nucleotidase activity. Hepatic adenosine kinase activity was thought to control the rate of loss of adenine nucleotides in the tissue. Erythrocytes had excellent purine salvage capacity, but due to the relatively low activity of adenosine deaminase, deamination might be rate limiting in the formation of guanine nucleotides. Fibroblasts, with high levels of 5'-nucleotidase, have the potential to catabolize adenine nucleotides beyond the control od adenosine kinase. The purine salvage capacity in the three tissues was erythrocyte greater than liver greater than fibroblasts. Based on purine enzyme activities, erythrocytes offer a unique system to study adenine salvage; fibroblasts to study adenine degradation; and liver to study both salvage and degradation.  相似文献   

18.
Incubation of human peripheral blood T-lymphocytes with phytohemagglutinin (PHA) resulted in increased rates of metabolism of the purine bases adenine, hypoxanthine, and guanine. The respective rates decreased to unmeasurable levels in cells incubated without PHA. [14C]Adenine was converted predominantly into adenine nucleotides, with slight catabolism to hypoxanthine and very low conversion into guanine nucleotides. [14C]Guanine labeled predominantly the guanine nucleotide pool, but some adenine nucleotide formation also took place. From [14C]hypoxanthine, adenine nucleotides in the soluble pool were more heavily labeled than the guanine nucleotides, whereas in the nucleic acid fraction the latter contained more radioactivity. Adenosine at low concentrations was mainly phosphorylated to adenine nucleotides, but at higher concentrations this process leveled off, while deamination continued to increase linearly. PHA-stimulation resulted in an increased rate of adenosine metabolism but no qualitative differences in comparison to unstimulated cells were observed. Enzyme assays indicated that after PHA-stimulation the activities of adenine and hypoxanthine phosphoribosyltransferases, and those of adenosine deaminase and kinase, increased with a peak at 48 h, when expressed on a per cell basis, but not at all when expressed per mg of protein. We conclude that stimulation of human T-lymphocytes with PHA increases the capacity of the cells for purine nucleotide synthesis from all the directly re-utilizable catabolic products, namely the purine bases and adenosine.  相似文献   

19.
We studied the effect of 12–36 min of global ischemia followed by 36 min of reperfusion in Langendorff perfused rabbit hearts (n = 26). Metabolism was determined in terms of peak and total release of purines (adenosine, inosine, hypoxanthine), lactate and noradrenaline during reperfusion; and myocardial content of nucleotides (ATP, ADP, AMP), glycogen and noradrenaline at the end of reperfusion. An inverse relationship (r = –0.79) existed between duration of ischemia and developed pressure post-ischemia. Early during reperfusion, after 12 min of ischemia, the purine concentration (peak release) increased 100x (p < 0.01), that of lactate and noradrenaline lOx (p < 0.05) . Total purine release rose with progression of the ischemic period (30x after 36 min of ischemia; p < 0.01), concomitant with a reduction in nucleotide content. Lactate release was independent from the duration of ischemia, although glycogen had declined by 30% (p < 0.01) after 36 min of ischemia. The acid insoluble glycogen fraction, which presumably contains proglycogen, increased substantially during short-term ischemia. Peak noradrenaline increased 100x and 200x (p < 0.05) after 24 and 36 min of ischemia, respectively. Total noradrenaline release due to various periods of ischemia mirrored its peak release. Function recovery was inversely related to total purine and noradrenaline efflux (both r =–0.81); it correlated with tissue nucleotide content (r = 0.84). In conclusion, larger amounts of noradrenaline are released only after a substantial drop in myocardial ATP. During severe ischemia ATP consumption more than limited ATP production by anaerobic glycolysis, is a key factor affecting recovery on subsequent reperfusion. In contrast to lactate efflux, purine and noradrenaline release are useful markers of ischemic and reperfusion damage.  相似文献   

20.
The activities (Vmax) of several enzymes of purine nucleotide metabolism were assayed in premature and mature primary rat neuronal cultures and in whole rat brains. In the neuronal cultures, representing 90% pure neurons, maturation (up to 14 days in culture) resulted in an increase in the activities of guanine deaminase (guanase), purine-nucleoside phosphorylase (PNP), IMP 5'-nucleotidase, adenine phosphoribosyltransferase (APRT), and AMP deaminase, but in no change in the activities of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), adenosine deaminase, adenosine kinase, and AMP 5'-nucleotidase. In whole brains in vivo, maturation (from 18 days of gestation to 14 days post partum) was associated with an increase in the activities of guanase, PNP, IMP 5'-nucleotidase, AMP deaminase, and HGPRT, a decrease in the activities of adenosine deaminase and IMP dehydrogenase, and no change in the activities of APRT, AMP 5'-nucleotidase, and adenosine kinase. The profound changes in purine metabolism, which occur with maturation of the neuronal cells in primary cultures in vitro and in whole brains in vivo, create an advantage for AMP degradation by deamination, rather than by dephosphorylation, and for guanine degradation to xanthine over its reutilization for synthesis of GMP. The physiological meaning of the maturational increase in these two ammonia-producing enzymes in the brain is not yet clear. The striking similarity in the alterations of enzyme activities in the two systems indicates that the primary culture system may serve as an appropriate model for the study of purine metabolism in brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号